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1. Introduction 

Multidrug resistance is recognized as the key factor of many anticancer drugs invalidity. 

Anticancer treatments such as chemotherapy or radiation must hit their cellular targets and 

then cause cellular alteration or damage. However, in most cases the damage inflicted by the 

anticancer agent triggers apoptosis 1. Acute lymphoblastic leukemia (ALL) is the most 

frequently occurring cancer in children. Chemotherapy to childhood ALL has markedly 

improved during the past years 2. The remission rate of chemotherapy patients is more than 

95%, and the long term free survival rate about 75-80%. However, 25–30% of the patients 

will experience a relapsing, that leads to die of teenagers. Which may be explained by 

unfavourable pharmacokinetics, by leukemic stem cells regrowth and by cellular drug 

resistance 2, 3.  

Since the early 1970s, multidrug resistance (MDR) has been known to exist in cancer cells 

and is thought to be attributable to a membrane-bound, energy-dependent pump protein (P-

glycoprotein [P-gp]) capable of excluding various related and unrelated chemotherapeutic 

drugs. In this chapter, we would discussed the multidrug resistance mechanism  of cancer 

cell. 

2. Prognostic factors 

Prognosis of patients with ALL depends on several interrelated factors including sex, age, 

race, leukocyte burden, immunophenotype, and chromosomal abnormalities, central 

nervous system (CNS) involvement and response to therapy 4-7. It is important to recognize 

prognostic factors depending on the efficacy of therapy; more effective regimens decreasing 

the importance of prognostic variables. And identification of prognostic factors has become 

an essential element in the design and analysis of current therapeutic protocols in ALL. The 

biologic explanation of the prognostic significance of these features is unclear, but is often 

assumed to be related to cellular drug resistance 8, 9.  

Age is an important but complex risk factor in ALL 10-12. Children aged 2 to 10 years have 

the best prognosis. Adults and infants younger than 12 months of age have the worst 

prognosis. The poor prognosis in infants is most likely related to a higher incidence of 

undifferentiated and hybrid leukemias 8, 13, 14. For adults, increasing age is associated with 
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lower remission rates and shorter remissions. To analyze results of any therapeutic trial, it is 

important to consider the age limits and distribution, since these factors have a major effect 

on outcome. 

The initial leukocyte burden is the most important conventional predictor of clinical 

outcome. There is a linear relationship between the initial leukocyte counts and outcome in 

children with ALL. Children with high leukocyte count tend to have a worse prognosis. 

Although there is no sharp dividing line, patients with an initial leukocyte count more than 

50000 cells/mm3 blood are universally recognized as having a particularly poor prognosis; 

however, the worst survival experience was exhibited by those with initial leukocyte from 

100000 – 200000 cells/mm3 blood. 

Immunophenotype is one of the prognostic factors in ALL. B-ALL cases had the worst 
prognosis; although this has improved, while patients with B cell precursor ALL have the 
most favourable prognosis. Among the patient with B cell precursor ALL, those with the 
early pre-B cell phenotype have a more favourable prognosis compared with patients with 
pre-B cell phenotype, who have a relatively poor prognosis 15, 16. T cell ALL is usually 
associated with male, sex, high leukocyte count, mediastinal mass, and CNS infiltration, and 
formerly had a poor outcome 17-21. 
Chromosomal abnormalities can be identified at least 80% to 90% acute childhood leukemia 
22. The karyotypes of leukemic cells not only have diagnostic and prognostic importance but 

may also indicate the sites of molecular lesions involved in leukemic transformation and 

proliferation. Childhood ALL can be classified by the number of chromosomes/leukemic 

cell. Although several ploidy groups have been recognized, only two have clinical relevance. 

Hyperdiploidy (>50 chromosomes/cell) is associated with a better prognosis than that 

indicated by more traditional measures 23. The biologic basis for the association between 

ploidy and prognosis is not yet clear but may stem from the tendency of hyperdiploid blasts 

to accumulate increased amounts of methotrexate and its polyglutamates as well as the 

marked propensity of these cells for apoptosis. Hypodiploidy (<45 chromosomes) is 

associated with an exceptionally poor prognosis. Phenotype-specific reciprocal 

translocations are the most common cytogenetic hallmarks of the childhood leukemias 24-28. 

The majority of rearrangements are well characterized both clinically and molecularly and 

are thought to have a causative role in leukemogenesis. Chromosomal rearrangements can 

contribute to leukemia by moving proto-oncogenes into the vicinity of normally active 

enhancer or promoter sequences. the prototype of this mechanism is t(8;14)(q24;q32.3) in B-

cell ALL, which brings the MYC proto-oncogene on chromosome 8 under the control of 

immunoglobulin-gene regulatory sequences on chromosome 14. Through a series of 

complex molecular changes, including coincident mutations, MYC is dysregulated, leading 

to inappropriately increased expression of the MYC product, a nuclear regulatory protein 

(transcription factor) that interacts with the other cellular protein (MAX) to influence the 

expression of other genes involved in cellular proliferation 29, 30. A similar mechanism 

operates in T-cell ALL.  

The BCR-ABL gene in ALL, which results from the classic t(9;22)(q34;q11) translocation that 

forms the Philadelphia chromosome, is perhaps the best known fusion gene in the 

childhood leukemias. In adult-type chronic myelogenous leukemia (CML) , the Philadelphia 

chromosome gives rise to a 210kd BCR-ABL product, whereas in most cases of childhood 

ALL with this rearrangement, the breakpoint within the BCR region is more centromeric, 
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yielding a smaller (185 kd) chimeric protein 31. Both proteins are tyrosine kinases, but the 

185 kd form has more potent transforming activity. Regardless of the type of BCR-ABL 

protein, blast cells with the Philadelphia chromosome show extraordinary resistance to 

chemotherapy.  

Approximately one fourth of patients with pre–B-cell ALL have a t(1;19)(q23;p13) 
translocation, which fuses the E2A gene on chromosome 19 with the PBX1 gene on 
chromosome 1.19. Paradoxically, the chimeric transcription factor induces both proliferation 
and apoptosis of lymphoid cells in transgenic mice 32, 33.  
Structural chromosomal abnormalities affecting the q23 region of chromosome 11 are 
common in the acute childhood leukemias. Approximately 5% all children with ALL and 
70% infants have 11q23 rearrangements, primarily the t(4;11)(q21;q23) translocation. This 
rearrangement, which creates the MLL-AF4 fusion gene, is associated with 
hyperleukocytosis and a poor prognosis. In fact, the extremely poor outcome of treatment in 
infants with ALL appears to be limited to those with the t(4;11) translocation or other 11q23 
abnormalities.  

3. Drug resistance 

As mentioned previously, the prognostic significance of these factors may partly be caused 

by cellular drug resistance. Cellular drug resistance is generally recognized as an important 

determinant of the clinical outcome after chemotherapy. Even if optimal tumor cell exposure 

is achieved, a number of cellular factors may be responsible for drug resistance. The 

mechanisms would be described as following: 

3.1 Drug transporters mediate resistance  

Classical resistance is associated with transmembrane protein-mediated efflux of cytotoxic 

compounds leading to a decreased cellular drug accumulation and toxicity. Most of them 

belong to ATP-binding cassette (ABC) transporters superfamily including P-glycoprotein, 

multidrug resistance-associated protein (MRP) family, breast cancer resistance protein 

(BCRP), lung resistance protein (LRP) et al.  

3.1.1 P-glycoprotein (P-gp)  

P-gp expression occurs in about 30% acute myeloid leukemia (AML) patients at diagnosis 
and >50% at relapse and correlates with a reduced complete remission rate and shorter 
duration of survival of the patients. P-gp expression is also observed in CML blast crisis, 
chronic lymphocytic leukemia (CLL), multiple myeloma, non-Hodgkin’s lymphoma and in 
ALL 34.P-gp is a member of the ABC (MDR/TAP) subfamily. In humans, P-gp is encoded by 
two MDR genes, including MDR1 and MDR3,which are located on the long arm of 
chromosome 7 (7q21) 35. Human P-gp is a 170 kDa polypeptide, consisting of 1280 amino 
acids. The protein appears to have arisen by a gene duplication, fusing two related half 
molecules, each consisting of one nucleotide-binding domain and one transmembrane 
domain. The multidrug-resistant phenotype is associated with MDR1. However, under 
certain conditions, human MDR3 may transport selected MDR1 substrates, albeit 
inefficiently 36-41.  
P-gp primary sequence displays 3 putative glycosylation sites in a region that appears to lie 
in the first extracellular loop of the protein; however, it seems unlikely that glycosylation 
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affects the function of P-gp because of tunicamycin treatment, which blocks N-linked 
glycosylation, does not alter drug sensitivity in human multidrug resistant cells. P-gp has been 
shown to be phosphorylated on several sites through several kinases, including protein kinase 
C and the cAMP-dependent protein kinase A. Phosphorylation of P-gp appears was also 
associated with drug resistance. Indeed, treatment with the phorbolester TPA, which 
stimulates P-gp phosphorylation, results in increasing drug resistance and decreasing drug 
accmnulation in some multidrug-resistant cell lines. By contrast, protein kinase inhibitors, such 
as staurosporine, decreased phosphorylation and impaired anticancer drug transport 42, 43.  
P-gp has a wide variety of substrates. All its substrates are large hydrophobic and 

amphipathic molecules, although they have no structural dissimilarity. These molecules are 

able to intercalate into the membrane and enter the cytosol by passive diffusion. It is no 

longer believed that P-gp is a classical pump, which binds substrates from the extracellular 

fluid and then transports these over the membrane. Hydrophobic compounds that are 

substrates for P-gp do not fully penetrate into the cytoplasm of cells that express P-gp 44. 

Interaction of substrate with P-gp has been shown to take place within the membrane[21]. 

This mechanism of transport is also postulated for a prokaryotic homologue of P-gp with a 

similar broad substrate specificity in Lactococcus lactis. However, the exact mechanism by 

which this protein removes hydrophobic drugs from the cell is still unclear. It may 

translocate drugs actively from the cytosolic inner lipid leaflet of the plasma membrane to 

the outer lipid leaflet. Then these drugs are able to leave the plasma membrane by diffusion.  

Besides anti-cancer drugs, P-gp also mediates the transport of various structurally unrelated 

compounds including toxic peptides, such as gramicidin D, valinomycin and N-acetyl-

leucyl-leu -cyl-norleucinal (ALLN), digoxin, opiates, fluorescent dyes. Endogenous 

compounds, such as some steroid hormones, have also been demonstrated to be substrates 

for P-gp. In addition, the pump may serve as an ATP channel and is involved in volume-

regulated chloride channel activity. A great number of studies have been conducted during 

the last few years to analyze the relation of P-gp expression and hematological 

malignancies, then to determine its clinical relevance. Various methods for determining P-

gp gene expression have been used, such as northern blot, dot blot, RNase protection assay, 

hybridation and RT-PCR. In addition, western blot, immunohistochemistry and flow 

cytometry (FCM) were also used to analyze P-gp protein level. Furthermore, P-gp activity 

has also been evaluated by FCM. 

Mutational analysis of P-gp has indicated that some point mutations may result in altering 
drug transport activity. Indeed a change Gly185Val led to reduce vinblastine transport, 
whereas colchicine transport was improved. However, two different groups showed that a 
mutation of the major phosphorylation sites within P-gp doesn't affect its transport function. 

3.1.2 MRP  

The human MRP1 gene is mapped to chromosome16p13.145-47. It encodes a membrane-bound 
glycoprotein consisting of 1531 amino acids. This protein has a similar topologic structure to 
that of P-gp. However, in addition to the two half transporters connected by a linker region L1 
as in P-gp, MRP1 protein contains an extra N-terminal segment, TMD 0, which connects TMD1 
with a L0 linker region. The L0 linker region is essential for drug transport, whereas TMD0 is 
not required for transport. Although MRP1 also requires two ATPs as the energy source to 
transport chemotherapeutic drugs, the mechanism in the cycle of transportation is somewhat 
different from that of P-gp. In P-gp, the functions of the two NBDs are “equal”, and the two 
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ATP-binding sites operate randomly but alternately. In MRP1, the function of NBD1 and 
NMD2 is nonequivalent. NBD1 has higher affinity than NBD2 for ATP. Therefore, when the 
substrate binds to TMDs of MRP1, the conformational change of MRP1 protein first induces 
ATP binding at NBD1. It then further alters the conformation of the protein and enhances ATP 
binding at NBD2. When both NBD1 and NBD2 are occupied by the two ATPs simultaneously, 
the bound substrate is transported out of the cell. After substrate extrusion, the ATP bound at 
NBD2 is hydrolyzed first. The release of ADP and inorganic phosphate from NBD2 partially 
brings the MRP1 protein back to its original conformation, and facilitates the dissociation of 
ATP bound at NBD1. Subsequent release of ADP and inorganic phosphate from NBD1 returns 
the MRP1 protein to its original conformation.  
MRP1 is expressed almost ubiquitously in many different organs and cell types. Unlike P-
gp, which is invariably located in the apical membranes of epithelial cells, MRP1 is located 
basolaterally and tends to pump drugs into the body, rather than excrete them into the bile, 
urine or gut. Cells overexpressing MRP1 protein are resistant to a variety of anticancer 
drugs, e.g. doxorubicin, epirubicin, vinblastine, vincristine, andetoposide. However, MRP1 
cannot transport the unmodified anticancer drugs without the presence of glutathione 
(GSH). This implies that MRP1 may cotransport the anticancer drugs with GSH, or GSH 
may bind to the MRP1 protein to enhance the transport of these hydrophobic anticancer 
drugs across biological membrane. 

3.1.3 BCRP  

The initial demonstration that BCRP transfection directly confers MDR supports evidence 
that BCRP might be able to function by homodimerization 48-50. The exogenous BCRP 
proteins migrated as 70 kDa bands in SDS–PAGE under reducing conditions, but as a 140 
kDa complex in the absence of reducing agents. The 140 kDa BCRP complex dissociated into 
70 kDa polypeptides with the addition of 2-mercaptoethanol. The 140 kDa BCRP complex 
was immunoprecipitated with anti-Myc antibody from lysates of cells co-transfected with 
Myc- and HA-tagged BCRP constructs. The 140 kDa complex reacted with anti-HA and anti-
BCRP antibodies. After the addition of reducing agents, a 70 kDa BCRP band was seen, 
reactive with both anti-HA and anti-Mycantibodies. Furthermore, a dominant-negative 
mutant of BCRP was found to inhibit BCRP function partially when cotransfected with 
BCRP. These results elegantly demonstrate that BCRP forms a homodimer bridged by 
disulfide bonds. A molecular mass shift from a 72 kDa band under denaturing conditions to 
a 180 kDa band after treatment with crosslinking agents was also noted using polyclonal 
antibodies directed against peptide epitopes of BCRP.  
The BCRP promoter is TATA-less, contains a CAAT box. Unlike ABCG1 promoter, the 
BCRP promoter does not contain a sterol response element, strengthening the argument that 
BCRP is not involved with lipid transport. The reporter analysis indicated that a 312 bp 
sequence directly upstream from the transcriptional start site conferred basal promoter 
activity, with positive and negative cis-regulatory elements identified in the region between 
1285 and 1362 relative to the transcriptional start site. Strong resistance to mitoxantrone 
characterizes most drug-selected cell lines that overexpress BCRP, even if the selecting agent 
is not mitoxantrone.  

3.1.4 LRP  

LRP also known as the major vault protein (MVP), is not an ABC transporter but it is 
frequently expressed at high levels in drug-resistant cell lines and tumor samples 51, 52. 
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LRP/MVP is the most abundant component of the vault complex. Vaults are 
ribonucleoprotein (RNP) particles that are present in the cytoplasm of most eukaryotic cells 
and might be involved in intracellular transport processes. However, the physiological role 
of vaults is poorly understood.Vaults might confer drug resistance by transporting drugs 
away from their intracellular targets and/or by the sequestration of drugs. Several studies 
showed that LRP/MVP expression was an independent adverse prognostic factor for 
response to chemotherapy. With regard to clinical drug resistance, LRP/MVP expression in 
AML, multiple myeloma and diffuse large B cell lymphoma was associated with poor 
response to chemotherapy. LRP/MVP is an indicator of poor response to chemotherapy 
with platin or alkylating agents.  

3.2 Resistance related to cell death mechanisms and apoptosis  

Many investigators have considered apoptosis as the essential response of cancer cells to 

chemotherapeutic agents. Many data supported the association of functional apoptotic 

pathways in cancer cells with chemotherapy sensitivity. The discovery of the bcl proteins 

family altered the threshold of recognition of cell damage as a cell death signal, which 

suggests novel mechanisms of MDR 46, 49, 53-56. The anti-apoptotic protein bcl-xL and bcl-2 

were strong associated with drug resistance. 

Bcl-2 gene, discovered by Tsujimoto and Croce, is widely expressed in human tumor. Bcl-2 

gene is translocated in many follicular B cell lymphomas from its normal 18q21 position to 

14q32 where its location adjacent to enhancers in the immunoglobulin H gene leads to high 

level expression. Alternative splicing yields two proteins, bcl-2a and bcl-2b, differing only at 

their C terminus. Bcl-2 inhibited cell death and altered the normal cell death versus cell 

division ratio, which may allow tumor cells to accumulate the mutations, then cause the 

cells to become invasive and metastatic. Most publications about bcl-2 showed that 

transfection of immature pre-B cells with bcl-2 expression vectors protected against cell 

death due to IL-3 deprivation, thus indicating a role in antagonizing apoptosis.Transfection 

and antisense experiments confirmed an important role for bcl-2 in resistance to apoptosis 

induced by chemotherapeutic drugs. It is clear that bcl-2 is just one component of a large 

and complex family of proteins which determine particular cells die in response to 

particular physiological or pharmacological environments (e.g. growth factor deprivation, 

drug exposure). Apotosis may be particularly important in determining organ shape and 

size during development.  

More recent research indicates a key role of bcl-XL in apoptosis regulation in follicular 

lymphoma. Transfection with bcl-XL cDNA has been shown to protect several cell types in 

vitro against apoptosis induced by a wide range of chemotherapeutic drugs. Transfection 

human bcl-XL cDNA into the murine IL-3-dependent prolymphocytic cell line FL5.12, then 

increased resistance to the anticancer drugs bleomycin, cisplatin, etoposide and vincristine.  

3.3 Telomerase involved in resistance  

Telomerase is responsible for the renewal of the chromosomal ends, the so-called telomeres 
57. By preventing them from shortening with each cell cycle, telomerase is able to inhibit 

cellular senescence and apoptosis. Telomerase activity, which is detectable in the majority of 

cancer cells, allows them to maintain their proliferative capacity. The thus obtained 

immortality of those cells again is a key to their malignancy. 
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3.4 DNA mismatch repair deficiency led to resistance  
DNA mismatch repair deficiency results in a high risk of malignant tumorigenesis 58-61. A 
defect in this system may cause accumulation of mutations in several proto-oncogenes or 
tumor-suppresser genes, which results in the transformation to cancer. DNA mismatch 
repair deficiency was thought to be an early event in multi-step carcinogenesis. It could be 
speculated that an abnormality in the DNA mismatch repair system increases the risk of 
multidrug resistance. 
DNA damage caused by cisplatin is recognized by DNA damage recognition proteins, such 
as high mobility group proteins (HMG1 and HMG2) and mismatch repair complexes 
(hMSH2 or hMutSα), which transducer DNA damage signals to various downstream 
effectors.Cell death or cell survival after DNA damage depends on the relative intensity of 
the signals generated and the crosstalk between the effectors involved. Among these 
effectors, the p53 tumor suppressor gene plays a central role in determining the final fate of 
the cell. DNA damage recognition proteins activate the mitogen-activated protein kinase 
signal transduction pathway, which activates the function of p53 and causes cell cycle arrest 
at the G2/M checkpoint for DNA repair 60, 62-65. If the DNA damage is too excessive to 
repair, apoptosis occurs through the bax and caspase system. In addition, DNA damage 
may also result in apoptosis through the p53-related gene, p73. The other mechanisms 
involved in the resistance include enhanced DNA repair capacity and increased 
antiapoptotic activity.  

3.5 Leukemia stem cell contribute to resistance  

Current investigations in the field of cancer multidrug resistance research intensively 

focus upon the “cancer stem cell (CSC) 66-68”. The CSC theory appears to be well 

established and now widely accepted. The CSC, similar to a normal stem cell, is capable of 

self-renewal and the production of differentiated progeny. In addition, the human CSC 

has a capacity to form secondary tumors. Such features of CSCs reflect the activity of 

cancer initiation, therapy-resistance, all of which are critical in cancer therapy. Stem cells 

are primarily characterized by the properties of unlimited self-renewal, which maintains 

and expands the undifferentiated cell pool over the lifetime of the host, and multi-lineage 

differentiation, which produces progeny of diverse mature phenotypes to generate and 

regenerate tissues. These stem cell attributes are tightly regulated in normal development, 

yet their alteration may lead to many human diseases ncluding cancer. In fact, because 

stem cells and some cancer cells share self-renewal and differentiation capacities, it was 

suggested that tumors were derived from mutated stem cells, “called cancer stem cells” 69-

72. Although this hypothesis was postulated in early reports, definite proof of their 

existence came from recent studies in leukemia, where among the complete tumor cell 

population only a small subset of cells could initiate, regenerate and maintain the 

leukemia after transplantation into immunocompromised mice. Using similar functional 

approaches, a variety of cancer stem cells have been identified in an increasing number of 

epithelial tumors, including breast, prostate, pancreatic, and head and neck carcinomas, 

all of which were distinguished by the expression of the cell-surface glycoprotein CD44. 

Another cell surface marker, the CD133 glycoprotein, defined the tumor-initiating cells of 

brain and colon carcinomas.The concept of cancer stem cells is not only changing our 

current understanding of cancer biology, but may also have profound consequences on 

cancer diagnostics and therapeutics.  
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Cancer stem cells have been identified in leukemias. Many researchers now suspect that all 

cancers are composed of a mixture of stem cells and proliferative cells. These cancer stem 

cells make up as few as 1% of the total tumor cells, making them difficult to detect and 

study. Therefore, the existence of cancer stem cells provides a tumor reservoir that is the 

source of disease recurrence and metastasis. ABCB1 and ABCG2 genes are expressed in 

most tumor stem cells 41, 73. Thus, the major barrier to therapy is the quiescent tumor stem 

cell with constitutive MDR. In fact, dose-limiting toxicities of many antineoplastic agents 

occur precisely at drug concentrations that damage normal tissue stem cells. If the proposed 

relationships between normal and neoplastic stem cells prove correct, the inescapable 

conclusion is that systemic cytotoxic therapies are doomed to failure because regimens that 

spare resting normal stem cells will also likely spare resting tumor stem cells. Similarly, 

inhibition of drug transporters may also cause toxicity of the patient’s normal stem cells, 

particularly those of the bone marrow. Successful therapy awaits the discernment of 

biological and immunologic differences between the tumor and normal stem cells so that 

approaches can be developed to eliminate thetumor stem cells without excessive toxicity to 

normal stem cells, which can be measured in vitro.  

General decreased transport of drug into the cell, defective intracellular metabolism of the 

drug to its active compound, increased drug inactivation, enhanced cellular repair 

mechanisms, altered target molecules, altered cell death regulators could increased MDR. 

Because many drugs are used in the treatment of leukemia and many factors may be 

responsible for resistance to each drug, it is unlikely that one single mechanism is 

responsible for clinical resistance to the complete treatment. And the resistant mechanism to 

some drugs were listed as following (Table 1). 

4. Drug resistance assay 

There are many different assays to asses the chemosensitivity of leukemia cells. Clonogenic 

assays have long been considered to be the golden standard for chemosensitivity testing in-

vitro 74-76. However, there were a number of drawbacks. Firstly, the number of patient 

samples of which the leukemic cells will be clonogenic is limited, especially in ALL samples 

in vitro. Secondly, the drug effect is measured on a small proportion of cells, i.e. those cells 

that can be induced to proliferation in vitro, and not on cells that are non dividing or resting. 

Practical disadvantages are that these assays are very time consuming and laborious. 

Therefore, these drawbacks make clonogenic assays less suitable for its use in ALL patients. 

Recently, non clonogenic assays, an increasing number of authors has been studying cellular 
drug resistance in childhood leukemia. Examples of these assays are the colorimetric  
tetrazolium based assays such as the MTT, INT 77-79, DiSC 80, and the fluorometric 
microculture cytotoxicity assay (FMCA)81. The DiSC assay relies on the intactness of the cell 
membrane in living cells as opposed to dead cells after several days of incubation with 
drugs. Relatively low numbers of cells are needed to test a range of drugs in different 
concentrations. A main advantage of this assay is that it can discriminate between malignant 
and non-malignant cells, in contrast to the MTT assay and FMCA. However, the DiSC assay 
has the disadvantages of being subjective, laborious, and time consuming, which makes it 
less suited for large-scale patient studies. 
Since drug resistance has a major impact on the success of chemotherapy, it is of clinical 
importance to identify possibilities to modulate or circumvent each type of drug resistance, 
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which contribute to decreasing the unnecessary toxicity of drugs and increasing the efficacy 
of treatment by a more rational design of effective chemotherapies. 
 

Type of Drug Possible Mechanisms 

Glucocorticoids (GC) 

Affinity  of receptor 
Function of receptor 

Nuclear translocation of the GCR complex 
DNA binding of the GC R  complex 

GCR polymorphism (?) 
L-Asparaginase Asparagine synthetase 

Methotrexate ( MTX ) 

Membrane transport 
MTX polyglutamylation and folylpolyglutamate 

synthetase (FPGS) / folylpolyglutamate hydrolase 
Active efflux 

Intracellular normal folate pools 
Dihydrofolate reductase, Thymidylate synthase (TS) 
Methylenetetrahydrofolate reductase( MTHFR ) (?) 

Thiopurines 

Nucleoside concentration, ecto-5’ nucleotidase 
Cyto-5’ nucleotidase and phosphatases 

Phosphoribosyl pyyrophosphate (PRPP) and PRPP 
Amidotransferase 

Hypoxanthine-guanine phosphoribosyl transferase 
Thiopurine methyltransferase (TPMT) 

Cytosine arabinoside (ara-C) 

Ara CTP formation 
Ara C transport 

Ara-C and Ara-CTP deamination 
DNA incorporation 

Anthracylines, Vinca-alkaloids 
and Epipodophyllotoxins 

MDR-1/P-glycoprotein 
Multidrug resistance related protein ( MRP ) 

Lung resistance protein (LRP) 
Topoisomerase II 

BCRP (breast cancer resistance protein ) 
Glutathione 

Alkylating agents 
Glutathione and glutathione S-transferases 

DNA repair 

Table 1. Drug resistance mechanisms in ALL 
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