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1. Introduction

In 1905 the spirochete T. pallidum was discovered as the aetiologic agent of syphilis
by Schaudinn and Hoffmann at the Charité Hospital in Berlin, Germany (Schaudinn &
Hoffmann, 1905). This helical shaped bacterium is extremely well hidden, and also one
of the best adapted to its only host – the Homo sapiens. The genome of T. pallidum ssp.
pallidum contains only 1041 coding sequences and lacks numerous catabolic and biosynthetic
pathways (Fraser et al., 1998) like, i.e. fatty acid synthesis (Livermore & Johnson, 1975).
Therefore this organism utilises many of the biosynthetic precursors from its host and up
to now it is not possible to continuously cultivate it in vitro. The only way to grow this
bacterium is in in vivo models (Norris et al., 2006). Thus, the isolation of biological active
compounds of T. pallidum has been difficult due to the lack of sufficient amounts of cultured
bacteria. To study recognition of T. pallidum by the innate immune system information on
the chemical composition of these cells has to be correlated with immunological responses
induced by related spirochetes. The best examined spirochete is Borrelia burgdorferi – the
etiologic agent of Lyme disease (LD). LD is an endemic disease with somewhat similar
characteristics as compared to syphilis – A relatively slow dissemination of the spirochete
within the host is followed by a weak inflammatory response of the human immune system.
Furthermore, multiple organs are affected including the skin as well as the peripheral and
central nervous system. Only half of the genes of B. burgdorferi code for proteins orthologous
to those of T. pallidum indicating an adaptation to distinct niches though (Subramanian et al.,
2000). However, the motility associated genes are highly conserved in both organisms (Fraser
et al., 1998). Other pathogenic Borrelia include B. hermsii, one causative agent of relapsing
fever, that multiplies more rapidly to higher cell numbers and causes more acute clinical
symptoms. Further human associated treponemes such as T. denticola, colonise the oral cavity,
T. phagedenis, belongs to the genital flora, and other species are found within the intestine.
Thereof only the oral treponemes are pathogenic and have been associated with periodontal
disease causing inflammation of the gingival tissue (Norris et al., 2006). Since the genome
of T. denticola is much larger than that of T. pallidum and a conserved gene order could not
be determined it is unlikely that T. pallidum is directly derived from this oral spirochete.
But it might serve as a model for T. pallidum research since it is relatively easy to cultivate
(Seshadri et al., 2004). While Borrelia and Treponema share the same phylogenetic family –
Spirochaetaceae – the genus Leptospira belongs to the family Leptospiraceae in the same order
as the first – Spirochetales (Paster et al., 1991). The most important and immunologically best
studied leptospiral pathogen is the agent of Weil’s disease (leptospirosis) L. interrogans.
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1.1 The innate immune system

The innate immune system is the first line of defence of the host against invading
microorganisms. Its function is to avoid an infection, or, in case an infection occurred, to
detect, kill and eradicate the germs. Furthermore in vertebrates it interacts with the adaptive
immune system and i.e. facilitates the presentation of antigens. The innate immune system
mainly consists of either circulating or tissue resident cells, and humoral components like the
complement system and cytokines. The phagocytes include the monocytes, macrophages,
neutrophil granulocytes, or dendritic cells. These cells express germ-line encoded pattern
recognition receptors (PRR) that detect conserved microbial structures not being present in
the host. These receptor families include binding receptors like mannose binding receptors,
CD14 or scavenger receptors like CD36. These proteins directly bind or mediate the binding
of microbial patterns but they can’t activate immune cells. The other PRRs are signalling
receptors like toll-like (TLR), nod-like (NLR), or rig-I-like (RLR) receptors that usually contain
a ligand-binding and a signalling domain. Upon ligand binding a conformational change
within the signalling domain of the PRR triggers the signalling cascade inside the cell. This
leads to the translocation of transcriptions factors into the nucleus and the release of cytokines
(Akira & Takeda, 2004b).

1.2 The tools for receptor research

To assess the individual contribution of receptors of the innate immune response to a
pathogen and the specificity of the ligands, loss-of-function and gain-of-function assays are
used. There are mainly three ways to selectively disable single receptors in loss-of-function
experiments. The most widely used system are knockout (KO) mice, in which receptor
genes were turned off by homologous recombination in embryonic stem cells (Hemmi et al.,
2000). Today numerous inbred KO mice are available either commercially or through research
collaborations lacking relevant receptors or proteins of the signalling cascade (Akira & Takeda,
2004a). These animal models, however, do not always reflect the situation in humans.
Genotyping of healthy volunteers for natural occurring functionally relevant mutations in
the receptor genes allows experiments with isolated peripheral blood mononuclear cells from
humans. Finally, loss-of-function experiments can be designed by downregulation of genes
by small interfering RNA (siRNA) (Elbashir et al., 2001). Upon transfection of these plasmids
into cells they interfere with the translation of the targeted mRNA leading to degradation
of the mRNA prior to translation and a strong reduction of the receptor protein expression
(knockdown). The most widely used assay for gain-of-function experiments are cell lines like
the human embryonic kidney cells (HEK 293). In these epithelial cells numerous PRRs are
either not expressed or expressed only dysfunctional while the signalling cascade is mostly
intact. By transfection of receptor plasmids it is possible to study cellular activation upon
stimulation with bacterial ligands in contrast to non-transfected cells. The read-out for these
experiments are either cytokines like IL-8 or reporter-gene assays for transcription factors like
NF-κB (Opitz et al., 2001). If working with novel isolated bacterial structures it is useful to
first check their biological activity with cell lines that express a full set of PRRs. The most
often used cell lines are human monocytes like THP-1 or the murine macrophages RAW 264.7
(Schröder et al., 2000).

1.3 The morphology and the cell wall composition of T. pallidum

Spirochetes stain negative in Gram-staining and share the main cell wall topology of
Gram-negative bacteria. In detail the T. pallidum envelope is assembled by an outer and
a cytoplasmic (inner) membrane enclosing the protoplasmic cylinder (Johnson et al., 1973).
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The periplasmic space is constituted by a thin peptidoglycan layer (Umemoto et al., 1981)
and anchors the endoflagella (also called axial filaments) (Johnson et al., 1973). From the
centre of the cell the endoflagella wrap around the protoplasmic cylinder and extend at each
end into the extracellular space (Hovind-Hougen, 1976). The outer membrane contains few
transmembrane proteins (Jones et al., 1995; Radolf et al., 1989; Walker et al., 1989) and exhibits
an extremely low protein/lipid ratio (Radolf, Robinson, Bourell, Akins, Porcella, Weigel, Jones
& Norgard, 1995). Hydrophobic proteins are anchored in both membranes (Radolf et al.,
1988). The majority, however, is located in the cytoplasmic membrane (Cox et al., 1995).
Both membranes themselves are mainly constituted of lipids that comprise about 20 % of
the dry weight of T. pallidum cells (Johnson et al., 1970). About 50 % of the total lipids are
attributed to the glycolipid α-galactosyl-diacylglycerol (MGalD) (Livermore & Johnson, 1970)
while about 45 % are phosphatidylcholine and -ethanolamine, which are found in the host
too. The remaining portion are free fatty acids (Johnson et al., 1970). With more sensitive
radiolabelling assays further phospholipids have been detected in minor proportions (Belisle
et al., 1994). The peptidoglycan layer consists chemically of an oligomer of glucosamine and
muramic acid that is cross linked by short peptides (Umemoto et al., 1981).

2. Toll-like receptors

Toll-like receptors (TLR) are single-pass transmembrane receptors. Within the cell one
group is located on the cellular surface, the other within endosomes. They exhibit an
ecto-domain containing leucine-rich repeats detecting the ligands, a transmembrane domain,
and a cytoplasmic domain inducing signal transduction. This intracellular domain is termed
toll/IL-1R (TIR) domain due to its homology to the IL-1 receptor signalling domain (Fig. 1,
p. 4). Adaptor molecules associated with the TIR domain trigger intracellular signalling,
with MyD88 being the central signal transducer (Akira & Takeda, 2004a). TLRs are not
only expressed in cells of the innate immune system but partially in B lymphocytes and
endothelial cells too. They are named according to their homology with the toll protein found
in Drosophila. In 1997 the first human TLR was cloned and its function for the signalling
of the immune system discovered (Medzhitov et al., 1997). Subsequently a protein family
consisting of 10 members in humans was identified and numerous ligands proposed. Prior
to these findings immunstimulatory molecules such as lipoproteins from T. pallidum (Norgard
et al., 1995) or lipopolysaccharide from Gram-negative bacteria as well as the involvement of
some binding receptors were established but the signalling receptor and the entire mechanism
remained unknown.

2.1 TLR-4

TLR-4 is responsible for the recognition of lipopolysaccharides (LPS) (Poltorak et al., 1998;
Qureshi et al., 1999) but binding assays revealed that MD-2, an accessory protein of TLR-4
receptor complex, directly binds LPS. Due to the association of MD-2 with a homodimer of
TLR-4 it triggers signalling (Shimazu et al., 1999; Viriyakosol et al., 2000). Earlier it was found
that the serum protein LPS binding protein (LBP) (Schumann et al., 1990) and membrane
bound or soluble CD14 (Wright et al., 1990) are also involved in the recognition cascade of LPS.
Both facilitate recognition of LPS by TLR-4 in the pg/ml range. All these membrane bound
proteins are localised on the cell surface. LPS is an amphiphilic molecule that is located in
the outer leaflet of the outer membrane of Gram-negative bacteria. Chemically it is composed
of lipid A, a phosphorylated disaccharide with 4-6 attached fatty acids including hydroxy
fatty acids, and the core region, an oligosaccharide with the characteristic carbohydrate
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3-deoxy-D-manno-octulosonic acid (KDO). The active principle for binding to MD-2 and
initiating signalling is lipid A (Viriyakosol et al., 2000).
Spirochetes share the cell wall design of Gram-negative bacteria but they seem to lack a
classical TLR-4 stimulating LPS. This has been shown for T. pallidum (Hardy & Levin, 1983;
Penn et al., 1985; Radolf & Norgard, 1988) as well as several Borrelia including B. burgdorferi
(Hardy & Levin, 1983; Takayama et al., 1987). For L. interrogans an atypical LPS was reported
(Vinh et al., 1986) and the chemical structure identified (Que-Gewirth et al., 2004). But this
LPS is atypically recognised by TLR-2 instead of TLR-4 (Werts et al., 2001). In contrast
several authors have reported on the putative isolation of LPS in Treponema (Kurimoto et al.,
1990; Walker et al., 1999) and in Borrelia (Beck et al., 1985; Habicht et al., 1986). However,
these findings are not convincing since the extracts are crude and not purified chemically.
Furthermore, not all features of an LPS were found, and no chemical structure has been
determined. Most importantly no activation of TLR-4 has been reported. Therefore it appears
obvious that TLR-4 is not relevant in recognition of T. pallidum and spirochetes in general.

Fig. 1. Schematic representation of the basic structure of toll-like receptors

2.2 TLR-2, TLR-1, TLR-6

The first ligands described for TLR-2 were bacterial lipoproteins (Aliprantis et al., 1999;
Brightbill et al., 1999; Lien et al., 1999). Later it has been shown that TLR-2 forms heterodimers
with either TLR-1 or TLR-6 to recognise triacylated and diacylated lipoproteins, respectively
(Takeuchi et al., 2001; 2002), and the crystal structures of both ligands in complex with
the respective receptor dimer have been elucidated (Jin et al., 2007; Kang et al., 2009).
For signalling via the TLR-1/-6 receptor complex CD36 is a crucial cofactor (Hoebe et al.,
2005). TLR-1, -2 and -6 are located on the cellular surface as well (Kawai & Akira, 2009).
Further ligands of diverse chemical nature have been proposed for TLR-2 and today it
is the TLR with the highest number of proposed ligands. However, since the biological
activity of bacterial lipoproteins and peptides in the upper pg/ml range (Schröder et al.,
2004) is highest among the TLR-2 ligands, lipoproteins can be considered as the prototype
TLR-2-ligand. The biological importance of bacterial lipoproteins is to anchor proteins into
cellular membranes. Its chemical structure was first described in 1973 (Hantke & Braun,
1973). The basic structure of the lipid anchor is a diacylglycerol molecule that is thioether
linked to a cysteine. The cysteine constitutes the N-terminal amino acid of the protein. In case
of triacylated lipoproteins the N-terminal amino group is amide linked to a further fatty acid.
The biosynthetic pathway is ubiquitous in bacteria and lipoproteins have been predicted in
many bacteria (Madan Babu & Sankaran, 2002). The active principle for the recognition by
TLR-2 heterodimers is the lipid anchor and not the protein moiety.

6 Syphilis – Recognition, Description and Diagnosis
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2.2.1 Bacterial lipoproteins in T. pallidum

Due to the complete genome sequencing and known signalling peptides numerous putative
lipoproteins could be predicted in the microbes sequenced: 46 in T. pallidum (22 by Fraser et al.
(1998)), 166 in T. denticola and 127 in B. burgdorferi according to new algorithms (Setubal et al.,
2006). For B. burgdorferi it has been shown previously that their lipoproteins are triacylated
(Beermann et al., 2000). Since in T. pallidum the necessary enzyme for the acylation of the
N-terminus – apolipoprotein N-acyltransferase – is present1, it is likely that its lipoproteins are
triacylated as well. A fraction of lipoproteins from T. pallidum has been isolated (Chamberlain
et al., 1989; Radolf et al., 1988) and shown to activate isolated murine macrophages and the cell
line RAW 264.7 (Radolf et al., 1991). These results could be confirmed by the biological activity
of fully synthetic lipopeptides (DeOgny et al., 1994) that are able to mimic inflammation in
vivo (Norgard et al., 1995). This activity has been shown to employ a distinct receptor then
LPS (Norgard et al., 1996) but involves CD14 (Sellati et al., 1998) and LBP (Schröder et al.,
2004). Furthermore it has been demonstrated that the acylation of the lipid anchor is an
essential feature for recognition (Morr et al., 2002; Radolf et al., 1995). The lipoproteins of T.
pallidum and B. burgdorferi and their lipopeptide analogs have been used as a model to identify
TLR-2 as the signalling receptor (Lien et al., 1999). However the heterodimer partner for T.
pallidum lipoproteins remains undetermined. For oral treponemes the recognition of bacteria
or cell wall components by TLR-2 has been reported (Asai et al., 2003). In case of T. denticola
the heterodimer TLR-2/-6 is utilised for signalling indicating rather a diacylated lipoprotein
(Ruby et al., 2007). Since lipoproteins of T. denticola have been described as activating murine
macrophages prior to the knowledge of TLR-2 (Rosen et al., 1999) it is likely that they exhibit
the same TLR-2 activity as T. pallidum. Probably lipoproteins are the most important TLR
ligands of T. pallidum and spirochetes in general. In B. hermsii TLR-2 is crucial for the activation
of the adaptive immune system and production of antibodies (Dickinson et al., 2010).

2.2.2 Glycostructures in treponemes

Polysaccharides have been isolated from treponemes and subjected to compositional analyses
indicating many kinds of carbohydrates (Yanagihara et al., 1984). Amphiphilic glycostructures
from the outer membrane of T. denticola were isolated but no defined chemical structure was
elucidated (Schultz et al., 1998). Similar not further chemically purified glycostructures were
obtained from culture supernatants of T. maltophilum, an oral treponeme, or extracted from
the same cells. These have been shown to activate murine macrophages as well as cell lines
in a TLR-2-dependent fashion but only in very high concentrations (µg/ml) (Opitz et al.,
2001; Schröder et al., 2000). However contaminations with lipoproteins that have similar
hydrophobic properties like these amphiphilic glycostructures could not be ruled out.

2.3 TLR-5

TLR-5 detects bacterial flagellin of several Gram-positive and Gram-negative bacteria.
The receptor binds this protein directly and leads to NF-κB activation and release of
proinflammatory cytokines (Hayashi et al., 2001; Smith et al., 2003). The recognised
monomeric FlaA is highly conserved and a principle component of the flagellar filaments.
It is essential for the motility of bacteria. Unlike other TLRs, TLR-5 is not expressed on
macrophages or dendritic cells but mainly on intestinal cells (Uematsu et al., 2006). T. pallidum
features several endoflagella that consist of flagellin too. The genetic analyses of the flagellar
structure reveal that T. pallidum has three core proteins (FlaB1-3) and one sheath protein (FlaA)
while in B. burgdorferi a single core and one sheath protein is found (Fraser et al., 1998). Of the

1 http://www.ncbi.nlm.nih.gov/gene/6333053
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spirochetes only for B. burgdorferi the role of TLR-5 has been assessed: Upon stimulation with
live bacteria knockdown of the TLR-5 gene by siRNA resulted in either a minor effect (Dennis
et al., 2009) or a significant reduction of cytokine gene expression (Shin et al., 2008). A direct
stimulation of cells with the FlaA gene product (p37) increased the protein level of TLR-5
(Cabral et al., 2006). Taken the presence of FlaA in T. pallidum , its high conservation among
bacteria, and the first results on the TLR-5 role in B. burgdorferi, TLR-5 probably contributes to
the recognition of T. pallidum too. However, this fact and the extent of the signalling remains
to be elucidated.

2.4 TLR-9

TLR-9 was identified as the PRR for unmethylated 2’-deoxyribo
cytidine-phosphate-guanosine (CpG) DNA motifs (Hemmi et al., 2000). The general
immune stimulatory effects of these motifs were already established prior to the discovery
of TLR-9. In contrast to mammals in bacteria CpG DNA motifs are 20 times more common
(Klinman et al., 1996). First it was assumed that the recognition is species specific via the
nucleotide sequence of the CpG motifs (Bauer et al., 2001) while it was later revealed that the
DNA carbohydrate backbone 2’ deoxyribose determines the activation of TLR-9 (Haas et al.,
2008). This receptor is expressed in intracellular vesicles like endosomes. No results on the
role of TLR-9 in the immune response to T. pallidum have been reported. For B. burgdorferi the
production of proinflammatory cytokines in TLR-9 deficient murine macrophages was not
diminished compared to wild-type macrophages (Shin et al., 2008). In contrast, the interferon
α production induced by B. burgdorferi was significantly reduced upon TLR-9 inhibition
(Petzke et al., 2009) and B. hermsii activates TLR-9 (Dickinson et al., 2010). However it remains
an open issue whether also the DNA of T. pallidum could be recognised by TLR-9.

TLRs -3, -7, and -8 are located in intracellular compartments. They sense double (-3) and single
stranded (-7, -8) RNA found in RNA viruses. Therefore these TLRs don’t appear to be relevant
for the innate immune recognition of spirochetes. For the human TLR-10 currently no clear
ligand is known (Kawai & Akira, 2009).

3. Nod-like receptors

Nucleotide oligomerisation domain (NOD)-like receptors (NLRs) are a family of intracellular
PRRs with 23 members in humans. They are expressed in many cell types but some primarily
in phagocytes. The NLRs are multi-domain proteins consisting of a nucleotide-binding
domain, leucine-rich repeats (LRR) and an N-terminal effector domain (Fig. 2). Similar to the
TLRs the LRR bind the microbial structures while the effector domain triggers the signalling
cascade leading to activation of mitogen-activated protein (MAP) kinase, translocation of
NF-κB, or activation of the inflammasome (Franchi et al., 2009). The best characterised NLRs
are NOD-1 and NOD-2 that sense substructures of the bacterial peptidoglycan (PG) (Ting
et al., 2008).

3.1 NOD-2

NOD-2 has been revealed as the receptor for muramyldipeptide (MDP) from Gram-positive
and Gram-negative bacteria. Upon binding of the ligand it triggers the activation of NF-κB
pathway (Girardin et al., 2003b; Inohara et al., 2003). The immunstimulatory properties of
MDP were known a long time before and it has been widely used as an adjuvant (in Freund’s
complete adjuvant) (Chedid, 1983). Furthermore it has been shown that MDP synergises
with LPS in the induction of proinflammatory cytokine release (Takada et al., 2002; Wang
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et al., 2001). NOD-2 is predominantly expressed in the cytosol of monocytes/macrophages
(Girardin et al., 2003b). Chemically MDP is N-acetylmuramyl-L-alanyl-D-isoglutamine and it
is the minimal glycosubstructure of PG also from spirochetes. For T. pallidum the basic MDP
components muramic acid, alanine and glutamic acid2 have been detected in its PG (Azuma
et al., 1975). However the exact sequence of the glycan linking peptides and therefore the
structural requirement for NOD-2 recognition in treponemes is still unknown. In one report
the treponemal PG lacked the adjuvant activity to stimulate antibody production (Umemoto
et al., 1981). Early reports on the biological activity of PG from B. burgdorferi (Beck et al.,
1990) and from T. denticola (Grenier & Uitto, 1993) can’t be included since the PG preparations
were not devoid of lipoproteins and no specific receptors were assessed. Nevertheless for
LD an important role of NOD-2 in an interplay with TLR-2 was demonstrated recently. Both
receptors are necessary for an effective induction of cytokines by B. burgdorferi (Oosting et al.,
2010). Also B. hermsii activates NOD-2 (Dickinson et al., 2010). Since Borrelia and Treponema
are supposed to have the same PG composition the role of NOD-2 in the recognition of the
syphilis spirochete should be examined.

Fig. 2. Schematic representation of the structure of NOD-2 receptor

3.2 NOD-1

NOD-1 is the sensing PRR for another PG motif, the iE-DAP dipeptide of the glycan strand
cross linking peptide (Chamaillard et al., 2003; Girardin et al., 2003a). The receptor-ligand
complex then leads to the activation of NF-κB and cytokine release as well. NOD-1 is
expressed in the cytosol of multiple tissues (Chamaillard et al., 2003). The unique part
of the ligand iE-DAP (γ-D-glutamyl-meso-diaminopimelic acid) is the diaminopimelic acid.
In general all common Gram-negative and only several Gram-positive bacteria exhibit this
diamino acid. In spirochetes it was only detected in Leptospira while in contrast Treponema and
Borrelia contain the diamino acid ornithine instead (Umemoto et al., 1981; Yanagihara et al.,
1984). Furthermore, for B. burgdorferi it has been shown that NOD-1 plays no major role in
the recognition by the immune system (Oosting et al., 2010) and the same is expected for T.
pallidum.

4. CD1d

CD1d is a surface glycoprotein similar to the MHC class I molecules that presents lipid
antigens to invariant natural killer T cells (iNKT). The iNKT cells are a small subset of
T lymphocytes that express an invariant αβ T cell receptor as well as a NK cell receptor.
They activate monocytes and B-cells by immunregulatory cytokines linking the innate and
adaptive immune system (Cohen et al., 2009). This seems to be an important mechanism for
production of antilipid antibodies too (Leadbetter et al., 2008). For LD it has been shown

2 during the applied compositional analysis isoglutamine will be converted to glutamic acid
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that CD1d deficiency impairs the host resistance to B. burgdorferi in a mouse model (Kumar
et al., 2000). In line with this is the observation that iNKT deficient mice exhibit more
severe and prolonged manifestations as well as a reduced ability to clear the spirochetes
(Tupin et al., 2008). This effect could be attributed to one of the B. burgdorferi glycolipids
namely α-galactosyl-diacylglycerol (MGalD) (Fig. 3b) that activates iNKT cells via CD1d and
independent of TLRs (Kinjo et al., 2006). MGalD is structurally related to the prototype
iNKT cell ligand α-galactosylceramide (Fig. 3a) and shows the essential α-configuration
of the galactose (Kawano et al., 1997). Furthermore for tick-borne relapsing fever it
was demonstrated that CD1d deficiency coincides with impaired antibody production and
increased B. hermsii burden (Belperron et al., 2005). Due to the fact that B. hermsii lipids
contain MGalD too (Livermore et al., 1978) a crucial role of CD1d and its ligand MGalD in
the defence of Borrelia can be concluded. For syphilis the role of CD1d and iNKT cells have
not been assessed so far. However while in B. hermsii and B. burgdorferi MGalD comprises
for 2.6 % and 3.4 % of cell dry weight respectively (Stübs et al., 2009) in T. pallidum MGalD is
the major lipid structure accounting for 9-10 % of the dry bacterial cell (Johnson et al., 1970;
Livermore & Johnson, 1970). Therefore we hypothesize that for syphilis the activation of iNKT
cells by CD1d and treponemal MGalD is an important mechanism for the innate as well as the
adaptive immune response.

(a) α-Galactosylceramide (b) α-Galactosyl-diacylglycerol

Fig. 3. Chemical structures of CD1d ligands

5. Phagocytosis

In vivo the host’s immune cells are faced first with live bacteria which do not expose the
epitops for the PRRs to the surface. For B. hermsii the crucial role of the initial bacterial cell
degradation has been demonstrated: Blocking of internalisation of the bacterial cell prevents
the induction of inflammatory cytokines (Dickinson et al., 2010). Hence, prior to TLR/NLR
recognition and signalling an effective phagocytosis of bacteria is important. At first the
phagocytes have to rely on their low affinity binding receptors and the complement opsonins
to attach the bacteria. In a later stage of the immune response highly specific IgG antibodies
can opsonise the bacteria and allow the phagocytes to bind their FC moiety with much higher
affinity. Thereafter immune cells ingest and lyse the bacteria in the phagolysosome. For live T.
pallidum the phagocytosis proceeds considerably slower than with other bacteria (Alder et al.,
1990). Compared to B. burgdorferi it results in significantly weaker activation of monocytes and
less release of cytokines. Only in the presence of syphilic sera T. pallidum initiates an equally
efficient immune response as compared to B. burgdorferi (Moore et al., 2007). For the uptake
of B. burgdorferi the adaptor molecule MyD88 but not TLR-2, -5 and -9 is important and plays
a dual role – for signal transduction and for phagocytosis (Shin et al., 2008). Breaking down
the bacterial polymers to small subunits is not only obvious for the mentioned NLRs but also
for TLR-5. Here the acidic environment in the phagolysosome is necessary to disperse the
filament into the monomeric flagellin (Smith et al., 2003).

10 Syphilis – Recognition, Description and Diagnosis
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6. Conclusion

The first crucial step for immune responses upon infection with T. pallidum is its degradation in
order to have the ligands available for PRRs of the innate immune system. However, during
early syphilis IgG antibodies are absent and phagocytosis of T. pallidum is markedly weak.
Therefore only limited amounts of treponemal ligands are recognised by PRRs rendering
low inflammation. Furthermore pyrogenicity of T. pallidum, lacking the highly active LPS, is
diminished in regard to Gram-negative bacteria. The most potent PRR ligands in T. pallidum
are lipoproteins recognised by TLR-2. Compared to B. burgdorferi the number of distinct
lipoproteins is more limited but no conclusion as to the overall expression can be drawn.
Since the activation of the innate immune system by T. pallidum and B. burgdorferi is similar
in extent, it appears that TLR-5, recognizing flagellin, and TLR-9, recognizing DNA, play
a role for recognition of T. pallidum as well. Both ligands are present in T. pallidum from
the genetic and chemical point of view but remaining uncertainty has to be assessed by
experiments with treponemal ligands. The same holds true for the activation of immune cells
by MDP via NOD-2. Chemical analyses indicate the presence of the MDP motif but further
evidence has to be gathered. The role of TLR-1 and -6 as heterodimers of TLR-2 have not
been elucidated finally. However, the presence of triacylated lipoproteins in T. pallidum rather
suggests a function of TLR-1. The other TLRs and NOD-1 are probably not involved in T.
pallidum recognition. The presentation of treponemal MGalD by CD1d to iNKT cells is a novel
aspect presented here first and should be studied in detail.
Thus, the weak phagocytosis combined with the reduced recognition of T. pallidum by the
PRRs can explain its “stealth” during the first stages of syphilis. In the absence of IgG
antibodies T. pallidum induces only weak inflammation and leads to painless ulcerations as in
the primary stage. Insufficient recognition and eradication enables T. pallidum to disseminate
by the blood stream and lymphatic system and affect other organs as in the second stage of
syphilis. Furthermore the weak activation of the innate immune system results in diminished
presentation of antigens for adaptive immune responses. The following delayed production
of IgM and more pronounced IgG antibodies has been observed by serodiagnostics. However,
in late stage syphilis IgG antibodies are present and an efficient phagocytosis has been
demonstrated in vitro. At this time T. pallidum can only persist in the host due to evasion
into organs with restricted immune responses as the central nervous system. In late syphilis
dissemination of T. pallidum within the host is prevented and the host is not infectious
anymore.
Taken together different characteristics of T. pallidum allow it to evade the immune response
of the host – passively to disseminate during early syphilis and actively to establish a chronic
infection. For both features the interaction with the innate immune system is pivotal.
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