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1. Introduction 

Neurodegenerative disease is a generic term used for a wide range of acute and chronic 

conditions whose etiology is unknown such as Parkinson's disease, Huntington's disease, 

amyotrophic lateral sclerosis (ALS), Alzheimer's disease, but also now for other neurological 

diseases whose etiology is better known but which are also concerned by a chronic lost of 

neurons and glial cells such as multiple sclerosis (MS), stroke, and spinal cord injury. 

Although the adult brain contains small numbers of stem cells in restricted areas, the central 

nervous system exhibits limited capacity of regenerating lost tissue. Therefore, cell 

replacement therapies of lesioned brain have provided the basis for the development of 

potentially powerful new therapeutic strategies for a broad spectrum of human neurological 

diseases. However, the paucity of suitable cell types for cell replacement therapy in patients 

suffering from neurological disorders has hampered the development of this promising 

therapeutic approach.  

Stem cells are classically defined as cells that have the ability to renew themselves 

continuously and possess pluripotent or multipotent ability to differentiate into many cell 

types. Besides the germ stem cells devoted to give rise to ovocytes or spermatozoïdes, those 

cells can be classified in three subgroups: embryonic stem cells (ES), induced pluripotent 

stem cells (iPS) and somatic stem cells (Figure 1). ES cells are derived from the inner mass of 

blastocyst and are considered as pluripotent stem cells as these cells can give rise to various 

mature cells from the three germ layers. iPS cells are also pluripotent stem cells, however, 

those cells derived from adult somatic cells such as skin fibroblasts are genetically modified 

by introduction of four embryogenesis-related genes (Takahashi et al., 2007; Park et al., 

2008). Finally, tissue-specific stem cells known as somatic or adult stem cells are more 

restricted stem cells (multipotent stem cells) and are isolated from various fetal or adult 

tissues (i.e. hematopoietic stem cells, bone marrow mesenchymal stem cells, adipose tissue-

derived stem cells, amniotic fluid stem cells, neural stem cells, etc.; Reviewed by Kim and de 

Vellis, 2009).  
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Fig. 1. Stem cell type and origin. Besides germ stem cells, three group of stem cells can be 
defined according to their differentiating abilities: A. pluripotent embryonic stem cells (ES), 
B. induced pluripotent stem cells (iPS) and C. multipotent fetal or adult somatic stem cells 
(Figure adapted from Sigma-Aldrich). 
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In recent years, neurons and glial cells have been successfully generated from stem cells 
such as embryonic stem cells (Patani et al., 2010), iPS (Swistowski et al., 2010), mesenchymal 
stem cells (MSC) (Wislet-Gendebien et al., 2005), and adult neural stem cells (reviewed by 
Ming et Song, 2011), and extensive efforts by investigators to develop stem cell-based brain 
transplantation therapies have been carried out. Over the last decade, convincing evidence 
has emerged of the capability of various stem cell populations to induce regeneration in 
animal models of Parkinson’s disease (PD), Huntington’s disease, Alzheimer’s disease (AD), 
multiple sclerosis or cerebral ischemia (Reviewed by Gögel et al., 2011). Some of the studies 
have already been carried out to clinical trials. In example, in the case of Parkinson’s disease, 
transplantation of fetal ventral mesencephalon tissue directly into the brains of PD patients has 
been done in a few centers with varying results (Kordower et al., 2008; Li et al., 2008 ; Mendez et al., 
2008) and it appeared that using fetal ventral mesencephalon tissue raised numerous 
problems from ethical issues to heterogeneity and relative scarcity of tissue (reviewed by 
Wakeman et al., 2011) suggesting that other stem cells (like adult somatic stem cells) may be 
more suitable for such a therapy. Likewise, ES cells have also been grafted in patients with 
injured spinal cord, as USA Federal Regulators have cleared the way for the first human 
trials of human ES-cell research, authorizing researchers to test whether those cells are safe 
or not (Schwarz et al., 2010). It is still to early to know the effect of ES cells on patient 
recovery; however, several concerns have been previously raised on animal models as ES 
cells induced teratocarcimas and some exploratory clinical trials are confirming the animal 
studies (reviewed by Solter, 2006).  
In this chapter, we will review our results concerning identification and characterization of 
neural crest stem cells (NCSC) in adult bone marrow as a potential source for cellular 
therapy in neurological disorders. We will also discuss what are the main questions that 
remain pending concerning the use of those cells in cellular therapy protocols for 
neurological disorders.  

2. Somatic stem cells isolated from adult bone marrow 

The post-natal bone marrow has traditionally been seen as an organ composed of two main 
systems rooted in distinct lineages—the hematopoietic tissue and the associated supporting 
stroma. The evidence pointing to a putative stem cell upstream of the diverse lineages and 
cell phenotypes comprising the bone marrow stromal system has made marrow the only 
known organ in which two separate and distinct stem cells and dependent tissue systems 
not only coexist but functionally cooperate, defining hematopoietic stem cells (HSC) and 
mesenchymal stem cells (MSC) (reviewed by Bianco et al., 2001).  
MSC were first isolated from the bone marrow (BM-MSC) stem cell niche. More recently, 
extensive research has revealed that cells with morphological and functional 
characteristics similar to BM-MSC can be identified in a large number of organs or tissues 
including adipose tissue and peripheral blood. Despite having different origins, these 
MSC populations maintain cell biological properties typically associated with stem cells. 
These include continuous cell cycle progression for self-renewal and the potential to 
differentiate into highly specialized cell types of the mesodermal phenotype including 
chondroblast, osteoblast, and adipocyte lineages. Interestingly, BM-MSC have also been 
reported to be inducible via the ectodermal or endodermal germline, demonstrating the 
expression of neuron-like factors insulin production or hepatic lineage-associated genes 
respectively. In addition to these general stem cell properties, the International Society for 
Cellular Therapy proposed a more specific panel of markers for the characterization of 
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MSC. Due to the failure to identify a certain unique MSC cell-surface molecule, a set of 
minimal criteria for MSC was recommended, which includes the capability of adherence 
to plastic surfaces and the expression of the cell surface markers CD44, CD73, CD90, and 
CD105 with a concomitant absence of CD14, CD19, CD34, CD45, and HLA-DR expression 
(Reviewed by Hilfiker et al., 2011). 
Originally analyzed because of their critical role in the formation of the hematopoietic 
microenvironment (HME), bone marrow stromal cells became interesting because of their 
surprising ability to differentiate into mature neural cell types. More recently, a third stem 
cell group has been identified as originating from the neural crest, which could explain the 
capacity of stromal stem cells to differentiate into functional neurons. 

2.1 Neural phenotypic plasticity of adult bone marrow stromal cells 

Several years ago, we demonstrated that a fraction of bone marrow stromal cells were able 
to differentiate into functional neurons. Those specific cells were characterized as nestin-
positive mesenchymal stem cells (Wislet-Gendebien, 2003-2005). Electrophysiological 
analyses using the whole-cell patch-clamp technique revealed that adult rat bone marrow 
stromal cells (Wislet-Gendebien et al., 2005a and 2005b) were able to differentiate into 
excitable neuron-like cells when they were co-cultivated with mouse cerebellar granule 
neurons. First, we demonstrated that those cells express several neuronal markers (NeuN 
and Beta-III-tubulin ; Figure 2), an axonal marker (neurofilament protein recognized by the 
 

 

Fig. 2. Neuronal marker expressed by bone marrow stromal cells. Bone marrow stromal cells 
were co-cultivated for 5 days with GFP-positive cerebellar granule neurons (green). 
Immunofluorescence labeling showed that beta-III tubulin recognize by Tuj1 antibodies 
(red) was expressed by about 20% of bone marrow stromal cells (GFP-negative or non-green 
cells) (Wislet-Gendebien et al., 2005).  
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monoclonal antibody, SMI31) and a dendritic marker (MAP2ab). Electrophysiological 

recordings of these nestin-positive bone marrow-derived neuron-like cells (BMDN) were 

performed and three maturation stages were observed (Table 1). At 4–6 days of co-culture, 

BMDN showed some neurotransmitter responsiveness (GABA, glycine, serotonin and 

glutamate) and voltage-gated K+ currents inhibited by TEA (tetraethylammonium). 

However, those cells did not express functional sodium voltage-gated channels and have a 

low membrane potential (Vrest) (-37.6°  3mV, n = 61). During the second week of co-

culture, BMDN started to display Na+ currents reversely inhibitsed by TTX (tetrodotoxin) 

and became able to fire single spike of action potential. In those older co-cultures, the Vrest 

reaches a more negative value, which was closer to the value usually measured in neurons 

(7–9 days, -50.3  2mV, n = 76 and 10–15 days, -56.7  2.3mV, n = 97). 

As only nestin-positive bone marrow stromal cells were able to differentiate into functional 

neurons, we performed several proteomic and transcriptomic comparisons that pointed out 

several characteristics like ErbB3 and Sox10 over-expression in nestin-positive MSC, 

suggesting that these cells could actually be neural-crest derived cells (reviewed by Wislet-

Gendebien et al., 2008). Few months later, Nogoshi et al. (2008) confirmed the presence of 

neural crest derived cells in adult bone marrow. 

 

 

Table 1. Maturation steps of bone marrow derived neuron-like cells 

2.2 Characterization of neural crest stem cells from adult bone marrow 
2.2.1 Neural crest stem cell origin 

In early vertebrate development, the neural crest is specified in the embryonic ectoderm at 

the boundary of the neural plate and the ectoderm. Once specified, the neural crest cells 

undergo a process of epithelium to mesenchyme transition (EMT) that will confer them the 

ability to migrate. The EMT involves different molecular and cellular machineries and 

implies deep changes in cell morphology and in the type of cell surface adhesion and 

recognition molecules. When the EMT is complete, they delaminate from the neural 
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folds/neural tube and migrate along characteristic pathways to differentiate into a wide 

variety of derivates (Figure 3; reviewed by Kalcheim, 2000). 

 
 
 
 
 

 
 
 
 

Fig. 3. Neurulation and neural crest migration. As neurulation proceeds, the neural plate 
rolls up and the neural plate border becomes the neural folds. Near the time of neural tube 
closure (depending on the species), the neural crest cells go through an epithelial to 
mesenchymal transition (EMT) and delaminate from the neural folds or dorsal neural tube 
and migrate along defined pathways.  

In 2000, Jiang et al. developed a two-component genetic system based on Cre/lox 

recombination to label indelibly the entire mouse neural crest population at the time of its 

formation, and to detect it at any time thereafter. Briefly, the fate of neural crest cells was 
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mapped in vivo by mating ROSA26 Cre reporter (R26R) mice, which express β-

galactosidase upon Cre-mediated recombination, with mice expressing Cre recombinase 

under the control of the Wnt1 promoter. In Wnt1-Cre/R26R double transgenic mice, 

virtually all neural crest stem cells express β-galactosidase. Using this transgenic model, 

Sieber-Blum and Grim (2004) demonstrated the presence of pluripotent neural crest stem 

cells in adult follicle hairs, Wong et al. (2006) demonstrated the presence of neural crest 

cells in the mouse adult skin and Nagoshi et al. (2008) confirmed the presence of NCSC in 

adult bone marrow (Table 2). 

 

 

Table 2. Presence of neural crest derived cells in adult tissues. 

2.2.2 Self-renewal ability and multipotency of adult bone marrow NCSC 

To consider NCSC from adult bone marrow as a potential source for cellular therapy 
protocol, a better characterization of those cells was mandatory. In our study, we first 
address the self-renewal ability, as first characteristic of stemness. Indeed, we demonstrated 
that NCSC were able to grow as spheres, which is one of the main hallmarks of immature 
neural cells and proliferate from a single cell culture (clonal culture). We then addressed the 
multipotency and verify if those NCSC clones were able to differentiate into multiple 
mature cell types. Indeed, we observed that NCSC were able to differentiate into adipocytes, 
melanocytes, smooth muscles, osteocytes, neurons and astrocytes (Figure 4, Glejzer et al., 
2011). 

2.2.3 Maintenance and proliferation of adult bone marrow NCSC 

Before using NCSC from adult bone marrow, we have to face some limiting factors like the 

fact that NCSC are a minority population (less than 1%) in adult bone marrow. As Wnt1 and 

BMP2 factors were described to help for maintenance and proliferation of NCSC isolated 

from embryo (Sommer, 2006), we tested those two factors, on adult NCSC isolated from 

adult bone marrow. Interestingly, we demonstrated that Wnt1 and BMP2 were able to 

increase the number of NCSC present in bone marrow stromal cell culture, up to four times 

within 2 passages (Glejzer et al., 2011) reaching 20 % of NCSC.  
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Fig. 4. Multipotency of adult bone marrow NCSC. NCSC clones were subjected to 
differentiating protocols and were shown to be able to differentiate into adipocytes (Oil Red 
O labeling), melanocytes (L-DOPA labeling), smooth muscles (SMA-labeling) and 
Osteocytes (alkaline phosphatase activity). Moreover, when co-cultured with cerebellar 
granule neurons, we were able to differentiate NCSC clones into neurons (betaIII-tubulin 
labeling by Tuj1 monoclonal antibody) or astrocytes (GFAP labeling). 
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3. In vivo characterization of neural crest stem cells and/or bone marrow 

stromal cells in neurological disorder mice models 

3.1 Spinal stroke  

Among others, the spinal cord is the collection of fibers that runs from or to the brain 

through the spine, carrying signals from or to the brain to or from the rest of the body. 

Those signals control a person’s muscles and enable the person to feel various sensations. 

The main consequence of injuries to the spinal cord is the interference with those signals. 

Those injuries are characterized as “complete” or “incomplete”: if the injured person loses 

all sensation and all ability to control the muscles below the point of the injury, the injury is 

said “complete”; in the case of an “incomplete” injury, the victim retains some ability to feel 

sensations or control movement below the injured area.  

Main goals in spinal cord repair include reconnecting brain and lower spinal cord, building 

new circuits, re-myelination of demyelinated axons, providing trophic support, and 

bridging the gap of the lesion (Reviewed by Enzmann et al., 2006). Overcoming myelin-

associated and/or glial-scar-associated growth inhibition are experimental approaches that 

have been most successfully studied in in vivo experiments. Further issues concern gray 

matter reconstitution and protecting neurons and glia from secondary death (Reviewed by 

Enzmann et al., 2006).  

In this purpose, neural crest stem cells isolated from the bulge of hair follicle have been 

grafted in rat model of spinal cord lesion (reviewed by Sieber-Blum 2010). Those cells 

survived, integrated and intermingled with host neurites in the lesioned spinal cord. NCSC 

were non-migratory and did not proliferate or form tumors. Significant subsets of grafted 

cells expressed the neuron-specific beta-III tubulin, the GABAergic marker glutamate 

decarboxylase 67 (GAD67), the oligodendrocyte markers RIP or myelin basic protein (MBP) 

(Sieber-Blum et al., 2006). More interestingly, functional improvement was shown by two 

independent approaches, spinal somatosensory evoked potentials (SpSEP) and the Semmes-

Weinstein touch test (Hu et al., 2010). The strength of NSCS was fully characterized as they 

can exert a combination of pertinent functions in the contused spinal cord, including cell 

replacement, neuroprotection, angiogenesis and modulation of scar formation. However, 

those results have never been confirmed with human NCSC, which should be the next 

promising step. 

Similar studies were previously performed with bone marrow stromal cells. Indeed, several 

researches reported the anti-proliferative, anti-inflammatory and anti-apoptotic features of 

bone marrow stromal cells (reviewed by Uccelli et al., 2011). Indeed, Zeng et al. (2011) 

demonstrated that BMSC seeded in a three dimensions gelatin sponge scaffold and 

transplanted in a transected rat spinal cord resulted in attenuation of inflammation, 

promotion of angiogenesis and reduction of cavity formation. Those BMSC were isolated 

from 10 weeks old rats and passaged 3 to 6 times. Likewise, Xu et al. (2010) demonstrated 

that a co-culture of Schwann cell with BMSC had greater effects on injured spinal cord 

recovery than untreated BMSC. Indeed, analyses of chemokine and cytokine expression 

revealed that BMSC/Schwann cell co-cultures produced far less MCP-1 and IL-6 than BMSC 

or Schwann cells cultured alone. Transplanted BMSC may thus improve recovery in spinal 

cord injured mice through immunosuppressive effects that can be enhanced by a Schwann 

cell co-culturing step. These results indicate that the temporary presence of BMSC in the 
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injured cord is sufficient to alter the cascade of pathological events that normally occurs 

after spinal cord injury and therefore, generating a microenvironment which favours an 

improved recovery. In this study, BMSC were isolated from adult mice and used after 4 

passages.  

3.2 Multiple sclerosis  

Multiple sclerosis (MS) is a common neurological disease and a major cause of disability, 

particularly affecting young adults. It is characterized by patches of damage occurring 

throughout the brain and spinal cord with loss of myelin sheaths accompanied by loss of 

cells that make myelin (oligodendrocytes) (reviewed by Scolding, 2011). In addition, we 

now know that there is damage to neurons and their axons too, and that this occurs both 

within these discrete patches and in tissue between them. The cause of MS remains 

unknown, but an autoimmune reaction against oligodendrocytes and myelin is generally 

assumed to play a major role and early acute MS lesions almost invariably show prominent 

inflammation. Efforts to develop cell therapy of nervous system lesion in MS have long been 

directed towards directly implanting cells capable of replacing lost oligodendrocytes and 

regenerating myelin sheaths.  

To our knowledge, no experiment has been performed to characterize the effect of neural 
crest stem cells on the improvement of Multiple Sclerosis disease; however, several data can 
be collected concerning the positive effect of Schwann cells (derived from NCSC) and of 
bone marrow stromal cells.  
As previously described in injured spinal cord, bone marrow stromal cells have been 
characterized on their anti-proliferative, anti-inflammatory and anti-apoptotic features. 
These properties have been exploited in the effective treatment of experimental autoimmune 
encephalomyelitis (EAE), an animal model of multiple sclerosis where the inhibition of the 
autoimmune response resulted in a significant neuroprotection (reviewed by Uccelli et al., 
2011). Based on recent experimental data, a number of clinical trials have been designed for 
the intravenous (IV) and/or intrathecal (ITH) administration of BMSCs in MS patients 
(Grigoriadis et al., 2011).  

3.3 Parkinson disease  

Parkinson's disease (PD) is a chronic, progressive neurodegenerative disorder 

characterized by a continuous and selective loss of dopaminergic neurons in the substantia 

nigra pars compacta with a subsequent reduction of dopamine release mainly in the 

striatum. This ongoing loss of nigral dopaminergic neurons leads to clinical diagnosis 

mainly due to occurrence of motor symptoms such as rigidity, tremor and bradykinesia, 

which result from a reduction of about 70% of striatal dopamine (reviewed by Meyer et 

al., 2010). 

Levy et al. (2008) analyzed the effect of differentiated human BMSC onto dopaminergic 

precursor on hemi-Parkinsonian rats, after transplantation into striatum. This graft resulted 

in improvement of rat behavioral deficits quantified by apomorphine-induced rotational 

behavior. The transplanted induced-neuronal cells proved to be of superior benefit 

compared with the transplantation of naive BMSC. Immunohistochemical analysis of 

grafted brains revealed that abundant induced cells survived the grafting procedure and 

some of these cells displayed dopaminergic traits.  
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Similarly, Zhang et al. (2008) isolated and characterized MSCs from Parkinson's disease 

(PD) patients and compared them with MSCs derived from normal adult bone marrow. 

These authors show that PD-derived MSCs are similar to normal MSCs in phenotype, 

morphology, and differentiation capacity. Moreover, PD-derived MSCs are able of 

differentiating into neurons in a specific medium with up to 30% having the characteristics 

of dopamine cells. At last, PD-derived MSCs could inhibit T-lymphocyte proliferation 

induced by mitogens. These findings indicate that MSCs derived from PD patients' bone 

marrow could be a promising cell type for cellular therapy and somatic gene therapy 

applications.  

3.4 Huntington disease  

Huntington disease (HD) is an autosomal dominant genetic disorder caused by the 

expansion of polyglutamine encoded by CAG repeats in Exon 1 of the IT15 gene encoding 

for Huntingtin (Htt). The polyglutamine repeat length determines the age of onset and the 

overall level of function, but not the severity of the disease (Vassos et al., 2007). Although 

the exact mechanism underlying HD disease progression remains uncertain, the hallmark of 

this disease is a gross atrophy of the striatum and cortex and a decrease of GABAergic 

neurons (DiFiglia et al., 1997). 

One strategy for HD therapy is to enhance neurogenesis, which has been studied by the 

administration of Stem/progenitor cells, including BMSC. Several studies (reviewed by 

Snyder et al., 2010) showed that BMSC promote repair of the CNS by creating a more 

favorable environment for neuroprotection and regeneration through the secretion of 

various cytokines and chemokines. Moreover, Snyder et al. (2010) demonstrated that BMSC 

injected into the dentate gyrus of HD mice model increased neurogenesis and decreased 

atrophy of the striatum. 

3.5 Alzheimer disease  

Alzheimer's disease (AD) is the most common form of dementia, affecting more than 18 
million people worldwide. With increased life expectancy, this number is expected to rise in 
the future. AD is characterized by progressive memory deficits, cognitive impairment, and 
personality changes associated with the degeneration of multiple neuronal types and 
pathologically by the presence of neuritic or amyloid plaques and neurofibrillary tangles 
(Reviewed by Selko, 2001). Amyloid β-peptide (Aβ) appears to play a key pathogenic role in 
AD, and studies have connected Aβ plaques with the formation of intercellular tau tangles, 
another neurotoxic feature of AD (Reviewed by Mattson, 2004). Currently, no treatment is 
available to cure or prevent the neuronal cell death that results in inevitable decline in AD 
patients.  
The innate immune system is the vital first line of defense against a wide range of pathogens 

and tissue injuries, triggering inflammation through activation of microglia and 

macrophages. Many studies have shown that microglia are attracted to and surround senile 

plaques both in human AD samples and in rodent transgenic models that develop AD-

related disease (Simard et al., 2006). In this context, Lee and al. (2010) demonstrated that 

treated APP/PS1 mice (mouse model of AD) with BM-MSCs promoted microglial 

activation, rescued cognitive impairment, and reduced Aβ and tau pathology in the mouse 

brain. 
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4. Conclusions 

The NCSC is one of the most intriguing cells in the field of regenerative medicine, because 

it is easily harvested from various accessible peripheral tissues, which could make 

autologous transplantation possible. Autologous transplantation would avoid 

immunological complications as well as the ethical concerns associated with the use of 

embryonic stem cells. Of the various NCSC, research on skin-derived NCSC is the most 

advanced mainly due to their easy isolation process. One of the critical questions for the 

application of NCSC to regenerative medicine is whether cells that are differentiated from 

NCSCs are functional. Some evidence supports this (reviewed by Nagoshi et al., 2009), 

however, lots of questions remained pending. By example, a very important question is 

the differentiation abilities of NCSC isolated from various tissues: are they similar or 

different? 

On the other hand, even if bone marrow stromal cells did not show a strong ability to 

replace lost neurons in neurodegenerative disorders such as Parkinson or Huntington 

disease, their impact on inflammation modulation or stimulation of endogenous cells were 

quite remarkable. This impact is also illustrated by a high number of ongoing clinical trials 

with these cells (Reviewed by Sensebé et Bourin, 2011). However, the main challenges 

remain the standardization of cell culture and isolation, to meet the international rules. 

Indeed, more than ever, it has been demonstrated that bone marrow stromal cells are 

constituted of an heterogenous population containing multiple stem/progenitor cell types 

including mesenchymal stem cells and neural crest stem cells, among other. Most of the 

studies describing the effects of BMSC on inflammation modulation or stimulation of 

endogenous cells were performed on low passages (< 4), which mainly contain MSC and 

less than 10 % of NCSC. So we could stipulate that most of these effects were probably due 

to MSC. However, in a perspective of cell therapy, a strong characterization of the role of 

each cell type in neuronal recovery seemed mandatory to establish strong and safe 

protocols. 
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