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1. Introduction 

Prader-Willi syndrome (PWS) is a complex and fascinating human disease, whose 

patophisiological characteristics are still the targets of research in teams that can afford 

multidisciplinary approaches for seeking the link between the genetic, epigenetic and 

phenotypic aspects. The genetic complexity of the PWS chromosomal region, 15q11-q13, 

relies on the multiple clustered imprinted genes, alternative splice variants, gene 

duplications and variant copies, that control the epigenetic phenomenon of the imprinting 

itself. These DNA and transcriptome levels are matched by the wide variety of phenotypes 

that involve multiple organ systems and the complexity of brain functions influenced by the 

expression of the PWS critical genes.  

In this review a general description of the clinical diagnostic criteria will be linked with 

the most recent knowledge described for the structure of the 15 critical chromosomal 

region and candidate genes, as well as the model mechanisms explaining the interaction 

of the cis- and trans- genetic factors and the epigenetic ones during the establishment and 

maintenance of the imprinting marks that define the parental characteristic contribution 

to the critical genes expression. This review aims at explaining the criteria of molecular 

diagnosis and genetic counceling based on the techniques that are currently used and that 

will be used in the future approaches for the improvement of the diagnosis and treatment 

schemes. 

PWS has been initially linked with its main characteristic phenotype, the obesity, and 

therefore was the first described genetic human obesity syndrome. The main etiology of this 

disease included: gross hyperphagia, hypogonadism and growth hormone deficiency, 

indicating hypothalamic dysfunction. A neurodegenerative aspect was also appreciated as a 

major contributor to the complex PWS phenotype. Recent epidemiological study proved 

that PWS is a rare disease with an estimated incidence of about 1 in 25 000 births, and a 

population prevalence of about 1 in 50 000 (Buiting, 2010). An interesting feature linked 

with the diagnosis and the treatment impact is that this syndrome develops during late 

development of neonate. Initially, the signs like hypotonia had not suggested a suspicion for 

PWS, nor the consideration of further clinical and molecular cytogenetic investigations, until 
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the moment when the feeding habits started to restore but meantime to initiate an 

uncontrolled rate of weight gaining leading to the obesity state and the linked illness 

conditions. The wrong concept according to which the genetic disorder involves solely 

genetic modifications that may be monitored at the chromosomal level has not been proved 

by the classical cytogenetic approaches : the affected child commonly presents a normal 

karyotype and rarely a translocation or a gross deletion; this fact was misleading the 

medical geneticians towards wrong conclusions and hence incorrect strategy for treatment 

and social integration. 

The initial genetic investigations on PWS and its sister syndrome, the Angelmann syndrome 

(AS), have driven the research towards the first proof of the epigenetic regulation of the 

gene function: AS was detected by the same genetic defect, a deletion on the same critical 

15q11.q13 region, however it was defined by quite different phenotypes. This fact lead to the 

conclusion that beyond the identical affected chromosomal region there were involved 

certain other factors, such as the parental allele contribution to the candidate genes 

expression. Once the specific epigenetic marking of the allele for their expression was 

discovered in terms of the DNA methylation, the corresponding histone modifications 

and RNA processing, the research in this domain has been oriented towards new clues 

that could link the two types of hereditary information: genetic information, defined by 

either deletions as cis-acting factors and those coded by the single nucleotide 

polymorphisms (SNPs) as trans-acting factors, and the epigenetic information used in the 

process of imprinting. Both genetic and epigenetic approaches resulted finally in a more 

correct estimation of the types of defect frequencies and focused also on the right 

moment for diagnosis, and the right tissue type for the imprinted gene expression. Once 

the molecular mechanism of the defect establishment and maintenance is designed based 

on aberrant germ cells reprogramming during the parental meiosis, then after 

fertilization, during embryogenesis and fetal development, an improvement of the 

genetic counceling activities may be envisaged in the future for the patient and genitors’ 

benefit. 

Based on the newly established relationship between genotype-epigenotype and phenotye, 

new approach of the clinical diagnosis was initiated, that considers actually the dynamics of 

the epigenome reprogramming and hence the spatio-temporal variation in gene expression, 

that is imposed by the epigenetic control of cytodifferentiation processes. It became 

commonly apparent that clinical features of PWS appear during different developmental 

moments: severe hypotonia and consequently feeding difficulties concomitant with low 

birth weight- in early infancy, followed by hyperphagia and obesity - starting in early 

childhood.  These general characteristics are accompanied by certain common features that 

determined the establishment of consensus diagnostic clinical criteria for PWS (Holm et al., 

1993; Cassidy and Driscoll, 2009). They include both physical features such as facial 

appearance (like almond-shaped eyes, triangular mouth and narrow bifrontal diameter), 

short stature and small hands and feet, and distinctive behavioral traits due to mild and 

moderate mental retardation (such as temper tantrums, obsessive-compulsive characteristics 

and psychiatric disturbance as well as motor milestones and language development delay). 

The score includes also features that appear later during the child development; these are 

defects in sexual development (genital hypoplasia that may result in hypogonadism in both 

sexes and incomplete pubertal development and frequent infertility) and the obesity linked 
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features, among which the most frequent one is the non-insulin-dependent diabetes mellitus 

(Buiting, 2010). 

Structural characteristics of the critical chromosomal 15q11.q13 region explain its genomic 

instability and its special behavior during the primary imprinting process, during the 

genitor’s meiosis and germ line establishment, followed by the secondary imprinting 

process, that occurs during the affected offspring PCG (primordial germ cells) 

determination and germ cells specialization. 

The major determinant feature of the critical chromosomal region is the abundant imprinted 

genes arranged in clusters together with numerous variable sequences (CNVs) (such as 

interstitial microdeletions, duplications, triplications) that are flanking the critical 

breakpoints (BPs) defining the around 5 Mb deletions. Due to the presence of these critical 

instability regions on chromosome 15, another critical region, named IC for imprinting 

control region, apparently contributed to defects that determines wrong marking of parental 

alleles and hence their gene expression in all somatic cells of the offspring. The structure and 

control of functions in this region will be discussed below. 

2. PWS genetics 

A genetic approach of the PWS includes the description of the candidate genes and their 

expression which is epigenetically controlled based on the parental contribution.  PWS 

arises when the lack of contribution from the paternally derived chromosome 15q11-q13 

occurs (Goldstone, 2003). Normally, candidate genes for PWS in this region are imprinted 

and silenced on the maternally inherited chromosome. The causes of the lack of contribution 

are multiple in PWS: either paternal alleles are sequence defective (mutant or missing) or 

silenced by wrong, repressive epigenetic marking. The imprinting marking determines in 

normal, healthy individuals, the expression of critical genes only from the paternal allele. 

Paternally expressed genes are particularly important in hypothalamic development, this 

fact explaining the spectrum of neuroendocrine disturbances in PWS. These genes are 

located in the centromeric part of the 15q11q13 region and are as follows: MKRN3, 

MAGEL2, NDN, C15orf2, SNURF-SNRPN and the C/D box small nucleolar (sno)-RNA 

genes. The latter genes are represented by numerous, so-called SNORD genes, previously 

named HB (human brain) II genes (SNORD107, previously named HBII-436; SNORD64, 

previously named HBII-13; SNORD108, previously named HBII-437; SNORD109A, 

previously named HBII- 438A; SNORD116, previously named HBII- 85; SNORD115, 

previously named HBII- 52 and SNORD109B, previously named HBII- 438B) (Buiting, 2010).  

These genes are differentiated based on their repetitive state: SNORD 115 and SNORD116 

genes are present as multiple copy clusters, whereas the other SNORD genes are single copy 

genes. The snoRNA genes in the critical chromosomal 15 region might have a role in 

modulating alternative splicing and thus be involved in the modification of mRNA (Cavaille 

et al., 2000; Bazeley et al., 2008). Recent investigations revealed that SNORD116 gene is the 

minimal region linked with the PWS phenotypes (Buiting, 2010). 

The most frequent genetic causes linked with the paternal contribution are large (a typical 5-

7 Mb) chromosomal de novo interstitial deletions (either type I or type II deletions detected 

in around 70%, of PWS cases) and the double maternal chromosomal contribution by 

uniparental maternal disomy (UPD), with 22% frequency (Fig.1). With much lower 
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frequency were detected paternal chromosomal translocations (less that 1% of cases). Other 

explanations of the lack of paternal contribution are grouped in the class of epigenetic 

defects that impaired the imprinting process (around 3% of cases).  

In Fig. 1 a schematic view of the human chromosomal region 15q11q13 the genes expressed 

from different alleles are differently colored; there is evidenced also the localization of two 

common deletions [del (15)(q11-q13)] (class or type I and class II deletions) and their 

localization. Such deletions include the entire imprinted domain plus certain non-imprinted 

(green boxes) genes. 

Different allelic localizations of such large deletions demonstrated the involvement of the 

parent of origin marking by epigenetic factors. In PWS, they are always on the paternal 

allele, whereas in AS, they occur on the maternal chromosome. The deletion regions are 

flanked by the three break-points (BP1, BP2 and BP3) (Fig.1). In certain rare cases even 

larger deletions were detected extending telomeric region including the more distal break-

points, named BP4 and BP5 (Sahoo et al., 2007). 

 
 

 

Fig. 1. A map of the 15q11–q13 critical region. Imprinted, paternally-expressed genes are 
represented by yellow boxes, while imprinted, maternally-expressed genes are represented 
by red boxes. Black boxes represent imprinted (silenced) genes and green boxes respresent 
genes expressed biallelically. Dashed and dotted lines demarcate the snoRNA clusters. The 
PWS- and AS-ICs are represented by two differently colored domains. Black circles indicate 
methylated (M) CpG islands and the white circles the unmethylated (U) CpG islands. BP1, 
BP2, and BP3 are the common deletion breakpoints and are represented by zigzag lines. 
(Chamberlain and Lalande 2010) 

The structure of these BPs consists of repetitive blocks of 250-400 kb, that explains their 

instability and hence their role in non-homologous recombination events during parental 

meiosis (Christian et al., 1998, Amos-Landgraf et al., 1999). It was demonstrated that the 

deletions can occur via cross-over interchromosomal (between the two homologous 

chromosomes) or intrachromosomal (between different regions of one chromosome 15 ) 

events (Carrozzo et al., 1997; Robinson et al., 1998). 

The causes of maternal uniparental disomy [upd(15)mat] occurrence was ascribed to 

maternal meiotic non-disjunction followed by mitotic loss of the paternal chromosome 15, 

during fertilization (Buiting, 2010). 
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PWS epigenetics investigates the causes of the imprinting defects and hence the occurrence 
of the lack of expression of the paternally inherited genes. In patients with PWS and an 
imprinting defect, the paternal chromosome carries a wrong (maternal) imprint in terms of 
the epigenetic marks on DNA and histones or noncoding RNA (wrong distribution of DNA 
methylated cytidine residues in the paternal and maternal genes concomitant with wrong 
histone modifcation and ncRNA expression). In PWS, these epigenetic modifications are 
repressive not only for the maternal allele, but also, in a wrong way for the paternally 
expressed genes in the 15q11q13 region.  
Much of research has been performed in order to find the causes of such non-genetic defect. 
This epigenetic factor in PWS may be or may be not accompanied by deletions. The first 
situation was rarely observed (8-15%), but the second one is more frequent (85% in PWS 
cases).  
The discovery of cases of critical DNA regions containing both small deletions and the 
imprinting defect led to the definition of a bipartite imprinting controlling (IC) region: its 
role is regulation in cis- the process of imprint resetting and imprint maintenance in the 
whole critical chromosomal region 15q11q13 (Sutcliffe et al., 1994; Buiting et al., 1995). Thus 
the paternal-only expression of MKRN3, NDN, and SNURF-SNRPN genes is regulated by 
the parent-of-origin epigenetic modification of the promoter regions of these genes. Another 
parental expressed gene, C15orf2 has a special feature of expression: it has been reported to 
be biallelically expressed in testis, however, in brain its expression is restricted to the 
paternal allele (Wawrzik et al., 2010). A recent review of the genetics and epigenetics in PWS 
revealed about 21 IC-deletions in patients with PWS (Buiting, 2010).  
The most complex gene in the critical chromosome 15 region is linked with the IC region 
and is considered SNURF- SNRPN gene. IC contains the major transcriptional start site of 
SNURF- SNRPN gene. It consists of 10 exons which encodes in fact two different proteins: 
exons 1-3 encode SNURF (SNRPN upstream reading frame), a small polypeptide of 
unknown function (Gray et al., 1999), while exons 4-10 encodes a small nuclear (SmN) 
ribonucleoprotein named SNRPN, a spliceosomal protein involved in mRNA splicing in the 
brain (Ozcelik et al., 1992). SNURF gene, along with upstream noncoding exons, has been 
considerred the major site of imprinting defects, because disruption of this gene leads to 
altered imprinting of SNRPN and many other 15q11-q13 imprinted genes. However, 
numerous 5’ and 3’ exons of SNURF- SNRPN gene identified up to now do not encode 
proteins and they occur in many splice forms of the primary transcript (Dittrich et al., 1996; 
Farber et al., 1999). Exon 1 and the promoter region of this complex genetic locus overlap 
with the IC. Also, as it has been mentioned earlier, the SNURF-SNRPN region also serves as 
a host for all snoRNA genes encoded within its introns. These genes lack a direct 
methylation imprint, but their imprinted expression is indirectly regulated by the same 
SNURF-SNRPN methylation (Horsthemke and Buiting, 2008; Buiting, 2010). 
The IC region investigations resulted in its definition by two critical elements that are 
named the smallest regions of overlap (SRO) that control the imprinting process in PWS and 
AS: the AS-SRO and the PWS-SRO (Buiting et al., 1995; Buiting, 2010). The 4.3 kb long PWS-
SRO overlaps with the SNURF-SNRPN exon 1/promoter region (Ohta et al., 1996b). This IC 
element is required for the maintenance of paternal imprint during early embryonic 
developments (El-Maarri et al., 2001). 
The cases of imprinting defects with no IC deletion are classified in a subgroup of cases 
defined by primary epimutations or epigenetic modification (Buiting et al., 2003; 
Horsthemke and Buiting, 2008).  
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3. Clinically PWS diagnosed cases in Romanian population 

Diagnostic testing: approaching classical genetic and epigenetic methods, as well as 

advanced combined sequencing and epigenetic methods, in a study of a cohort of 17 

clinically PWS diagnosed cases in Romanian population (Table 1). 

 

Nr crt Clinical 
diagnosis 

Molecular tests confirmation Classical 
cytogenetic 

confirmation 

MSPCR FISH MLPA Karyotype 

1 PWS - - - - 

2 PWS - - - - 

3 PWS - - - - 

4 PWS - - - - 

5 PWS - - - - 

6 PWS - - - - 

7 PWS - - - - 

8 PWS + + del NDN, 
SNRPN, 
UBE3A 

- 

9 PWS - - - - 

10 PWS + + - - 

11 PWS - - - - 

12 PWS + + - - 

13 PWS - - - - 

14 PWS + - Nondeleted 
NDN, SNRPN, 
UBE3A 

- 

15 PWS + + - - 

16 PWS + - Nondeleted 
NDN, SNRPN, 
UBE3A 

- 

17 PWS - - - - 

18 PWS  - - - - 

19 PWS  - - - - 
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Nr crt Clinical 
diagnosis 

Molecular tests confirmation Classical 
cytogenetic 

confirmation 

MSPCR FISH MLPA Karyotype 

20 PWS  - - - - 

21 PWS + + - - 

22 PWS + + - - 

23 PWS - - - - 

24 PWS + + - - 

25 PWS - - - - 

26 PWS - - - - 

27 PWS + +  del NDN, 
SNRPN, 
UBE3A, 
TUBGCP5, 
MKRN3, 
APBA2 

- 

28 PWS + - - - 

29 PWS + + - - 

30 PWS - - - - 

Table 1. Patient Sample characterstics: clinical, karyotipical and molecular aspects 

3.1 Clinical methods 
The most obvious features observed were obesity and mental retardation and the rest of 

criteria being variable. Our survey in Romanian population resulted in a DNA bank designed 

to characterize the PWS features. Initial surveys contributed to gathering 13 females and 7 

males, between 6 month and 28 years old. Positive clinical diagnosis of PWS was based on 

major and minor criteria, the minimum diagnostic score being 3 - up to age 3 and 5 – for 

patients older than 3 (up to the adult age) (Gunay-Aygun M et al., 2001, Holm VA et al., 1993, 

P. Goldstone et al., 2008, Suzanne B Cassidy and Daniel J Driscoll, 2008). Consequently, clinical 

diagnosis of PWS has been established based on characteristic clinical features that differ with 

age (Ledbetter DH and Engel E, 1995, Ohta T  et al., 1999). In the newborn infant, the 

suggestive feature remained hypotonia; it resulted from the history in our study (patients aged 

6 month to 7 years – 6 cases and more than 14 years – 11 cases) (Table 2 in Annexes). 

Obesity, moderate mental retardation, behavioral disturbances related to food and learning 

difficulties are present in all studied cases. Facial features of PWS (periorbital fullness, 

almond-shaped and down-slanting palpebral fissures, malar hypoplasia, down-turned 

mouth corners and thin upper lip) are also present (Figs.2, 3, 4). 
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3.2 Classical genetic approach 
Karyotyping- for the monitoring of the variations in chromosomal morphology as a result of 

DNA sequence modifications (deletions, translocations) is the classical genetic approach. 

Initially, the gold standard was thought to be the karyotype. But this classical chromosome 

investigation commonly did not reveal any of the complex genetic and epigenetic defects 

lately described for PWS patients (Fig. 3).  Also, only very rare paternal translocations and 

even more rare deletions have been detected in the restricted HBII-85 region, more recently. 

 

  A 

 
  B 
Fig. 2. A,B. Typical features with PWS cases. A. Facial features of the Prader Willi syndrome 
(periorbital fullness, almond-shaped palpebral fissures, malar hypoplasia, down-turned 
mouth corners and thin upper lip). FISH test identified 15q deletion in these patienst with 
typical clinical features.B. Short stature and typical feet and hands dimensions. Obesity is 
another typical feature with all represented cases 

3.3 Molecular tests 
Confirmation of the clinical phenotypes has been realized by approaching molecular 
methods. Molecular cytogenetic approach (FISH fluorescence in situ hybridization 
technique) brought numerous PWS cases that presented deletions as detected by fluorescent 
probes in FISH. Further investigations by this method revealed an interesting, non-
mendelian transmittance aspect with PWS, that required another molecular approach ,based 
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on the epigenetic, methylation method. The need for discussing the recurrence risk with any 
of these situations determined a new, more precise approach, by sequencing methods 
(MLPA or even MS-MLPA) for the detection of the microdeletions as causes of the impaired 
IC role in imprinting control concomitant with the estimation of the methylation status on 
paternal allele.  
 

 

Fig. 3. A normal karyotype frequently obtained for the PWS patients 

A more efficient and correct scheme of molecular testing have been suggested in the recent 
literature that included the following sequence of techniques in order to reveal not only the 
causes of genetic and epigenetic defects, but meantime to decipher the molecular 
mechanism involved in the establishment of the birth defect: 
- Methylation analysis for the general diagnosis (about 99% cases confirmed); 
- FISH detection of deletions for the establishment of the disease mechanism 
- Sequencing methods that were imposed in the cases when FISH was negative and 

suspicion for UPD had to be solved- MLPA and MS-MLPA. 

3.3.1 Methylation analysis 
The detection of methylation status solely at the SNRPN locus may be performed by using 
methylation specific PCR (MS-PCR) . This approach confirms a diagnosis but provides no 
further information regarding the disease mechanism requiring follow up studies (FISH 
and/or microsatellite analysis). 
The(PCR)-based assay MS-PCR allows rapid diagnosis of PWS and AS. Methylated 
cytosines in the CpG dinucleotide are resistant to chemical modification by sodium bisulfite. 
In contrast, bisulfite treatment converts all unmethylated cytosines to uracil. Based on this 
differential effect, the bisulfite modified DNA sequence of a methylated allele was 
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successfully distinguished from that of an unmethylated allele using 2 sets of allele-specific 
primer pairs: a methylated allele-specific primer pair (M) and an unmethylated allele-
specific primer pair (U). Bisulfite-modified DNA from patients with PWS amplified only 
with the M pair while modified DNA from patients with AS amplified only with the U pair 
(Jones et al. 1997) (Fig. 4). The results of MSPCR tests performed on clinically diagnosed 
individuals are represented in Figures  5 a,b. 
This method has the following significant advantages over conventional analysis using 

methylation-sensitive enzymes and Southern blotting: (1) MSPCR can be completed in 2 

days. Rapid turnaround of the test result may be especially useful when evaluating 

hypotonic newborn infants among whom the incidence of PWS is high [Gillessen-

Kaesbach et al., 1995]; (2) Testing can be performed with as little as 50 ng of genomic 

DNA. Thus, in addition to whole blood, other potential sources of genomic DNA for 

analysis include dried blood spots and oral cell smears; (3) MSPCR does not require use of 

radioactivity. 
 

 

Fig. 4. The scheme of the steps in the methylation specific PCR protocol. It includes the 
mutagenesis by bisulfite conversion treatment, followed by the converted DNA purification 
and the PCR amplification of the methylated/unmethylated DNA fragment. The amplicon 
resulted from the amplification of the fragment flanked by the U primers stands for the 
fragment that was unmethylated. It is detected after its electrophoresis and its visualization 
in agarose gels by ethidium bromide in uv light 
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Fig. 5. a,b MSPCR analysis based on the distribution of the two MSPCR products 
(amplicons) of 313 and 221bp corresponding to the methylated (imprinted) maternal allele 
and, respectively, the unmethylated paternal allele.  “PW” – individuals have an 
electrophoresis pattern specific for PWS - maternal only 313bp MSPCR product; “N” – 
individuals suspected of PWS based on clinical diagnosis,but not confirmed by methylation 
test- both MSPCR products are present - “C(N)”- normal individuals used as control, both 
MSPCR products are present 

In Table 1 there are represented the results of our methylation analysis for the confirmation 

of the clinically diagnosed cases. From 3o clinically diagnosed cases, only 12 have been 

confirmed by methylation analysis. And among these latter ones, only 9 presented deletions, 

as confirmed by FISH method. 

3.3.2 FISH method 
Fluorescence in situ hybridization technique offers the possibility to use fluorochromes in 

order to specifically mark individual chromosomes over their entire length or defined 

chromosome regions in meta- and interphase preparations (Chevret et al. 2000); their 

presence is proved by using fluorescence microscopy. The first step in FISH procedures is 

the procurement of cells. Unlike many other chromosomal visualization techniques, FISH 

can be conducted on currently dividing or terminally differentiated cells. Cells are grown to 

a specific culture density and fixed with formaldehyde and placed on a functionalized glass 

slide. This slide is then allowed to dry, dehydrated with ethanol, and then treated with the 

hybridization buffer. DNA probes are then added and the slide is allowed to incubate. This 

gives the DNA probes enough time to hybridize with their complementary sequences. 
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Following hybridization, the slides are allowed to air dry and then are examined under 

microscope (Langedijk et al. 1995). 

Many PWS/AS deletions are not detectable by G-banding. Even at higher band levels, 

variable G-banding quality, differences in homologue condensation/splitting of  band 

15q12, and possible presence of extra clinically benign G-bands in this region made 

interpretation difficult [Hoo et al., 1990; Ludowese et al., 1991).  Unreliability of G-banding 

for deletion detection in the region 15q11-q13 in comparison with FISH has been well 

documented[Delach et al., 1994; Butler, 1995; Bettio et al., 1995; Smith et al., 1995). The 

development of molecular probes for the Prader-Willi syndrome and Angelman's syndrome 

region of 15(ql1-13) enabled alternate or complementary means for the detection of deletions 

in patients (Chan et al., 1993; Butler, 1990; Knoll et al., 1989).  
 

A. Deletion in PWS/AS critical region    B. Normal PWS/AS critical region 

 

Fig. 6. FISH (fluorescent in situ hybridization for the region 15q11-q13) results for A-PWS 
case and B- normal case. The probes used: LSI for the common deletion D15S10 (spectrum 
orange/PML) and spectrum orange/CEP15 spectrum green for the common chromosome 
15 mark (centromere) (Vysis, Abbott inc.) 

For FISH analysis, probes for loci D15Sl1, SNRPN, D15S10, and GABRB3 within 15qll-13, 

and for identification of the chromosome 15 homologues an internal control probe for locus 

PML at 15q22, were co-hybridized to chromosomes following protocols provided by the 

manufacturer (Oncor, Gaithersburg, MD). Although it’s an expensive and time-consuming, 

this method confirms the diagnosis of ~ 70% PWS and AS , and reveals the mosaic and 

translocation cases. 

Patients with clinical features suggestive of Prader-Willi Syndrome and confirmed by 

MSPCR were tested for deletions of 15q11-q13 region and the results are illustrated in 

Figures 6 A and B. 

3.3.3 Sequencing methods  
The detection of microdeletions or duplications (CNVs) in critical 15 chromosomal region 

may be performed by classical MLPA method. MLPA is a technique based on 

semiquantitative genetic molecular method, initially developed by Schouten group (Shouten 

et al., 2002) while attempting to target 40 genomic loci containing variable copy numbers 

(deletions, duplications, triplications) by using a pair of probes for each target. Each probe 

contains a universal primer sequence and a sequence that is complementary to the target 

www.intechopen.com



 
Prader–Willi Syndrome, from Molecular Testing and Clinical Study to Diagnostic Protocols 421 

DNA, named hybridization sequence. Both probes are hybridized adjacent one for the other 

avoiding the gap formation. When the probes are correctly hybridized to the target 

sequence, they are ligated by a thermostable enzyme (named ligase). Later the PCR primers 

contribute to the amplification of the linked probes during the exponential process that 

leads to a unique molecule. One of the primers is fluorescent labeled releasing a specific 

color, and therefore its amplification products to be visualized and thus detected and 

registered. Capillary electrophoresis enable after this the analysis of the PCR products and 

their comparison based on their dimensions. 

In our first approach the MRC-Holland kit SALSA MLPA P245-A2 was used on the Applied 

Biosystem sequencer. It contained probes for the genes coding for: UBE3A, Necdin (NDN) 

and (2 probes) SNRPN (for two different regions a,b). The reactions were performed 

according to the producer’s instructions and the DNA quantity was 150µg genomic DNA in 

sufficient concentration, optimum 75-100ng/ml) in a volume of 5µl water. The identification 

of the altered peak height is basically the principle for the estimation of deletions. This is 

done by comparing the MLPA profiles obtained from the patients and the controls (parents). 

Softgenetics, LLC, State College, PA USA software was used in order to realize this 

comparisons. 

In Figures 7 and 8 there are represented the normalized profiles of two individuals. Each 

peak represents the amplicon signal obtained from the corresponding exon, that is designed 

on X axis. The Y axis indicates the fluorescent intensity and the arrows indicate the positions 

of the four genomic targets on chromosome 15, analyzed by the kit. 

 

 

Fig. 7. The MLPA diagram obtained for a PWS patient, clinically diagnosed and confirmed 
by the molecular methylation test – the normal peak height does not suggest a deletion: 
UBE3A(15q12) – 6103, NDN (15q11.2)  -  6593, SNRPN a (15q12)  - 5653, SNRPN b (15q12) – 
5802 

The MLPA test is essentially a PCR technique. The characteristics that make it distinct from 

the other common techniques are as follows: 1. The amplification is dependent on the 
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ligation process, as the unligated oligomers are not amplified; 2. High ligation temperatures 

assure the specificity; 3. Amplification is performed in multiplex systems, thus enabling the 

analysis of up to 50 genomic targets, by a single test. This results in an effective low cost of 

the test, similarly to a mean high-throughput (HT) test. This type of analysis differs from the 

RT-PCR as the primers are in excess to the template, and the amplification is performed on a 

linear domain; therefore the number of generated amplicons is proportional with the 

template (the ligation products). 
 

 

Fig. 8. The MLPA diagram obtained for a parent (normal control-mother); the normal height 
of the peak does not suggest a deletion: UBE3A(15q12) – 7530, NDN (15q11.2)  -  
6790, SNRPN a (15q12)  - 5464, SNRPN b (15q12) - 5455 

Due to its low cost and excellent sensibility and to the easy steps, the MLPA test is actually 

becoming a frequent tool approached in research and routine diagnosis. One negative aspect 

is however linked with the fact that it is not enough informative regarding the localization 

of the duplicated sequences as compared with the original copy, nor regarding their 

orientation. 

The analysis of the genomic instability on chromosome 15 by this method resulted in the 

following conclusions: the chosen samples corresponded to a patient that was confirmed 

clinically and by molecular MSPCR and to his mother (control). The lack of the deletion in 

SNRPN region suggested an imprinting defect with no deletion, thus it is suggested a 

primary imprinting defect.  

A more complete molecular approach is presently running in our investigations and would 

further involve the following test for a correct conclusion regarding the mechanism that led 

to the imprinting defect, a conclusion valuable for the genetic councelling: the confirmation 

or exclusion of UPD by microsatellite detection testing and the use of other, more 

informative MS-MLPA kits, in order to target the unique HBII-85 sequence, presently 

considered as characteristic for the PWS phenotypes. The simultaneous assessment of 

methylation status and genomic dosage at numerous sites across the 15q11-q13 region may 

be performed by the use of methylation sensitive multiplex ligation-dependent probe 
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amplification (MS-MLPA). This approach will confirm the diagnosis and further identify the 

presence of a causative deletion. However, in the absence of a deletion follow up studies 

(microsatellite analysis) are required to distinguish between UPD and an imprinting defect 

(Ramsden et al. 2010). 

Trans factors influencing the imprinting process through the maintenance of proper cell 

methylome, such as the polymorphism in the critical gene mthfr (a gene encoding 

methylenetetrahydrofolate reductase) are also reported in numerous literature. Our analysis 

on three families with one PWS proband reveals only one affected family, where the 

mother was a carrier of a homozigous C677T mutation; the other two families had a 

polymorphic profile with only one father being heterozygous for the same mutation. 

Hence this approach need a larger individual group for the mthfr  SNP test and perhaps 

the inclusion of other SNPs that may be relevant for the genome instability during 

gestational period or for the genome instability during the perinatal periods. The more 

cases will be accessible for providing the parental state of this gene, the more informative 

will be this algorithm for the detection of trans-factors influencing the mechanism of the 

imprinting process. 

3.3.4 Interpretation of the analysis and further molecular approaches 
For the laboratory diagnostic of the PWS one should start with the methylation analysis 

because it is the most sensitive method, confirming over 99% of the cases. If we start the 

diagnostic test with the MS-PCR (which will confirm a diagnosis but will provide no further 

information regarding the disease mechanism – i.e. about deletion, UPD, ID) and the result 

is positive, for genetic counseling, the next step is to perform a FISH or MLPA analysis ( 

asking for deletion) and microsatellites analysis ( asking for UPD) to determine the genetic 

mechanism and recurrence risk. 

In the case the methylation test is negative, this result excludes paternal deletion, 

uniparental disomy and an imprinting defect result makes a diagnosis of PWS highly 

unlikely. 
The other approach for the diagnosis of PWS is to start with the MS-MLPA assay. This test 
shows the methylation status and the dosage at 15q11-q13; it is more precise then MS-PCR 
as it investigates methylation status at several loci, thereby reducing the risk of a false 
positive or false negative result due to SNPs, and can also identify micro deletions in the IC 
as it uses many probes in the same reaction (up to 40). A positive result may indicate either 
a) the molecular cause of PWS is due to 15q11-q13 deletion, or b) the molecular cause of 
PWS may be due the molecular cause of PWS may be due to maternal UPD or an imprinting 
defect. Laboratories should recommend in the later case microsatellite studies to confirm or 
exclude UPD.  
In the case the methylation test is negative (in either MS-PCR and MS-MLPA), the result will 
exclude paternal deletion, uniparental disomy and an imprinting defect, but to be more 
accurate, FISH analysis is still recommended in order to confirm a translocation or a mosaic 
form of the syndrome. 
Our work presents the simple MLPA method that used only few kits for the detection of 
deletions in critical 15 chromosome region. MS-MLPA assay may confer further both 
information about the methylation status and the dosage at 15q11-q13, and as described 
earlier it has some characteristics which makes it more reliable than MS-PCR. A deletion and 
methylation positive result suggests the following mechanisms: a) deletion confirms a 

www.intechopen.com



 
Advances in the Study of Genetic Disorders 424 

genetic cause; b) aberrant methylation suggests either maternal UPD or an imprinting 
defect.  
PWS deletion patients present the classical clinical picture of the disorder (fig. 2), whereas 
negative FISH patients are characterized by absence of the particular facies, higher IQ and 
moderate behavioral problems. 
Because the genetics of PWS is complicated it usually takes more than one test to ascertain 
the diagnosis and the form of disease (Roberts SE and Thomas NS. , 2003, Roof E  et al., 
2000). The genetic tests used and the order depend on a number of considerations for each 
individual case. Genetic testing usually requires a blood sample from the child and possibly 
from the parents as well (Simon C Ramsden et al., 2010, Gillessen-Kaesbach G  et al., 1995).  
The diagnostic methods used in our study allowed PWS diagnosis confirmation in 14 out of 
the 17 cases. The 3 cases left will be analyzed with specific molecular tests to identify 
possible mutations of the imprinting center. 

4. Differential diagnosis  

For PWS, there were described several disorders with a phenotype that can strongly 
resemble PWS consisting in neonatal hypotonia and later onset obesity. Their associated 
mechanisms implied: (i) upd(14)mat, which can be caused by uniparental disomy 14 and 
imprinting defects or deletions affecting  the DLK1/GTL2 locus in the chromosomal region 
14q32 (Temple et al., 2007; Buiting et al. 2008); (ii) a number of other conditions associated 
with obesity and developmental disability including Cohen syndrome, Bardet– Biedl 
syndrome, Alstrom syndrome, and (iii) the 1p36 microdeletion which characterize a specific 
syndrome (Goldstone and Beales, 2008). 

5. Conclusions 

The establishment of a practical set of molecular genetic testing guidelines for PWS and AS 
has been succeeded through numerous experiences linked with the technical performance, 
the complexity of the imprinting diseases and the basic concepts linked with the hereditary 
transmittance.  
This study is part of a research programme for PWS and Angelman Syndrome (AS) patients. 
The diagnostic protocol applied with this group included: physical examination, cytogenetic 
investigations (karyotype and FISH) and methylation analysis (after a model of Glenn CC et 
al., 1996, Kubota T et al., 1997).   
Multidisciplinary physical examination (geneticist, pediatrician, endocrinologist, 
orthopedist, neuropsychiatrist, pneumologist etc) allows for the correct establishing of the 
clinical score (Gunay-Aygun M et al., 2001, Holm VA et al., 1993, P. Goldstone et al., 2008). 
The strategy we propose for the confirmation of the clinical PWS diagnosis includes initially 
a methylation analysis (MSPCR). This test is used as a diagnostic instrument for PWS, 
because the methylation pattern is parental specific in this region (Butler MG, 19990, Carrel 
AL et al., 2002) and detects patients with deletions, UPD and imprinting defects that 
represent 99% of PWS cases. 
Thus, an efficient strategy for the routine diagnosis of PWS patients includes: a) methylation 
analysis which allows diagnosis for 99% of PWS patients and doesn’t need parental samples; 
b) analysis of the microsatellite genotype of the family (child, mother and father), in order to 
identify deletions, UPD and mutations of the imprinting center; c) in noninformative cases 
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or if the parental samples are not available FISH technique is indicated because it can 
identify deletions ( ~ 75% of PWS patients). Cytogenetic studies using G banding should be 
routinely used in all patients in whom the clinical score highly suggests the PWS diagnosis, 
as approximately 5% of the PWS patients reported in the literature have a chromosomal 
rearrangement (Cassidy SB, et al., 1994). 
Even if this study group size does not allow important statistic conclusions, the results 
obtained differ from those reported in the specialized literature both in the proportion of 
PWS cases confirmed by methylation analysis (82.35% compared to 99% in the literature) 
(Suzanne B Cassidy, 2008, Mellissa R. W. Mann, 1999), and in the number of cases confirmed 
by FISH analysis (41,1% compared to 70% in the literature) (Mellissa R. W. Mann , 1999).   
The explanations could be related to a particular molecular profile of PWS patients in 
Romania. Such studies do not exist for the moment in our country and the confirmation will 
be possible by investigating a larger number of patients. In patients with a normal 
methylation pattern and without chromosomal abnormalities, we propose a clinical 
reevaluation in order to establish if further molecular investigations are indicated. 
Due to the variability of expression and the importance of early diagnosis awareness is 
growing, and looking for evocative signs increases detection rate of patients with PWS 
(Gunay-Aygun M, et al., 2001, Holm VA, et al., 1993).  
The study showed the relative correlation between clinical score and cytogenetic and 
molecular confirmation of PWS. The presence of short fingers seems likely to confirm the 
diagnosis. The triad brachydactyly – obesity - mental retardation is easy to follow by your 
practitioner, for the correct guidance of suspected cases to the specialist. The differential 
diagnosis of PWS, Fragile X and Prader-Willi-like syndrome has to be considered, especially 
when laboratory workup for PWS is negative.  
Clinical behavioral pattern can be of assistance in guiding the investigations and final 
diagnosis. Further study and experience gathered by the project team will allow a 
refinement of techniques and an accurate diagnosis. Knowledge of the so called “open 
windows” of vulnerability of the genome during the crucial stages of development and their 
interaction with the environment would be beneficial for the activities of deciphering the cis 
and trans-acting factors in the altered imprinting mechanism that may lead to establishment 
of optimal diagnosis and therapeutic or preventive schemes. 
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