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1. Introduction  

The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge 
about biological responses and health effects stems from studies of exposures to other fuel 
sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. The 
ultimate aim of toxicology studies is to identify possible health effects induced by exposure 
of both the general population as well as sensitive or susceptible populations, including 
determination of the exposure threshold level needed to induce health effects. The threshold 
should include not only a concentration but a duration metric, which could be acute or 
repeated exposures. From such information on sensitive groups and pollutant 
concentrations needed to induce effects, strategies can be put in place if deemed needed to 
improve public health. Because possible health effects may take years of exposure to 
discern, e.g., lung cancer, fibrosis, emphysema, mitigation of the exposure and/or effects 
may be too late for an individual. Typically markers and biological responses believed to be 
an early step leading to a clinical disease are measured as a surrogate of the health effect. A 
biological marker, or “biomarker”, indicates a homeostatic change in an organism or a part 
of the organism (ranging from organ systems to the biochemicals within cells), that will 
ultimately lead to a disease induced by exposure to a pollutant (Madden and Gallagher, 
1999). So with the previous example of lung cancer, damage to lung DNA induced by an 
exposure would substitute as the biomarker of effect, or possibly examination of the 
mutagenic potential of the combustion products through an Ames assay using bacterial 
strains.  
For brevity, this chapter will primarily examine human responses to combustion products 
though an extensive literature exists on nonhuman animal effects. Discussion of nonhuman 
animal findings will be used to present findings where human data are sparse or 
nonexistent, and to provide information on health effects mechanisms. Much of the 
nonhuman findings fill in data gaps concerning extrapulmonary effects of combustion 
emissions, particularly cardiac and vascular effects. 

2. Combustion emissions composition  

Products of incomplete fuel combustion from various sources have some similarities, 
including some of the same substances and induction of related biological responses. 
Identification of the compounds, and quantities of the compounds, of the emissions from 
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various combustion sources may allow a prediction of the biological responses that occur in 
exposed people. Additionally, examination of the compounds could indicate unique 
markers that would serve as an indicator of exposure to that source, as well as raising 
unique biological responses. For example, levoglucosan is a unique marker of woodsmoke 
combustion and can be used to determine an individual’s exposure to fireplace emissions. A 
fairly comprehensive list of the chemical species in onroad emissions in California, U.S. 
derived primarily from gasoline and petroleum diesel powered engines is given in the 
report by Gertler et al (2002). It is not the focus of the chapter to comprehensively list all 
emission species; however briefly, the types of components in the gas and particulate matter 
(PM) phases include single aromatic and polyaromatic hydrocarbons (PAHs) and related 
compounds (e.g., alkylbenzenes, oxy- and nitro- PAHs), metals, alkanes, alkenes, carbonyls, 
NOx, CO and CO2, inorganic ions (e.g., sulfates, carbonates), among other chemicals. 
Woodsmoke particles tend to be relatively rich in certain metals, including iron, magnesium, 
aluminum, zinc, chromium, nickel, and copper (Ghio et al., 2011). 
Biodiesel combustion produces gaseous and PM phases. Compared to other petroleum 
diesel fuels, biodiesel combustion in “modern” engines generally tends to produce lower 
concentrations of PAHs, PM, sulfur compounds, and carbon monoxide (CO) ((McDonald 
and Spears 1997; Sharp, Howell et al. 2000; Graboski, McCormick et al. 2003). There are 
conflicting reports of whether nitrogen dioxide (NO2) levels are decreased (Swanson et al., 
2007). Regarding biodiesel PM, the soluble organic fraction of the biodiesel PM is commonly 
a greater percentage of biodiesel exhaust emissions, but a smaller percentage of organic 
insoluble mass is present relative to petroleum diesel soot (Durbin, Collins et al. 1999). A 
decreased production of biodiesel PM but coupled with a greater concentration of soluble 
organic material may impact the biological effects of biodiesel exhaust PM. Combusted 
biodiesel PM is lower in metal content than ambient air PM. Combustion of gasoline 
generally tends to produce less PM but more gas phase amounts than petroleum diesel 
combustion. 
Gas phase components of biodiesel exhaust have been studied. A U.S. Environmental 
Protection Agency report (EPA420-P-02-001) comparing standard petroleum diesel and 
biodiesel emissions of specific compounds termed Mobile Source Air Toxics (e.g., volatile 
substances such as acrolein, xylene, toluene, etc) concluded that while the total hydrocarbon 
(THC) measurement decreased from biodiesel emissions, there was a shift in the 
composition towards more unregulated pollutants. (U.S. EPA, 2002a). However the shift 
was too small to increase total air toxics compared to petroleum diesel emissions. Biodiesel 
fuel with a high glycerol content (indicative of poor post-transesterification refining) 
produces greater acrolein emissions (Graboski and McCormick 1998). Ethanol and methanol 
are used in biodiesel production to provide ethyl and methyl esters, respectively. These 
alcohols are aldehyde precursors if not removed from the biodiesel and lead to increased 
formaldehyde and acetaldehyde formation. Biodiesel combustion leads to fatty acid 
fragments of the starting material (i.e., methylated fatty acids, or FAMEs). The gas phase 
exhaust of 2002 Cummins heavy duty engine operated under a wide range of operating 
conditions was reported to produce methyl acrylate and methyl 3-butanoate (Ratcliff et al, 
2010); these compounds are believed to be unique markers for biodiesel combustion. It is 
unclear whether intact FAMES are emitted in the exhaust due to incomplete and /or poor 
combustion, but the possibility has implications for toxicity. Intact FAMES from biodiesel 
fuel can be released into the environment via 1) spills such as in the Black Warrior River in 
Alabama, USA (New York Times, 2008) and 2) the introduction of the fuel into lubrication 
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oil, with subsequent leakage from the engine (Peacock et al, 2010); however the toxicity of 
biodiesel fuel not being combusted is not the focus of this chapter. 
Plant oils are utilized in biodiesel production on a commercial scale in the United States, 
though some biodiesel fuel can be produced from animal fats. At present, the main plant oil 
feedstocks for the United States and Europe are soybean oil and rapeseed oil, respectively 
(Swanson et al, 2007). Other sources globally potentially include switchgrass, jatropha, and 
palm oil. Algal feedstocks potentially can produce more energy per volume due to their 
increased fatty acid content. It is unclear if the fatty acid composition is significantly 
different among the feedstocks, or within feedstocks grown under different conditions.  

3. Human health effects 

3.1 Nonbiodiesel combustion sources 

Identification of health effects observed in humans exposed either acutely or repeatedly to 
combustion sources other than biodiesel provides guidance for which effects, or surrogate 
biomarkers of the effects, to examine with combusted biodiesel exposures. Although the 
epidemiological studies linking biofuel exhausts and impaired human health have not yet 
surfaced, diesel exhausts, biomass burning, forest fires, and coal burning have been strongly 
associated with adverse effects and mortality. Recently increases in emergency room visits 
for asthma symptoms, chronic obstructive pulmonary disease, acute bronchitis, pneumonia, 
heart failure, and other cardiopulmonary symptoms were noted for people exposed to a 
peat fire in eastern North Carolina, USA (Rappold, Stone, et al., 2011).  These studies are 
supported by the further evidence of increases in blood pressure in near-road residents 
(diesel exhaust can be the primary contributor of near road PM in certain locations) 
(Auchincloss, Diez Roux et al. 2008) and add into consistency of evidence that can be linked 
to emissions from biologically based and fossil fuels. A number of clinical studies have 
similarly shown vasoconstrictive and hypertensive effects with petroleum diesel exhaust 
(PDE) (Peretz, Sullivan et al. 2008) including a decrease in brachial artery diameter in 
humans. These human studies supporting evidence of adverse cardiovascular impairments 
have been concurrently proved to be true with animal toxicological studies. However, the 
mechanism of these apparent cardiovascular impairments without pulmonary health effects 
are not understood due to inherent variability in the chemical nature of exhaust PM 
examined and varied exposure scenarios and the variable responsiveness of animal models. 
Moreover, the physiological relationship between vasoconstrictive effect and change in 
blood pressure are not understood. PDE have been long studied for their immunological 
and carcinogenic effects on the lung, however more recent evidence also points to the effects 
on cardiovascular system.  

3.1.1 Lung cancer 

With PDE exposures, lung cancer is of concern. The International Agency for Research on 
Cancer (IARC), the U.S. EPA, the U.S. National Institute for Occupational Safety and Health 
(NIOSH), and the National Toxicology Program (NTP) have classified PDE as a probable 
carcinogen, likely carcinogen, potential occupational carcinogen, and reasonably anticipated 
to be a human carcinogen, respectively, regarding human exposures. There is some question 
of PDE as a carcinogen due to confounding variables and uncertainties related to exposure 
levels in some of the epidemiological studies. The increased risk for lung cancer associated 
with diesel exhaust exposure are derived primarily from epidemiological findings 
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performed prior to 2000. A recently published study involved trucking industry workers 
regularly exposed to diesel exhaust and the development of lung cancer (Garshick, 2008). 
The findings showed an elevated risk for the development of lung cancers in those with 
greater exposure compared to workers (e.g., office workers) with a lower exposure.  

3.1.2 Lung inflammation and immune system 

 Controlled exposures of humans to whole PDE typically results in lung inflammation as 

shown with neutrophils entering the lungs; these studies are generally 1-2 hr at 

approximately100-300 µg /m3 with healthy adults (Holgate 2003). In these same exposures, 

several soluble substances which mediate inflammation, e.g., interleukin-8 (IL-8) were 

shown to be increased by use of lung lavage or inducing sputum production to recover 

airways secretions. PDE PM induced an adjuvancy effect using nasal instillations of 300 µg 

particles in allergic subjects as common biomarkers of allergy (e.g., increased IgE production 

and histamine release) increased in nasal secretions (Diaz-Sanchez et al, 1997). Neutrophil 

influx into the lungs of healthy volunteers exposed to nearly 500 µg/m3 woodsmoke for 2 

hr was observed (Ghio et al, 2011) suggesting a common outcome from different combusted 

fuel sources. There are no studies of human volunteers exposed in a controlled manner to 

gasoline exhaust. 

3.1.3 Cardiac physiology 

Biomass, wood smoke and PDE have been linked to increased blood pressure in humans 
(Sarnat, Marmur et al. 2008). More mechanistic understanding of combustion induced 
effects have been derived from studies in nonhuman animal models.  
Animal toxicology studies have provided some understanding of how diesel exhausts 
inhalation, while producing small effects in the lung, could have profound effects on the 
vasculature and myocardium. A few studies have considered the balance of sympathetic 
and parasympathetic tone, and how these may be altered by PDE. In early high 
concentration PM studies, classical arrhythmias were apparent, along with heart rate 
changes, but, when doses fell to more relevant levels, these effects became more difficult to 
discern (Watkinson, Campen et al. 1998). Increased arrhythmogenicity after aconitine 
challenge has been noted following environmentally relevant low concentrations of PDE in 
rats, suggesting that prior air pollution exposure increases the susceptibility to develop 
arrhythmia in response to severe cardiac insult (Hazari et al., 2011). This increased 
arrhythmogenic effect of PDE has been postulated to occur as a result of increased 
intracellular calcium flux. It is not known if preexistent arrhythmogenic status might result 
in mortality following subsequent air pollution exposure. Thus, PDE exposures, together 
with compromised cardiac function (especially ischemia), myocardial infarction, 
hypertension, or heart failure, likely cause arrhythmogenicity in susceptible humans. 
Biodiesel exhaust might have similar effect on cardiac performance but these studies are 
needed to understand the influence of compositional similarities and differences in PDE- 
and BDE-induced cardiac injuries. 
The lack of cardiac inflammation, myocardial cell injury, or mitochondrial damage despite 

cardiac physiological impact in many studies (Campen et al., 2005; Cascio et al., 2007; 

Hansen et al., 2007; Sun et al., 2008; Toda et al., 2001), supports the  findings that PDE 

induces physiological transcriptome response without altering pathological abnormalities in 

short-term exposure scenarios (Gottipolu et al., 2009). 
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3.1.4 Systemic thrombogenic effects 

While some clinical studies provide negative evidence of systemic thrombogenic effects of 
PDE most clinical studies are consistent with increased systemic thrombus formation 
(Lucking et al 2011) in humans. Animal studies have shown fairly consistent results in 
regards to increased vascular thrombogenicity of PDE. Exacerbation of systemic thrombus 
formation in response to UV-induced vascular injury in hamsters and mice exposed to PDE 
has been known for few years (Nemmar, Nemery et al. 2002; Nemmar, Nemery et al. 2003). 
The increase in intravascular thrombosis in these earlier studies coincided with 
inflammation and mast cell degranulation. In hamsters, the thrombogenic effect of PDE was 
diminished by pretreatment with the anti-inflammatory agents dexamethasone or mast cell 
stabilizing sodium cromoglycate, implicating the role of inflammatory cells–specifically 
mast cells (Nemmar, Nemery et al. 2003; Nemmar, Hoet et al. 2004). Pulmonary injury was 
postulated to cause procoagulant changes and the systemic vascular response to PDE. A 
number of studies since then have shown prothrombotic effects of PDE exposure in the 
thoracic aorta of mice and rats (Kodavanti et al., 2011). The precise mechanisms of how PDE 
or other biodiesel particles might induce thrombogenic effects and the role of pulmonary 
versus systemic vasculature are now well understood. The evidence supports the role of 
pulmonary injury/inflammation in eliciting this vascular effect. 

3.1.5 Vascular physiology and inflammation 

Human clinical and animal studies have provided the evidence that inhalation of PDE and 
woodsmoke results in peripheral vasoconstriction and increased prothrombotic effects 
(Mills et al., 2007; Peretz et al., 2008; Lucking et al., 2008; Laumbach et al., 2009; Törnqvist et 
al., 2007; Campen et al., 2005; Knuckles et al., 2008; Barregard et al, 2006). Vasoconstrictive 
effects of PDE have been noted even at environmentally relevant inhalation concentrations 
(Peretz et al., 2008; Brook, 2007). A reproducible decrease in vasodilation in response to 
various agonists for about 2-24 hr after petroleum diesel exposure has been demonstrated 
(Mills et al, 2005). Healthy and compromised animal models show alterations in the NO-
mediated vasorelaxation and endothelin-mediated vasoconstriction (Nemmar et al., 2003; 
Knuckles et al., 2008; Lund et al., 2009). PDE-included vasoconstrictive response has been 
thought to involve impairment of vasodilation due to decreased availability of NO (Mills et 
al., 2007). Newer studies suggest that vascular effects of PDE and gasoline exhausts might be 
primarily due to gaseous components such as carbon monoxide and nitrogen oxides. 
Numerous studies done using PDE and gasoline exhausts have used ApoE-/- mouse model 
of atherosclerosis and shown that PDE and gasoline exhausts exacerbate lesion development 
and molecular changes associated with atherogenic susceptibility of ApoE-/- mice. 
An array of plasma markers, including cytokines; biomarkers of coagulation and 
thrombosis; antioxidants; adhesion molecules; and acute phase proteins have been 
evaluated in a number of studies where animals or humans are exposed to PDE. Although a 
number of effects have been reported, the results from systemic biomarker studies lack 
consistency in terms of a similar effect on a given biomarker regardless of some differences 
in the protocols; in one study, one marker might be increased, whereas, in the other, a 
different marker may be affected. For example, in one study, PDE exposure has been shown 
to increase IL-6 (Tamagawa, Bai et al. 2008), whereas, in another, it may show no effect 
(Inoue, Takano et al. 2006). This discrepancy could result from a small magnitude of effects 
with a limited sample size; insensitivity of the methods, difficulty in controlling human 
behavior variables among sequential testing; variable composition of PDE; low exposure 
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concentrations; and, perhaps more importantly, the overwhelming variability in individual 
host factors. Owing to the fact that biodiesel exhaust might contain more gas-phase 
components, the systemic biomarkers might respond differently. 

3.1.6 Other organ systems  

 Common symptoms of combustion emissions exposures typically reported include nausea, 
headache, eye and throat irritation, and dizziness (US EPA, 2002). Other possible biological 
responses and health effects induced by PDE have been initially investigated by use of 
epidemiological approaches and rodent models. These endpoints are typically difficult to be 
examined in controlled exposure studies with humans. For instance, rodent 
spermatogenesis decreased with exposure in utero (Watanabe et al, 2005), and atrial defects 
(odds ratio of 2.27) was observed in newborns in seven Texas (USA) counties (Gilboa et al, 
2005) and were associated with PM and CO concentrations. These findings of reproductive 
and in utero atrial defects and the initial observations of decreased spermatogenesis need to 
be followed up for reproducibility of the findings. 

3.2 Biodiesel combustion products  

Mutagenicity of substances is typically assessed in bacterial or cellular mutagenicity 

assays.The vast majority of mutagens are also carcinogenic. Studies indicate that petroleum 

diesel is more mutagenic than biodiesel. The soluble organic faction of PDE had more 

mutagenic potential than biodiesel originated from rapeseed in a mutagencity assay using 

cultured rat hepatocytes. Similar results were found with PDE using bacterial culture in the 

ames assay. (Eckl et al 1997) Soluble organic fraction of PDE regardless of the various engine 

cycle combustion conditions still induces more bacterial mutagenesis when compared to 

biodiesel (Rapeseed methy ester). (Bunger et al 1998) The same organic extracts were tested for 

potency of mutagenesis after incubation with enzymes extracted from the S9 fraction, and 

produced the same results indicting PDE is more mutagenic even after liver detoxification. 

Comparison of PDE from high sulfur and low sulfur content fuel results in more mutagenic 

activity from high sulfur fuel exhaust regardless of engine mode and incubation with liver 

metabolic enzymes. (Kado and Kuzmicky 2003)  Similar studies with combusted vegetable oils 

including sunflower seed, cotton seed, soybean and peanut all indicated the soluble extract 

was less mutagenic than PD extract. (Jacobus et al 1983) However recent regulations have 

shifted PD over to low sulfur diesel and some have reported biodiesel extracts to be more 

mutagenic than the new low sulfur PD combustion extracts.  

Biodiesel exhaust extract from methylated feedstocks of soy, canola, and beef tallow were 

found to be more mutagenic than Philips Petroleum- certified PD. (Bunger et al 2000a AND 

Bunger et al 2000b)  In the same study they combusted non-methylated rapeseed oil along 

with rapeseed methyl esters and found the non-methylated to be more mutagenic than 

either the methylated or PD. Additionally the gas phase components were collected by 

cooling and extraction into a solvent. The condensates of the gas phase showed little 

difference between the combusted PD and biodiesel mutagencity. The BD and PD extracts 

have recently been used in in vitro toxicity testing. Exposure of PD and BD (soy methyl and 

ethyl ) soluble organic extracts to cultured human airway epithelial cells (BEAS-2B) resulted 

in elevated cytokine production (IL-6, IL-8) from BD after 24hr exposure. (Swanson et al 

2009) An immortal lung epithelial cell line (A549) after exposure to PM from both biodiesel 

and PD revealed cell morphological changes. The control (unexposed cells) had baseline of 
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7% multinucleated cells, where as exposure to Biodiesel blend of 80% increased 

multinucleated cells to 16%. Biodiesel blend of 20% (80% petroleum)  increased the 

multinucleation rate up to 52%. (Ackland et al 2007) Cultured mouse fibroblast cells also 

indicate BD exhaust soluble extract to be more cytotoxic relative to the PD extracts. (Bunger 

et al 2000b) Some speculation as to components driving this shift toward increased 

mutagenicity in biodiesel indicate the increased carbon and carbonyl content in the biodiesel 

to interfere with cells for longer lengths before the components can be metabolized. The 

variability of responses can be due to the contents of the soluble extract based on type of 

solvent and combustion conditions or to the robustness of the cell line.  

Animal exposure studies eliminate some of the in vitro variability.  Rats exposed to filtered 

air, PD, B50, and 100% BD (soy ethyl ester) for 1hr were analyzed for lung inflammation. 

Results indicate lung lavage to have increase in total cell count in the three treatment groups 

but non were statistically greater in cell count indicating one PM doesn’t cause more 

inflammation. The lung parenchymal tissue was analyzed for inflammation and also 

resulted positive for inflammation but non of the PM types induced significantly elevated 

levels. (Brito et al 2010) A second study utilized intratracheal instillation of exhaust PM 

collected as water aerosol from PD, gasoline, and Biodiesel powered engines (without 

oxidation catalyst). The aerosols were instilled into mice and the lungs were examined 24hrs 

later for inflammatory response. The instillation from the gasoline and diesel engines were 

the most potent to induce an increased neutrophill influx into lungs (inflammatory 

response), relative to saline control mice. (Tzamkiozis et al 2010)  

Chronic exposure with BD and PD produce similar results however the extent of the 

inflammation may vary. Particle laden alveolar macrophages, lung neutrophilia and fibrosis 

are detectable in BD exposed rats however the difference from PD an BD exposure was not 

statistically significant. (Finch et al 2002, Mauderly 1994, Hobbs et al 2002). Human exposure 

to delivery truck workers, road maintenance workers, and industrial fork lift truck drivers 

all exposed to BDE or PDE occupationally were asked to report their symptoms in a 

questionarie. The results of the questionnaire indicate dose related respiratory effects but 

nothing to indicated significant differences between the combustion of different fuels.  

3.3 Summary  

Based on the literature available at present, biodiesel exhaust can have more, less, or the same 
potency in inducing biological responses and health effects as PDE. This may be due to the 
chemical mix of exhausts and the differences between various types of exhaust emissions. 
Better reproducibility of design from study to study in the future would assist in the 
assessment of whether biodiesel exhaust induced the same biological responses. The designs 
should try to narrow down the fuel type utilized, minimize fuel impurities, utilize an engine 
commonly available and in use, standardize the run conditions (load, ambient temperature of 
intake air, etc), so that emissions used in biological test system are fairly similar.  

4. Components found in biodiesel combustion with known health effects  

Some compounds present in combusted biodiesel exhaust can induce known toxicity in 
exposed human populations down to cellular effects. The literature on these components 
may allow a research strategy to determine if these substances exist in great enough 
concentrations to induce health effects in humans, and if so, how to attenuate the effects 
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through management of the emissions quantities. Additionally, examination of whether the 
gas and/or the PM phase is primarily responsible for the induction of any observed effects 
could also be utilized relative to decreasing biologically active substances.  

4.1 Filtered particle exhaust studies  

PDE studies provide preliminary information for predicting BDE toxicity specifically the 
studies can give insight on the potency of gas phase and PM.  
The removal of particles from petroleum diesel exhaust can attenuate the adverse effects 
caused by inhalation of diesel exhaust. The exhaust can be filtered to completely remove 
particles or minimize the amount. Controlled human studied conducted in exhaust chambers 
fitted with ceramic filters (temperature maintained to eliminate PM nucleation) to capture the 
particulate successfully reduced the PM by 25%. In this study, the exposures without particles 
significant increased activated immune response cells (CD3-labeled T lymphocytes) more than 
particle laden exposures. (Rudell, Blomberg et al. 1999) A lung lavage sample from each 
exposure indicated no changes in total cell number indicating no significant inflammatory 
responses. However there was a noticeable decrease in the number of macrophages collected 
from the bronchial location of the lungs in individuals exposed to the filtered exhaust. A 
number of explanations for the lack of sentinel macrophages can be concluded, including the 
filtered exhaust was eliminating larger PM which removes interference from PM deposition 
and the immediate immune response resulting in two completely different immune responses. 
However not all studies with PDE indicate gas phase to have more potency. In a mouse 
exposure study with particle (3.3mg/m3 ) and filtered PDE (PM < 0.1mg/m3)  followed by 
immediate challenge with pollen, results indicate similar increases in IgE and IgG2 sera titer 
for the mice exposed to both the filtered and non-filtered exposures. (Maejima, Tamura et al. 
2001) However, there was no detectable dose dependent increase to the pollen in only the 
group exposed to the diesel exhaust gas components. This study proposes an allergic 
challenge is attenuated after exposure to filtered PDE or PDE with particles, increasing the 
confidence that each exposure is unique. The use of low sulfur diesel fuel has been indicted to 
reduce the PM by reducing the soot nucleation rate. (Karavalakis, Bakeas et al. 2010) A study 
using both low sulfur fuel and a particle trap to reduce the emissions was successful in 
reducing the toxic health effects relative to regular emissions. (McDonald, Harrod et al. 2004)  
In this study mice were exposed to the two exhaust types and results indicate with reduced 
emissions there is significant reduction in the number of potentially toxic inflammatory 
responses and reactive oxygen species generation. Lung toxicity measured with IL-6, 
interferon-γ and tumor necrosis factor-α (TNF- α ) and antioxidant enzymes (heme oxygenase-
1) were all reduced after exposure to reduced PM. The study measured inflammatory response 
in the mice after a seven day exposure. The study concluded most components of both 
exhausts were in the range of background air however the responses indicate particles have 
substantial roles in inflammation and oxidative stress. Not all endpoints of injury indicate 
filtered exhaust to be less harmful. In an experiment with healthy male subjects who were 
exposed to both filtered and unfiltered diesel exhaust exposure indicate a reduced response of 
vasomotor function in subjects exposed to diluted diesel exhaust. Lucking, Lundbäck et al, 
2011). Specifically there was reduced vasodilatation even with agonists to promote constriction 
after exposure to dilute diesel exhaust but not with filtered exhaust. In this study the effects of 
pure carbon nanoparticles was utilized as a control for the particles however there was no 
significant alterations of vasoconstriction abilities inhibited by the pure nanoparticles. The 
particles of diesel exhaust consist of surface bound hydrocarbons or other charged 
components and are likely interfering with the localized cellular response.  
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4.2 Carbonyls  
Carbonyls (aldehydes and ketones) are common components of fossil fuel combustion. 
Common species in combustion exhaust are short chain aldehydes such as acetaldehyde and 
formaldehyde. The use of catalyzed diesel particle filter and plant based fuel reduces carbonyl 
emissions; however with biodiesel blends there noticeable increases in formaldehyde and 
acetaldehyde emissions from diesel alone. (Ratcliff, Dane et al. 2010; Jayaram, Agrawal et al. 
2011) Petroleum diesel combustion also releases formaldehyde and acetaldehyde with a larger 
percentage of total carbonyl release being acrolein. Acrolein is a highly reactive aldehyde 
which creates adducts leading to various degrees of toxicity. Inhalation of acrolein can lead to 
onset of pulmonary edema, respiratory disturbance and asthma like symptoms. New research 
indicates acrolein may initiate platelet activation, an event both beneficial and detrimental if 
induces plaque buildup. Due to the nature of the highly reactive acrolein, specific measures 
were taken to identify acrolein adducts were not the primary cause of platelet activation but 
acrolein works directly on platelets as it forms covalent adducts. (Sithu, Srivastava et al. 2010) 
The study conducted by Sithu et al, utilized fresh mice platelets and vaporized acrolein to 
conduct exposures. Removal of the blood and isolation of the platelets also found increases in 
activation proteins like fibrinogen and platelet derived growth factor and platelet factor 4 with 
exposure to acrolein alone. The observed events were not inflammatory responses because the 
study measured mRNA expression of pro-inflammatory cytokines and found none were 
increased above control. Recent studies have indicated increased release of formaldehyde from 
the combustion process of soy based biodiesel. (Ratcliff, Dane, et al. 2010; Karavalakis, Bakeas et 

al. 2010) Recently formaldehyde has been classified as a carcinogen. Many studies have 
addressed the mutagenic characteristics of formaldehyde. In a study of formaldehyde 
exposure to rat nasal epithelial cells, multiple toxic end points were increased. The study 
measured the frequencies of micronuclei formations, un-regulated cell proliferation, and 
pathological changes. Exposure doses larger than 2ppm resulted in site specific increase in cell 
proliferation. Additionally lesions and metaplastic changes were observed in only the 
formaldehyde exposed. Histopathology of the nasal regions indicted increases in leukocytes, 
indicating inflammatory response. Epithelial cell were sloughing off as well as abundant 
indications of squamous cell metaplasia and the nasopharyngeal duct displayed transitional 
cell metaplasia. (Speit, Schutz et al. 2011) Basic cellular observations of increased aldehydes 
released by biodiesel combustion needs to be better understood for any adverse health effects.  

4.3 Fatty acids and derivatives 

Biodiesel fuel is created with trans-esterification of fatty acids. The composition of BDE has 
found a number of methyl esters, cyclic fatty acids and nitro fatty acids. Fatty acids 
including palmitic acid, oleic acid, and stearic acids are considered pulmonary irritants. 
Fatty acids can be simply classified as unsaturated or saturated and the complexity increases 
with the types of functional groups bound. Some of the more complex components derived 
from fatty acids are created with enzymatic reactions others are not. A characteristic of fatty 
acid derived structures, specifically lipids, is their ability to have dual polarity. 
Phospholipids create the barriers established in all cell membranes. Normally the fatty acid 
tail is the hydrophobic region and the carboxyl head is hydrophilic. Tampering with the 
membrane structures can lead to cell death. Fatty acids play a crucial role in maintaining the 
pliability of surfaces. Lungs are an important location of fatty acid mediated flexibility, as 
the lungs fill up with air there is limited distension however when the air is exhaled the 
ability to expand should remain unaffected. A component of the lungs that allows for this 
rapid intermittent expansion and contraction is surfactant. Surfactant is a complex mixture 
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of proteins and lipids that is largely dipalmitoyl phosphatidylcholine and its purpose can be 
adversely affected with intrusion by other fatty acids. Many studies have been conducted on 
the disruption of surfactant by an increase of a type of lipid, oleic acid. (Hall, Lu et al. 1992) 
One set of experiments conducted was able to measure the surface pressure changes created 
with the addition of oleic acid. Surface pressure and the created tension by the lipid 
molecules, can be inferred with correlation to the absorption of surface pressure. In this 
study the excised calf lung were lavaged with saline instead of air and the lungs were either 
treated with the oleic acid or control. Overall results indicated oleic acid disruption of the 
dynamic lung compression and expansion model can’t be correlated directly to an absolute 
concentration, however inhibition occurs when oleic acid is relatively higher than surfactant 
concentrations. The incorporation of the oleic acid prevented the spreading of the surfactant 
film to occur during contraction of a simulated compression. The ability of the lungs to 
maintain elasticity weakens as the repetitive cycles increased. General observations of 
extraneous lipid incorporation include disruption of the surfactant films created for lung 
flexibility and can cause harm to the mechanical physiology of the lung.  

4.4 Transition metals 

Metals are more abundant in petroleum diesel combustion exhaust than biodiesel. The 
metals originate from multiple sources including the fuel. Metal particles can be emitted 
from engine components. Several studies indicate there is a decrease in the concentration of 
transition metals in biodiesel combustion exhaust. (Brito, Luciano Belotti et al. 2010) 
Biodiesel blends result in increases in the transition metals Cu, Fe, and Zn in soy based B50 
compared to B100.(Brito, Luciano Belotti et al. 2010) Transition metals are highly oxidative 
species and can lead to intracellular redox cycling. Metals have the ability to generate 
radicals which likely lead to depletion of antioxidants and increases in DNA, and protein 
adducts. Both biodiesel and diesel exhaust particles analyzed for elemental metal 
composition, were found to have metals bound to the carbon core. Several studies have 
observed the decrease in DNA adduct formation with the pre-treatment of particles with a 
metal chelator. One study was also able to develop a method to measure the indirect 
products of ROS and they concluded, diesel exhaust particles treated with a 
diethylenetriamine pentaacetic acid (DTPA) generate fewer ROS products. The study 
utilized the same method to measure the amount of 2,3- and 2,5- dihydroxybenzoate 
(DHBA) generated in the presence of known amounts of Cu and Fe; both are toxic and 
highly reactive metals. (DiStefano, Eiguren-Fernandez et al. 2009) Other studies were able to 
study the inflammatory effects residual oil fly ash (ROFA), a dust rich in transitions metals 
especially V, Ni, and Fe, alone and with pre-treatment with a metal chelator. Similar results 
were found indicating cytokine induction and depletion of antioxidants is partly due to the 
metals that are bound to the various particles. (Carter JD, Ghio AJ et al. 1997) Metals are 
essential elements within cells however too much metals can cause harm to cellular 
homeostasis and induce cellular toxicity.  

4.5 PAH and PAH-related compounds 

Polyaromatic hydrocarbons classified by the functional group attachments most prevalent in 
combustion byproducts are nitro- and oxy- species. They can also vary in reactivity based on 
their molecular weight. Biodiesel blends up to 50% are analyzed to have large decreases in 
PAH emissions when compared to diesel fuel combustion. (Brito, Luciano Belotti et  
al. 2010) A commonly measured sample PAH released during diesel combustion is 

www.intechopen.com



 
Toxicology of Biodiesel Combustion Products 205 

phenathraquinone (PQ). PQ can be reduced by flavin enzymes including NADPH located in 
the mitochondria and along energy transport membranes. The reduction leads to 
generations of semiquinone radicals, oxidative stress and DNA damage followed by 
cytotoxicity. Experiments with PQ exposure to human pulmonary epithelial cells have 
observed increases in toxic byproducts of ROS generation. Some increases measured are 
increase in protein carbonyl formation, increased levels of superoxide dismutase (Cu/Zn 
SOD) and heme oxygenase (HO-1). (Rika Sugimotoa, Yoshito Kumagaia et al. 
2005)Protection from the damaging consequences of protein carbonyl formation originated 
from both the use of iron chelators and antioxidants. High emission of NO2 lead to the 
nitration of the available PAH’s forming nitro-PAH’s. Using soy based biodiesel, species 
identified included few volatile nitro compounds that were more abundant in B100 as 
opposed to the B20, however the overall trend was a decrease in the nitro-PAH emission 
when biodiesel was combusted. Detailed analysis of 7 nitro PAH emission concluded in 
several products decreased by more than 50% with the blending of B20 into the petroleum 
diesel and further decreases with B100. (Ratcliff, Dane et al. 2010) Naphthalene is still a 
larger percent of the combustion emissions, in both biodiesel and diesel fuel engines. 
(Ratcliff, Dane et al. 2010; Jayaram, Agrawal et al. 2011) Naphthalene vapors are toxic and 
are commonly used as pesticides. There are several signaling pathways that have been 
identified which are initiated with the binding of PAH’s to the acryl hydrocarbon receptor, 
however many PAH’s have not been identified as ligands. Other indirect increases in 
cellular toxicity from PAH’s involves thiol generation which inactivate proteins with 
sulfhydryl groups. Quinones generally are not alkylating agents but they can generate redox 
cycling which generates thiol oxidants including hydrogen peroxides. PAHs will cause 
cellular and regional increases in ROS generation and further deplete antioxidants while 
repair processes work to increase antioxidant defenses.  

4.6 Other hydrocarbons 

Toluene is a common aromatic hydrocarbon emitted with the combustion of fossil fuels. 
Diesel emissions contain detectable amounts of toluene in both the vapor phase and particle. 
Toluene is more reactive than benzene due to the methyl group and is easily nitrated in the 
presence of increases NO2. Toluene has been found to interact with the aryl hydrocarbon 
receptor in cells. In a study conducted using Drosophila flies to study genotoxicity and 
apoptosis, toluene exposure produced large amounts of cell death. (Singh, Mishra et al. 
2011)The study also measured the amount of apoptosis after treating the cells with a known 
aryl hydrocarbon receptor blocker before exposure to toluene. The results of the study with 
AHR blocker producing less toxicity can justify the observations indicating toluene works 
via the AHR. Activation of the AHR can increase transcription of antioxidants.(Singh, 
Mishra et al. 2011) Apoptosis increased with toluene exposure was measured with TUNEL 
assay. Previous research with other aromatic hydrocarbons has observed increases in 
inflammation and increased activation of T-lymphocytes and eosinophils. Hydrocarbons 
like toluene, with reactive functional groups are likely to enter into the cell and cause 
cellular apoptosis as they are to accumulate in tissue and cause regional inflammation.  

4.7 Carbon monoxide and nitrogen dioxide  

Primary concern of carbon monoxide (CO) poisoning involves the ability of CO to bind to 
hemoglobin in the blood and inhibit binding oxygen molecules to hemoglobin. Cardiac 
compromised patients, such as ones with angina, are a sensitive population to the effects of 

www.intechopen.com



 
Biodiesel – Quality, Emissions and By-Products 206 

CO. Nitrogen dioxide (NO2) is well known to cause lung function decrements and increase 
airways hyperresponsiveness, especially in asthmatic individuals. Comprehensive reviews of 
CO and NO2 toxicity have been published by the U.S. EPA (U.S. EPA 2000; U.S. EPA 2008). 

5. Sensitive and susceptible populations  

Human responses to air pollutants are heterogeneous. Certain factors can make an 
individual sensitive or resistance. Some factors identified that affect the type of response as 
well as the magnitude of a response include age, genetics (i.e., genotypes), diet, medication, 
body mass index (BMI), and disease status. Lung function decrements (e.g., the forced 
expiratory volume exhaled in 1 sec, or FEV1) induced by ozone inhalation are dependent on 
age in normal healthy individuals (McDonnell et al, 2007); smaller decrements are observed 
in older individuals compared to adolescents. Nonsteroidal anti-inflammatory medications 
such as ibuprofen have been shown to attenuate ozone-induced FEV1 decrements, but not 
lung neutrophil influx (Hazucha et al, 1996). Women with BMI > 25 had greater lung 
function decrements to ozone exposure (Bennett et al, 2007). Individuals placed on high 
antioxidant intake had smaller FEV1 decrements than those on placebo regimens (Samet et 
al, 2001) with less indication of ozone-induced oxidative stress to lung tissue (Sawyer et al, 
2008). Individuals with the specific genotypes of glutathione-S-transferase, e.g., the M1 and 
P1 null types, had augmented nasal ragweed allergic responses such as increased histamine 
production when PDE PM was instilled in the nose (Gilliland et al, 2004). Diabetics had 
more hospital admissions for cardiopulmonary illnesses associated with ambient levels of 
carbon monoxide and coarse ambient PM (PM between 2.5 and 10 um) in Los Angeles (Linn 
et al, 2000). These are select examples of some factors associated with exaggerated responses 
of sensitive individuals to certain air pollutants and are not intended as a comprehensive 
review of susceptible populations. 
It is unclear at present which human population may be more sensitive to biodiesel 
combustion emissions. What is known from sensitivity factors for other air pollutants will 
assist in designs for examining potentially susceptible groups. Potentially if fatty acids 
and/or fatty acid fragments are emitted from biodiesel combustion and are deposited in the 
lung, these substances may induce greater responses and health effects in those individuals 
with defects in fatty acid metabolism.  

6. Future issues and challenges 

6.1 Fuel additives 

Biodiesel fuel has several classes of substances intentionally added to cover several 
purposes. Antimicrobials, cold-flow improvers, detergents, corrosion inhibitors, and fuel 
stabilizers are blended into fuel depending on the need, e.g., storage duration, ambient 
temperature, etc. Additionally, the possibility of pesticides being unintentionally present in 
fuel due to residues in the fuel stock being carried through the production process has not 
been confirmed as well as the possible health implications addressed. As previously 
mentioned, poor quality fuels have alcohols and/or glycerol present. Hence biodiesel is not 
solely FAMEs. The combustion of the substances non-FAME components likely contributes 
to the emissions, but it is unclear whether the combustion products contribute to the 
toxicity, or modify the toxicity (negatively, additively, synergistically) of the FAME 
combustion products.  
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6.2 Fuel blends 

Currently biodiesel is primarily used commercially as a 20% blend with petroleum diesel fuel 
in the United States. It is unclear whether this ratio of biodiesel to petroleum fuel will increase 
and to what extent. Some vehicles will continue to operate on 100% biodiesel. A potential 
problem in assessment of biodiesel toxicity is that changing the proportion of biodiesel in 
blends can alter the amounts of some combustion products emitted in a nonlinear manner. For 
instance, in changing from 100% to 50% to 0% petroleum diesel fuel (make up fuel being 
biodiesel), metals changed in the exhaust fairly linearly and predictably, i.e., from 1.0 to 0.9 
(i.e., a 10% decrease) to 0.8 (a 20% decrease) relative concentration units, respectively (Brito et 
al, 2010). However CO and black carbon changed in a nonlinear (concave shaped) fashion, i.e., 
for CO, from 1.0 to 1.6 to 0.7 relative concentration units, respectively, while volatile organic 
compounds (VOCs) and PAHs changed in a nonlinear (convex shaped) fashion, i.e., for VOCs, 
from 1.0 to 0.2 to 0.6 relative concentration units, respectively. Such nonlinear changes in 
emissions from blended biodiesel make prediction of the combustion product concentrations 
more difficult, and hence prediction of human responses or health effects harder to 
characterize if the products affect the toxicity. The potential shapes of the changes in an 
emission component are presented in Figure 1 below. 
 

 

Fig. 1. Theoretical changes in an emission component as the proportion of biodiesel changes 
from 0 (B0) to 100 (B100) %. Linear changes are reflected by straight lines and diamonds, 
concave and convex changes are reflected by dashed lines and circles, and sigmoidal 
changes are reflected by dashed lines and rectangles. 
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6.3 Evolving fuel standards and engine technology 

As fuels evolve, emissions will also change. For instance, petroleum diesel fuel sulfur 

content for onroad use has decreased in most countries, resulting in lower PM exhaust 

concentrations. As mentioned previously, petroleum diesel is currently blended with 

biodiesel in the U.S and other countries; hence changes in fuel components will likely affect 

emission components. This constantly changing fuel composition will be driven by 

requirements for meeting specific standards. The first national biodiesel specification in the 

USA was the ASTM standard D 6751, “Standard Specification for Biodiesel Fuel (B100) Blend 

Stock for Distillate Fuels”, adopted in 2002. Findings from toxicology studies using fuels 

created before current standards in affected countries will likely have different emissions, 

and possibly different health effects and responses. For instance, Brito et al, 2010 used 

petroleum diesel fuel containing ethylated (not methylated) fatty acids and relatively high 

sulfur content (500 ppm) in their studies. This is likely due to the fuel being produced in 

Brazil with abundant ethanol production and standards allowing higher sulfur content in 

petroleum diesel. A potential major issue is whether fuels derived from 3rd generation 

feedstock, such as algae, produce a different fuel than those of 1st or 2nd generation 

feedstocks, and if so, do the emissions change considerably along with biological responses 

being altered. 

6.4 Risk assessment 

The attractiveness of biodiesel in part stems from lower emissions of some pollutants such 

as PM and CO, and additionally lower mutagenic potential associated with the PM phase 

relative to petroleum diesel emissions. However some studies report increased 

inflammatory mediator release (Swanson et al, 2009), and increased cell death (Bunger et al, 

2000). These health effects need to be examined in the context of the amount of pollutant 

emitted per mile or unit work as biodiesel replaces petroleum diesel. Health effects may 

need prioritization based on the degree of adversity, reversibility of the effect, and 

proportion of the general population and also potentially sensitive population(s) exposed to 

biodiesel exhaust. 

7. Challenges 

There are several challenges ahead for assessing the implications of increased biodiesel end 

use. The toxicology of what is emitted from combusted biofuels needs more establishment. 

This establishment would be aided if reproducible study designs could be established. In 

part, experiments could be fairly similar with exposures using the same atmospheres. 

Hence, standardized biodiesel fuels, use of engines with a large market penetration to 

simulate what most individuals may be exposed to, and several similar endpoints (e.g., 

mutagenicity, lung inflammation, vascular and cardiac changes) should be incorporated. 

The appropriateness of whole animal and cultured cells models to human exposures and 

effects will need to be established, as is currently being determined in the field of PDE 

toxicology. Included in the validation of nonhuman models would be extrapolation of 

effects are relatively high doses to low dose exposures of humans, especially if sensitive 

human populations to biodiesel exhaust are identified. The toxicology of PDE has been 

advanced to some extent with the creation of some standardized PDE particles to use  

as an internal control condition, such as those Standard Reference Materials (SRMs)  
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at the National Institutes of Standards and Technology in Gaitherburg, MD 

(http://www.nist.gov/ ). The bioactivities of the biodiesel gas phase and PM phase are still 

largely unknown, so research effort at present must be put into both phases in order to 

eventually determine if adverse health effects exist, and if so, which phase to manipulate to 

effect fewer effects. Studies are still scant where health effects and biological responses have 

been measured when individuals are exposed to whole biodiesel exhaust. Only one study is 

currently published, though a few are underway currently, or have finished and are 

awaiting publication. Now would be an opportunistic time to design and implement 

studies, especially in an occupational setting, as biodiesel fuels replace petroleum based 

fuels. Data can be collected from workers in regards to possible adverse symptoms and 

other health effects induced by PDE, and similar endpoints at a later time after biodiesel is 

introduced into the workplace. A final challenge ultimately will be to incorporate the 

knowledge of human health effects induced by exposures to combusted biodiesel emissions 

into a comprehensive strategy for management of 1) issues related to increased biodiesel 

production (soil use, production, transport and distribution) and 2) issues related to future 

energy production in general, such as how well biodiesel measures up to other fuel 

alternatives (ethanol, butanol, wind, solar, nuclear, etc) in terms of feasibility and public 

health impacts. 

8. Disclaimer 

This manuscript has been reviewed by the National Health and Environmental Effects 

Research Laboratory, U.S. Environmental Protection Agency and approved for publication. 

Approval does not signify that the contents necessarily reflect the views and policies of the 

Agency, nor does mention of trade names or commercial products constitute endorsement 

or recommendation for use. 

9. Acknowledgements 

Partially funded by the EPA/UNC Toxicology Research Program, Training Agreement 
T829472, with the Curriculum in Toxicology, University of North Carolina at Chapel Hill. 

10. References  

Ackland, M.L., Zou, L., et al. (2007). Diesel exhaust particulate matter induces multinucleate 

cells and zinc transporter-dependent apoptosis in human airway cells. Immunol 

Cell Biol. 85(8):617-22. 

Auchincloss, A. H., A. V. Diez Roux, et al. (2008). "Associations between recent exposure to 

ambient fine particulate matter and blood pressure in the Multi-ethnic Study of 

Atherosclerosis (MESA)." Environ Health Perspect 116(4): 486-491. 

Barregard L, Sällsten G, et al.  (2006). Experimental exposure to wood-smoke particles in 

healthy humans: effects on markers of inflammation, coagulation, and lipid 

peroxidation. Inhal. Toxicol. 18(11):845-53.  

Bennett WD, Hazucha MJ, et al. (2007). Inhal Toxicol. 19(14):1147-54. Acute pulmonary 

function response to ozone in young adults as a function of body mass index. 

www.intechopen.com



 
Biodiesel – Quality, Emissions and By-Products 210 

Brook, R.D. (2007). Is air pollution a cause of cardiovascular disease? Updated review and 

controversies. Rev Environ Health. 22(2):115-37. 

Brito, J. M., Luciano Belotti, et al. (2010). "Acute Cardiovascular and Inflammatory Toxicity 

Induced by Inhalation of Diesel and Biodiesel Exhaust Particles " Toxicological 

Sciences 116(1): 67-78. 

Bünger J, Krahl J et al. (1998). Mutagenic and cytotoxic effects of exhaust particulate matter 

of biodiesel compared to fossil diesel fuel. Mutation Res. 8:415(1-2):13-23. 

Bünger J, Müller MM, et al. (2000a). Mutagenicity of diesel exhaust particles from two fossil 

and two plant oil fuels. Mutagenesis. 15(5):391-7. 

Bünger J, Krahl J, (2000b). Cytotoxic and mutagenic effects, particle size and concentration 

analysis of diesel engine emissions using biodiesel and petrol diesel as fuel. Arch 

Toxicol. 74(8):490-8. 

Bünger J, Krahl J, et al. (2007). Strong mutagenic effects of diesel engine emissions using 

vegetable oil as fuel. Arch Toxicol. 81(8):599-603. 

Carter JD, Ghio AJ, et al. (1997). "Cytokine production by human airway epithelial cells after 

exposure to an air pollution particle is metal-dependent." Toxicology and Applied 

Pharmacology 146(2): 180-188. 

Diaz-Sanchez D, Tsien A, et al. (1997). Combined diesel exhaust particulate and ragweed 

allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE 

and skews cytokine production to a T helper cell 2-type pattern. J Immunol. 

158:2406-13.  

DiStefano, E., A. Eiguren-Fernandez, et al. (2009). "Determination of metal-based hydroxyl 

radical generating capacity of ambient and diesel exhaust particles." Inhalation 

Toxicology 21(9): 731-738. 

Durbin, T. D., J. Collins, et al. (1999). Evaluation of the effects of alternative diesel fuel 

formulations on exhaust emission rates and reactitivity. Final Report for South 

Coast Air Quality Management District Technology Advancement Office (98102). 

Riverside, CA, Center for Environmental Research and Technology, University of 

California. 

Eckl P, Leikermoser P, et al. (1997). The mutagenic potential of diesel and biodiesel exhausts. 

In: Plant oils as fuels-Present state of science and future developments (Martini N. 

and Schell J., eds). Berlin: Springer, 124-140. 

Finch, G. L., C. H. Hobbs, et al. (2002). "Effects of subchronic inhalation exposure of rats to 

emissions from a diesel engine burning soybean oil-derived biodiesel fuel." Inhal 

Toxicol 14(10): 1017-1048. 

Ghio AJ, Soukup JM, et al. (2011). Exposure to wood smoke particles produces inflammation 

in healthy volunteers. Occup Environ Med. Jun 30. 

Gilboa SM, Mendola P, et al. (2005). Relation between ambient air quality and selected birth 

defects, seven county study, Texas, 1997-2000. Am J Epidemiol.162:238-52.  

Gilliland FD, Li YF, et al. (2004). Effect of glutathione-S-transferase M1 and P1 genotypes on 

xenobiotic enhancement of allergic responses: randomised, placebo-controlled 

crossover study. Lancet. 363(9403):119-25. 

Graboski, M. S. and R. L. McCormick (1998). "Combustion of fat and vegetable oil derived 

fuels in diesel engines." Progress in Energy and Combustion Science 24: 125-164. 

www.intechopen.com



 
Toxicology of Biodiesel Combustion Products 211 

Graboski, M. S., R. L. McCormick, et al. (2003). The effect of biodiesel composition on engine 

emissions from a DDC series 60 diesel engine, Colorado Institute for Fuels and 

Engine Research, Colorado School of Mines, Golden, Colorado. 

Hall, S., R. Z. Lu, et al. (1992). "Inhibition of pulmonary surfactant by oleic acid: mechanisms 

and characteristics." The American journal of Physiology: 1708-1716. 

Hasford, B., M. Wimbauer, et al. (1997). Respiratory symtoms and lung function after 

exposure to exhaust fumes from rapeseed oil in comparison to regular diesel fuel. 

Proceedings of the 9th International Conference on Occupational Respiratory 

Diseases: Advances in Prevention of Occupational Respiratory Diseases, Kyoto, 

Japan, Elsevier. 

Hazari MS, Haykal-Coates N, et al. (2011). TRPA1 and Sympathetic Activation Contribute to 

Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to 

Diesel Exhaust. Environ Health Perspect. 119(7):951-7. 

Hazucha, M.J., M.C. Madden, et al. (1996). Effects of cycloooxygenase inhibition on ozone-

induced respiratory inflammation and lung function changes. Eur. J. Appl. Physiol. 

73: 17-27.  

Inoue, K., H. Takano, et al. (2006). "Pulmonary exposure to diesel exhaust particles enhances 

coagulatory disturbance with endothelial damage and systemic inflammation 

related to lung inflammation." Exp Biol Med (Maywood) 231(10): 1626-1632. 

Jacobus, M.J., S.M. Geyer, et al. (1983). Single-Cylinder Diesel Engine Study of Four 

Vegetable Oils. SAE paper no. 831743. 

Jayaram, V., H. Agrawal, et al. (2011). "Real time gaseous, PM, and ultrafine particle 

emissions from a modern marine engine operating on biodiesel." Environmental 

Science and Technology 45: 2286-2292. 

Kado, N.Y. and Kuzmicky, P.A. Bioassay (2003). Analyses of Particulate Matter from a 

Diesel Bus Engine Using Various Biodiesel Feedstock Fuels. NREL Report No. SR-

510-31463, National Renewable Energy Laboratory, Golden, CO. 

Karavalakis, G., E. Bakeas, et al. (2010). "Influence of oxidized biodiesel blends on regulated 

and unregulated emission from a diesel passenger car." Environmental Science and 

Technology 44: 5306-5312. 

Kodavanti UP, Thomas R, et al. (2011). Vascular and cardiac impairments in rats inhaling 

ozone and diesel exhaust particles. Environ Health Perspect. May 11. 

Linn WS, Szlachcic Y, et al. (2000). Air pollution and daily hospital admissions in 

metropolitan Los Angeles.Environ Health Perspect.108(5):427-34. 

Lucking AJ, Lundbäck M, et al. (2011). Particle traps prevent adverse vascular and 

prothrombotic effects of diesel engine exhaust inhalation in men. Circulation. 

123(16):1721-8. 

Lund AK, Lucero J, et al. (2009). Vehicular emissions induce vascular MMP-9 expression 

and activity associated with endothelin-1-mediated pathways. Arterioscler Thromb 

Vasc Biol. 29:511-7. 

Madden, MC, and J.E. Gallagher. (1999). Biomarkers of Exposure. In: Air Pollution and 

Health. ST Holgate, HS Koren, J Samet, and R Maynard, eds. Academic Press, 

London. pp. 417-430. 

www.intechopen.com



 
Biodiesel – Quality, Emissions and By-Products 212 

Maejima, K., K. Tamura, et al. (2001). "Effects of the inhalation of diesel exhaust, Kanto loam 

dust, or diesel exhaust without particles on immune responses in mice exposed to 

Japanese cedar (Cryptomeria japonica) pollen." Inhalation Toxicology 13(11): 1047-

1063. 

Mauderly, J. L. (1994). "Toxicological and epidemiological evidence for health risks from 

inhaled engine emissions." Environ Health Perspect 102 Suppl 4: 165-171. 

McDonald, J. and M. W. Spears (1997). Biodiesel: effects on exhaust constituents. Plant oils 

as fuels-Present state of science and future developments. Martini N. and Schell J. 

Berlin, Springer: 141-160. 

McDonald, J. D., K. S. Harrod, et al. (2004). "Effects of Low Sulfur Fuel and a Catalyzed 

Particle Trap on the Composition and Toxicity of Diesel Emissions." Environmental 

Health Perspectives 112(13): 1307-1313. 

McDonnell WF, Stewart PW, et al. (2007). The temporal dynamics of ozone-induced FEV1 

changes in humans: an exposure-response model. Inhal Toxicol.19(6-7):483-94. 

Mills NL, Törnqvist H, et al. (2007). Diesel exhaust inhalation causes vascular dysfunction 

and impaired endogenous fibrinolysis. Circulation. 112(25):3930-6. 

Mills NL, Törnqvist H, et al. (2007). Ischemic and thrombotic effects of dilute diesel-exhaust 

inhalation in men with coronary heart disease. N Engl J Med. 357(11):1075-82. 

Nemmar, A., P. H. Hoet, et al. (2004). "Pharmacological stabilization of mast cells abrogates 

late thrombotic events induced by diesel exhaust particles in hamsters." Circulation 

110(12): 1670-1677. 

Nemmar, A., B. Nemery, et al. (2003). "Pulmonary inflammation and thrombogenicity 

caused by diesel particles in hamsters: role of histamine." Am J Respir Crit Care 

Med 168(11): 1366-1372. 

Nemmar, A., B. Nemery, et al. (2002). "Air pollution and thrombosis: an experimental 

approach." Pathophysiol Haemost Thromb 32(5-6): 349-350. 

New York Times, (2008). "Pollution Is Called a Byproduct of a ‘Clean’ Fuel". 

http://www.nytimes.com/2008/03/11/world/americas/11iht-

11biofuel.10914638.html?pagewanted=1. Brenda Goodman, author. Published 

3/11/2008. Accessed July 5, 2011.  

Peacock,E.E. , Arey,J.S. et al. (2010). Molecular and Isotopic Analysis of Motor Oil from a 

Biodiesel-Driven Vehicle. Energy Fuels 24: 1037–1042. 

Peretz, A., J. H. Sullivan, et al. (2008). "Diesel exhaust inhalation elicits acute 

vasoconstriction in vivo." Environ Health Perspect 116(7): 937-942. 

Rappold, A.G., S.L. Stone, et al. (2011). “Peat Bog Wildfire Smoke Exposure in Rural North 

Carolina Is Associated with Cardio-Pulmonary Emergency Department Visits 

Assessed Through Syndromic Surveillance.” Environ. Health. Perspect. Epub. June 

27. http://dx.doi.org/10.1289/ehp.1003206 

Ratcliff, M., A. J. Dane, et al. (2010). "Diesel particle filter and fuel effects on heavy duty 

diesel engine emissions." Environmental Science and Technology 44(21): 8343-8349. 

Sugimotoa, R., Y. Kumagaia, et al. (2005). "9,10-Phenanthraquinone in diesel exhaust 

particles downregulates Cu,Zn–SOD and HO-1 in human pulmonary epithelial 

cells: Intracellular iron scavenger 1,10-phenanthroline affords protection against 

apoptosis " Free Radical biology and Medicine 38(3): 388-395. 

www.intechopen.com



 
Toxicology of Biodiesel Combustion Products 213 

Rudell, B., A. Blomberg, et al. (1999). "Bronchoalveolar inflammation after exposure to diesel 

exhaust: comparison between unfiltered and particle trap filtered exhaust." 

Occupational Environmental Medicine 56: 527-534. 

Samet JM, Hatch GE, et al. (2001).Effect of antioxidant supplementation on ozone-induced 

lung injury in human subjects.Am J Respir Crit Care Med. 164(5):819-25. 

Sarnat, J. A., A. Marmur, et al. (2008). "Fine particle sources and cardiorespiratory 

morbidity: an application of chemical mass balance and factor analytical source-

apportionment methods." Environ Health Perspect 116(4): 459-466. 

Sawyer, K., Samet, J.M. et al. (2008). Responses measured in the exhaled breath of human 

volunteers acutely exposed to ozone and diesel exhaust. J. Breath Research, 2 
037019 (9pp)  

Sharp, C., S. Howell, et al. (2000). "The Effect of Biodiesel Fuels on Transient Emissions from 

Modern Diesel Engines, Part II Unregulated Emissions and Chemical 

Characterization." Technical Paper 2000-01-1968; SAE: Warrendale, PA. 

Singh, M., M. Mishra, et al. (2011). "Genotoxicity and apoptosis in Drosophila melanogaster 

exposed to benzene, toulene, and xylene: attenuation by quercetin and curcumin." 

Toxicology and Applied Pharmacology 253(1): 14-30. 

Sithu, S., S. Srivastava, et al. (2010). "Exposure to acrolein by inhalation causes platelet 

activation." Toxicology and Applied Pharmacology 248: 100-110. 

Speit, G., P. Schutz, et al. (2011). "Analysis of micronuclei, histopathological changes and cell 

proliferation in nasal epithelium cells of rats after exposure to formaldehyde by 

inhalation." Mutation Reseach 721: 127-135. 

Swanson, KJ, Madden, MC, et al. (2007). Biodiesel Exhaust: The Need for Health Effects 

Research.. Env. Hlth. Perspect. 115:496-499.  

Swanson, KJ, Funk, W. et al. (2009). Release of the pro-inflammatory markers IL-8 & IL-6 by 

BEAS-2B cells following in vitro exposure to biodiesel extracts. The Open 

Toxicology Journal. 3:8-15.  

Tamagawa, E., N. Bai, et al. (2008). "Particulate matter exposure induces persistent lung 

inflammation and endothelial dysfunction." Am J Physiol Lung Cell Mol Physiol 

295(1): L79-85. 

Toda N, Tsukue N et al. (2001). Effects of diesel exhaust particles on blood pressure in rats.J 

Toxicol Environ Health A. 63(6):429-35. 

Tzamkiozis T, Stoeger T, et al. (2010). Monitoring the inflammatory potential of exhaust 

particles from passenger cars in mice. Inhal Toxicol. 22 Suppl 2:59-69. 

United States Environmental Protection Agency. 2002a. Health Assessment Document for 

Diesel Exhaust. EPA/600/8-90/057F. Washington, DC. 

U.S. Environmental Protection Agency. 2000. Air Quality Criteria Document for Carbon 

Monoxide. EPA/600/P-99/001F.Washington, DC: U.S. Environmental Protection 

Agency. 

U.S. Environmental Protection Agency. 2002b. A Comprehensive Analysis of Biodiesel 

Impacts on Exhaust Emissions EPA420-P-02-001. Washington DC: U.S. 

Environmental Protection Agency. 

www.intechopen.com



 
Biodiesel – Quality, Emissions and By-Products 214 

U.S. Environmental Protection Agency. 2008. Integrated Science Assessment for Oxides of 

Nitrogen- Health Criteria. EPA/600/R-07/093aB. Washington DC: U.S. 

Environmental Protection Agency 

Watanabe N. (2005). Decreased number of sperms and Sertoli cells in mature rats exposed to 

diesel exhaust as fetuses. Toxicol Lett. 155:51-8.  

Watkinson, W. P., M. J. Campen, et al. (1998). "Cardiac arrhythmia induction after exposure 

to residual oil fly ash particles in a rodent model of pulmonary hypertension." 

Toxicol Sci 41(2): 209-216. 

www.intechopen.com



Biodiesel- Quality, Emissions and By-Products

Edited by Dr. Gisela Montero

ISBN 978-953-307-784-0

Hard cover, 380 pages

Publisher InTech

Published online 16, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book entitled "Biodiesel: Quality, Emissions and By-products" covers topics related to biodiesel quality,

performance of combustion engines that use biodiesel and the emissions they generate. New routes to

determinate biodiesel properties are proposed and the process how the raw material source, impurities and

production practices can affect the quality of the biodiesel is analyzed. In relation to the utilization of biofuel,

the performance of combustion engines fuelled by biodiesel and biodiesels blends are evaluated. The

applications of glycerol, a byproduct of the biodiesel production process as a feedstock for biotechnological

processes, and a key compound of the biorefinery of the future is also emphasized.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Michael C. Madden, Laya Bhavaraju and Urmila P. Kodavanti (2011). Toxicology of Biodiesel Combustion

Products, Biodiesel- Quality, Emissions and By-Products, Dr. Gisela Montero (Ed.), ISBN: 978-953-307-784-0,

InTech, Available from: http://www.intechopen.com/books/biodiesel-quality-emissions-and-by-

products/toxicology-of-biodiesel-combustion-products



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


