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1. Introduction 

Pyrochemical processes appeared today gives an interesting option for future nuclear fuel 

cycles in several aspects. These latter will have to provide high recovery yields for 

actinides elements, (taking into account the sustainability requirement) to be safe, 

resistant versus proliferation risks, and cost-effective. This lead to a rather prolific 

research today, with many innovative concepts for future reactors, future fuels, and 

obviously future processes. Pyrochemical processes seems in this context to offer 

significant-established or presumed-advantages: (i) low radiolytical effects versus solvent 

processes (which increases the ability to process high burn-up, short-time cooled hot 

fuels); (ii) ability to dissolve new ceramic or dense fuel compounds; (iii) presumed 

compactness of technology (low number of transformation steps, small size of unit 

operations) [Uozumi, 2004; Willit, 2005]. 

Partitioning and transmutation (P&T) concept is nowadays considered as one of the 

strategies to reduce the long-term radiotoxicity of the nuclear wastes [Kinoshita et al., 2000]. 

To achieve this, the efficient recovery and multi-recycling of actinides (An), especially TRU 

elements, in advanced dedicated reactors is essential. Fuels proposed to transmute the 

actinides into short-lived or even stable radionuclides will contain significant amounts of Pu 

and minor actinides (Np, Am, Cm), possibly dissolved in inert matrices (U free), and will 

reach high burn-ups. Pyrochemical separation techniques offer some potential advantages 

compared to the hydrometallurgical processes to separate actinides from fission products 

(FP) contained in the irradiated fuel. The high radiation stability of the salt or metallic 

solvents used, resulting in shorter fuel cooling times stands out. 

The aim of the separation techniques which are currently being investigated, both 

hydrometallurgical and pyrometallurgical ones, is to optimize the recovery efficiency of 

minor actinides minimizing at the same time the fission products (FP) content in the final 

product. Special attention is devoted to rare earth elements (REE) mainly due to its 

neutronic poison effect and the high content into the spend fuel. In addition, REE have 

similar chemical properties [Bermejo et al., 2006, 2007, 2008a, 2008b; Castrillejo et al., 2005a, 

2005b, 2005c, 2009; De Cordoba et al., 2004, 2008; Kuznetsov et al., 2006; Novoselova & 
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Smolenski, 2010; Smolenski et al., 2008a, 2008b, 2009] to those of actinides [Fusselman et al., 

1999; Morss, 2008; Osipenko et al., 2010, 2011; Roy et al., 1996; Sakamura et al., 1998; Serp et 

al., 2004, 2005a, 2005b, 2006; Serrano & Taxil, 1999; Shirai et al., 2000] hence separation 

between these groups of elements is very difficult. For this reason, a good knowledge of the 

basic properties of REE in the proposed separation media is very important. 

The goal of these investigations is to determine the electrochemical and thermodynamic 

properties of some fission products (Tm and Yb), their mass transfer, and behavior in 

different fused solvents using transient electrochemical techniques, and potentiometric 

method (emf). 

2. Experimental 

2.1 Preparation of starting materials 
The solvents LiCl (Aldrich, 99.9%), NaCl (Aldrich, 99.9%), KCl (Aldrich, 99.9%), and 

CsCl(Aldrich, 99.9%) were purified under vacuum in the temperatures range 293-773 K. 

Then the reagents were fused under dry argon atmosphere. Afterwards these reagents were 

purified by the operation of the direct crystallization [Shishkin & Mityaev, 1982]. The 

calculated amounts of prepared solvents were melted in the cell before any experiment 

[Korshunov et al., 1979]. 

Dry lanthanide trichlorides (LnCl3) were obtained by the way of well-known method 

[Revzin, 1967] in two steps: 

• First, the crystalline hydrate (LnCl3⋅nH2O, where n is 4.5-5.0) was prepared by direct 

interaction of Ln2O3 (Tm2O3 OST 46-205-81 TuO-1 and Yb2O3 IbO-L TU 48-4-524-90) 

with HCl acid solution. 

• Second, dry LnCl3 was prepared by using the operation of carbochlorination of 

crystalline hydrate during heating in CCl4 stream vapor in horizontal furnace. 

The obtained lanthanide chlorides (LnCl3) were kept into glass ampoules under atmosphere 

of dry argon in inert glove box. Ln3+ ions were prepared by direct addition of anhydrous 

LnCl3 to the fused electrolytic bath. 

2.2 Transient electrochemical technique 
The experiments were carried out under inert argon atmosphere using a standard 

electrochemical quartz sealed cell using a three electrodes setup. Different transient 

electrochemical techniques were used such as linear sweep, cyclic, square wave and semi-

integral voltammetry, as well as potentiometry at zero current. The electrochemical 

measurements were carried out using an Autolab PGSTAT30 potentiostat-galvanostat (Eco-

Chimie) with specific GPES electrochemical software (version 4.9). 

The inert working electrode was prepared using a 1mm metallic W wire (Goodfellow, 

99.9%). It was immersed into the molten bath between 3 - 10 mm. The active surface area 

was determined after each experiment by measuring the immersion depth of the electrode. 

The counter electrode consisted of a 3 mm vitreous carbon rod (SU - 2000). The Cl–/Cl2 

electrode is the most convenient reference electrode because it can be used for the direct 

thermodynamic calculations. It standard construction is the following. The quartz tube with 

porous membrane in the bottom and molten solvent in it has the graphite tube for chlorine 

gas introduction into the system. The chlorine gas is bubbling through the melt during the 

experiment [Smirnov, 1973]. 
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The lanthanide concentrations were determined by taking samples from the melt which 

were dissolved in nitric acid solutions and then analyzed by ICP-MS. 

2.3 Direct potentiometric method 
The potentiometric study was carried out using an Autolab PGSTAT30 potentiostat-galvanostat 

(Eco-Chimie) with specific GPES electrochemical software (version 4.9). The electrochemical 

techniques were used such as potentiometry (zero current) and coulometry methods. 

The electrochemical set-up for potentiometric investigations is shown in Fig. 1. The inert 

working electrode was prepared using a 5 mm vitreous carbon rod (SU - 2000) which was 

located in BeO crucible with the investigated melt. It was immersed into the molten bath 

between 3 - 5 mm. During the experiments Ln3+ ions were electrochemically reduced to Ln2+ 

ions up to ratio Ln3+/Ln2+ equals one. The counter electrode consisted of a 3 mm vitreous 

carbon rod (SU - 2000) which was placed in quartz tube with porous membrane in the 

bottom with solvent melt and located in vitreous carbon crucible (SU - 2000) with pure 

solvent without lanthanide chlorides. The Cl–/Cl2 electrode was used as reference electrode. 
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9- Current contact; 10- Vitreous carbon working electrode; 11- Quartz test-tube with cover; 12- Beryllium 

oxide crucible; 13- Vitreous carbon crucible; 14- Investigated salt system; 15- Asbestos diaphragm. 

Fig. 1. Experimental set-up for potentiometric study 

The total lanthanide concentrations were determined by taking samples from the melt 

which were dissolved in nitric acid solutions and then analysed by ICP-MS. The 

concentration of the reduced form of lanthanides was determined by volumetric method. 
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3. Results and discussion 

3.1 Transient electrochemical technique 

3.1.1 Voltammetric studies on inert electrodes 

Cyclic voltammetry was carried out on inert tungsten electrodes for all melts tested: eutectic 
LiCl-KCl, equimolar NaCl-KCl, eutectic NaCl-KCl-CsCl and individual CsCl, at several 
temperatures (723-1073 K). Fig. 2 (red solid line) shows the electrochemical window 
obtained in LiCl-KCl at 723 K. The cathodic and anodic limits of the electrochemical 
window correspond to the reduction of the solvent alkali metal ions and to the oxidation of 
chloride ions into chlorine gas, respectively. 
Fig. 2 also plots the cyclic voltammogram of a LiCl-KCl-YbCl3 solution on W at 723K (blue 
solid line). It shows a single cathodic peak at a potential of -1.762V vs. Cl-/Cl2 and its 
corresponding anodic peak at -1.566V vs. the Cl-/Cl2. Similar behaviour for the reduction of 
Yb(III) ions has been observed in the fused equimolar NaCl-KCl mixture (Fig. 3), NaCl-KCl- 
CsCl eutectic (Fig. 4) and CsCl (Fig. 5). These figures show the linear sweep and the cyclic 
voltammograms obtained in the above systems with YbCl3 at several scan rates, 
respectively. 
The square wave voltammetry technique was used to determine the number of electrons 
exchanged in the reduction of Yb(III) ions in different molten compositions. Fig. 6 shows the 
bell-shaped symmetric cathodic wave obtained in the LiCl-KCl-YbCl3 melt at 723 K. The 
number of electrons exchanged is determined by measuring the width at half height of the 
reduction peak, W1/2 (V), registered at different frequencies (6– 80 Hz). W1/2 is given by the 
following equation, valid for reversible systems: 

 
1/2 3.52

RT
W

nF
=  (1) 

 

 

Fig. 2. Cyclic voltammograms of pure LiCl-KCl eutectic melt (red solid line). Cyclic 
voltammograms of LiCl-KCl-YbCl3 (9.41·10-2 mol/kg) melt (blue solid line) corresponding to 
the reduction reaction  ( ) ( )Yb III e Yb II−+ ⇔  at 723 K. Working electrode: W (surface area = 
0.25 cm2). Scan rate = 0.1 V s-1 
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Fig. 3. Linear sweep voltammograms of fused NaCl-KCl-YbCl3 (3.79·10-2 mol/kg) for the 
reduction of Yb(III) to Yb(II) ions at different sweep potential rates at 973 K. Working 
electrode: W (surface area = 0.27 cm2) 
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Fig. 4. Linear sweep voltammograms of fused NaCl-KCl-CsCl-YbCl3 salt at different sweep 
rates at 873 K. [Yb(III)] = 7.45·10-2 mol kg-1. Working electrode: W (S = 0.36 cm2) 

At low frequencies a linear relationship between the cathodic peak current and the square 
root of the frequency was found. Under these conditions the system can be considered as 
reversible and equation 1 can be applied [Bard & Faulkner, 1980]. The number of electrons 
exchanged was close to 1. The same results were obtained in NaCl-KCl, NaCl-KCl-CsCl and 
CsCl media. 
Potentiostatic electrolysis at potentials of the cathodic peaks for all systems studied did not 
show the formation of the solid phase of tungsten surface after polarization. There is no 
plateau on the dependences potential – time. Also the working electrode did not undergo 
any visual change. X-ray analysis of the surface of the working electrodes after experiments 
also show an absence of formation of solid phase. 

www.intechopen.com



 
Mass Transfer - Advanced Aspects 

 

268 

  

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1

E/V

I/
A

0.06 V/s

0.1 V/s

0.2 V/s

0.3 V/s

0.4 V/s

0.5 V/s

 

Fig. 5. Cyclic voltammograms of a CsCl-YbCl3 (3.70·10-2 mol/kg) solution for the reaction 
( ) ( )Yb III e Yb II−+ ⇔  at different potential sweep rates at 973 K. Working electrode: W 

(surface area = 0.31 cm2) 
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Fig. 6. Square wave voltammogram of LiCl-KCl-YbCl3 (9.41·10-2 mol/kg) at 12 Hz at 723 K. 
Working electrode: W (surface area = 0.25 cm2) 

The results obtained allow concluding that the reduction of Yb(III) ions takes place in a 
single step with the exchange of one electron and the formation of a soluble product, 
according to the following reaction: 

 Yb(III) + ē ⇔ Yb(II)                  (2) 

The reaction mechanism of the soluble-soluble Yb(III)/Yb(II) redox system was investigated 
by analyzing the voltammetric curves obtained at several scan rates. It shows that the 
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cathodic and anodic peak potential (Ep) is constant and independent of the potential sweep 
rate (Fig. 7). On the other hand the cathodic and anodic peak current (Ip) is directly 
proportional to the square root of the polarization rate (υ) (Fig. 8). A linear relationship 
between the cathodic peak current density and the concentration of YbCl3 ions in the melt 
was observed (Fig. 9). From these results and according to the theory of linear sweep 
voltammetry technique [Bard & Faulkner, 1980] it is concluded that the redox system 
Yb(III)/Yb(II) is a reversible and controlled by the rate of the mass transfer. 
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Fig. 7. Variation of the cathodic and anodic peak potential as a function of the sweep rate in 
fused LiCl-KCl-YbCl3 (9.41·10-2 mol/kg) at 723K. Working electrode: W (surface area = 0.25 
cm2) 
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Fig. 8. Variation of the cathodic and anodic peak current as a function of the square root of 
the potential scan rate in fused LiCl-KCl-YbCl3 (9.41·10-2 mol/kg) at 723K. Working 
electrode: W (surface area = 0.25 cm2) 
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Fig. 9. Variation of the cathodic peak current as a function of the concentration of YbCl3 in 
LiCl-KCl-YbCl3 at 723 K. Working electrode: W (S = 0.25 cm2). Scan rate = 0.1 V s-1 

From the transient electrochemical techniques applied we concluded that the potential of the 

system [Yb(II)/Yb(0)] can not be observed in the molten alkali chlorides media because it is 
more negative than the potential of the solvent Me(I)/Me(0), being Me: Li, Na, K and Cs, 
(Fig. 1). 

3.1.2 Diffusion coefficient of Yb (III) ions 
The diffusion coefficient of Yb(III) ions in molten chloride media was determined using the 

cyclic voltammetry technique and applying the Randles-Sevčik equation, valid for reversible 
soluble-soluble system [Bard & Faulkner, 1980]: 

 
1 2

3 2
00.446( )p

D
I nF C S

RT

ν⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3) 

where S is the electrode surface area (in cm2), C0 is the solute concentration (in mol cm-3), D 
is the diffusion coefficient (in cm2 s-1), F is the Faraday constant (in 96500 C mol-1), R is the 
ideal gas constant (in J K-1 mol-1), n is the number of exchanged electrons, v is the potential 

sweep rate (in V s-1) and T is the absolute temperature (in K). 
The values obtained for the different molten chlorides tested at several temperatures are 
quoted in Table 1. 
The diffusion coefficient values have been used to calculate the activation energy for the 

diffusion process. The influence of the temperature on the diffusion coefficient obeys the 
Arrhenius’s law through the following equation: 

 exp A
o

E
D D

RT

⎛ ⎞= − ± Δ⎜ ⎟
⎝ ⎠

  (4) 

where EA is the activation energy for the diffusion process (in kJ mol-1), Do is the pre-

exponential term (in cm2 s-1) and Δ is the experimental error. 
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From this expression, the value of the activation energy for the Yb(III) ions diffusion process 
was calculated in the different melts tested (Table 1). 
The diffusion coefficient of ytterbium (III) ions becomes smaller with the increase of the 
radius of the cation of alkali metal in the line from Li to Cs (Table 1). Such behaviour takes 
place due to an increasing on the strength of complex ions and the decrease in contribution 
of D to the “hopping” mechanism. The increase of temperature leads to the increase of the 
diffusion coefficients in all the solvents. 
 

Solvent T/K D·105/cm2·s-1 -EA/kJ·mol-1 

LiCl-KCl 723 
848 
973 

1.0 ± 0.1 
2.7 ± 0.1 
5.4 ± 0.1 

38.3 

NaCl-KCl 973 
1023 
1073 

2.8 ± 0.2 
3.2 ± 0.2 
4.1 ± 0.2 

45.4 

NaCl-KCl-CsCl 873 
973 
1073 

0.66± 0.1 
1.38± 0.1 
2.45± 0.1 

51.3 

CsCl 973 
1023 
1073 

0.9 ± 0.1 
1.2 ± 0.1 
1.7 ± 0.1 

54.4 

Table 1. Diffusion coefficient of Yb(III) ions in molten alkali metal chlorides at several 
temperatures. Activation energy for the ytterbium ions diffusion process 

The variation of the logarithm of the diffusion coefficient as a function of the reverse radius 
of the solvent cation (r) and reverse temperatures is given by the following expression: 

 ( )

158
0.0071

3596
log 2.38 0.02Yb III

T
D

T r

⎛ ⎞+⎜ ⎟
⎝ ⎠= − − + ±  (5) 

The average value of the radius of molten mixtures ( )R
r +  was calculated by using the 

following equation [Lebedev, 1993]: 

 
1

N

i iR
i

r c r+

=
=∑  (6) 

where ic  is the mole fraction of i cations; ir  is the radius of i cations in molten mixture, 
consist of N different alkali chlorides, nm. 

3.1.3 Apparent standard potentials of the redox couple Yb(III)/Yb(II) 
The apparent standard potential of the Yb(III)/Yb(II) system was determined from the cyclic 
voltammograms registered in YbCl3 solutions in the different alkali metal chlorides tested at 
several temperatures. 
According to the theory of linear sweep voltammetry the following expressions, including 
the anodic and cathodic peak potentials and the half-wave potential, can be applied in the 
case of a soluble-soluble reversible system [Bard & Faulkner, 1980]: 
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1 2 1.11C

P

RT
E E

F
= −  (6) 

 
1/2 1.11A

P

RT
E E

F
= +  (7) 

      
( )

1 2
2

C A
P PE E

E
+

=  (8) 

where the half-wave potential is given by: 

 

1 2

( ) ( )0
1 2 ( ) ( )

( ) ( )

ln ln
Yb II Yb III

Yb III Yb II
Yb III Yb II

DRT RT
E E

F D F

γ
γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (9) 

It is known that for concentrations of electroactive species lower than 3 to 5·10-2 in mole 
fraction scale, their activity coefficient is almost constant. In these conditions, it is more 
convenient using the apparent standard redox potential concept ( *

( ) ( )Yb III Yb IIE ) expressed as 
follows [Smirnov, 1973]: 

 ( )* 0
( ) ( ) ( ) ( )

( )

ln
Vb III

Yb III Yb II Yb III Yb II
Yb II

RT
E E

F

γ
γ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

 (10) 

The formal standard redox potentials of *
( ) ( )Yb III Yb IIE  were calculated from the following 

equations: 

 
1/2

*
( )/ ( ) 1.11 lnC ox

Yb III Yb II P
red

DRT RT
E E

F F D

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
 (11) 

 
1/2

*
( )/ ( ) 1.11 lnA ox

Yb III Yb II P
red

DRT RT
E E

F F D

⎛ ⎞
= − + ⎜ ⎟

⎝ ⎠
 (12) 

 
( ) 1/2

*
( )/ ( ) ln

2

C A
P P ox

Yb III Yb II
red

E E DRT
E

F D

+ ⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (13) 

From the peak potential values measured in the cyclic voltammograms and the diffusion 
coefficients of Yb(III) and Yb(II) the following empirical equation for the apparent standard 
redox potentials versus the Cl–/Cl2 reference electrode in different  solvents were obtained. 

 * 4
( ) ( ) (1.915 0.005) (3.5 0.2) 10 ,Yb III Yb IIE T V−= − ± + ± ×    [723-973 K]     LiCl-KCl (14) 

 * 4
( ) ( ) (2.031 0.005) (3.7 0.2) 10 ,Yb III Yb IIE T V−= − ± + ± ×    [973-1075 K]     NaCl-KCl (15) 

* 4
( ) ( ) (2.192 0.016) (4.3 0.2) 10 ,Yb III Yb IIE T V−= − ± + ± ×    [723-1073 K]     NaCl-KCl-CsCl (16) 

 * 4
( ) ( ) (2.262 0.004) (4.2 0.2) 10 ,Yb III Yb IIE T V−= − ± + ± ×    [973-1079 K]     CsCl (17) 
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The variation of the apparent standard potential of the redox couple Yb(III)/Yb(II) as a 
function of the reverse radius of the solvent cation (r) and the temperature was calculated. 
The relation obtained is: 

 
5

* 4
( )/ ( )

(0.104 4 10 )
3.031 8 10Yb III Yb II

T
E T

r

−
− − ⋅

= − + ⋅ +  (18) 

Normally, lanthanide chlorides dissolved in alkali chloride melts are solvated by the 
chloride ions forming different complex ions like [ ]36LnCl

−
 and [ ]24LnCl

−
 [Barbanel, 1985; 

Papatheodorou & Kleppa, 1974; Yamana et al., 2003]. In the case of ytterbium,  [ ]36YbCl
−

 
complex ions are present in the melts [Novoselova et al., 2004]. Their relative stability 
increases with the increase of the solvent cation radius, and the apparent standard redox 
potential shifts to more negative values. Our results are in a good agreement with the 
literature ones [Smirnov, 1973]. 

3.1.4 Thermodynamics properties 
Using the values of the apparent standard redox potentials the formal free Gibbs energy 
changes of the redox reaction 

 YbCl2(l) + ½ Cl2(g) ⇔ YbCl3(l) (19) 

was calculated according to following expression: 

 *
( ) ( )Yb III Yb IIG nFE∗Δ = −  (20) 

Its temperature dependence allows calculating the enthalpy and entropy of the YbCl3 
formation by means of the relation [Bard & Faulkner, 1980]: 

 *G H T S∗ ∗Δ = Δ − Δ  (21) 

The apparent standard Gibbs energy of formation of YbCl3 in the different solvents tested 
can be expressed as: 

 
3

* 184.80 0.033 2.46YbClG TΔ = − + ⋅ ± kJ/mol    [723-973 K]    LiCl-KCl (22) 

 
3

* 195.96 0.036 2.46YbClG TΔ = − + ⋅ ± kJ/mol    [973-1075 K]    NaCl-KCl (23) 

 
3

* 211.52 0.041 2.43YbClG TΔ = − + ⋅ ± kJ/mol    [723-1073 K]    NaCl-KCl-CsCl (24) 

 
3

* 218.25 0.041 2.46YbClG TΔ = − + ⋅ ± kJ/mol    [973-1079 K]    CsCl (25) 

The changes of the thermodynamic parameters of the redox reaction (19) versus the radius 
of the solvent cation show the increasing in strength of the Yb-Cl bond in the complex ions 

[ ] 3
6YbCl

−
 in the line from LiCl to CsCl. 

3.1.5 Voltammetric studies on active electrodes 
Linear sweep voltammograms for the reduction of Yb(III) solution at inert tungsten (1) and 
active aluminum (2) electrodes at 873 K are presented in Fig. 10. The voltammogram on 
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aluminum working electrode show the existence of two cathodic peaks at the potentials 
approximately –1.92 V and –2.92 V vs. Cl–/Cl2 instead of one on tungsten electrode. 
Potentiostatic electrolysis at potential –1.92 V did not show the formation of solid phase on 
tungsten and aluminum surfaces after polarization. So we can suppose passing the reaction 
(2) at this potential on inert and active electrodes. 
 

 

Fig.10. Linear sweep voltammograms of fused NaCl-KCl-CsCl-YbCl3 salt on inert W 
electrode (1) and active Al electrode (2) at 873 K. [Yb(III)] = 8.26·10-2 mol kg-1. Working 
electrode: W (S = 0.23 cm2); Al (S = 0.47 cm2) 

 
 

 

Fig. 11. Phase diagram of Yb-Al system 
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Fig. 12. The dependence of potential – time, obtained after short polarization of Al electrode 
in NaCl-KCl-CsCl-YbCl3 melt at 873 K. [Yb(III)] = 3.17·10-2 mol kg-1. Edep. = –3.4 V; tdep. = 9 s 

Potentiostatic electrolysis at the potential –2.92 V shows the formation of solid cathodic 
product on a surface of Al electrode. Phase diagram of the system Al-Yb, Fig. 11, show the 
formation of two intermetallic compounds Al3Yb and Al2Yb. 
The dependence potential – time, obtained after shot polarization of aluminum working 
electrode, show the existence of two waves at potentials average –2.88 V and –3.04 V vs. Cl–

/Cl2, Fig. 12. It can be combined with the formation of two intermetallic compounds Al3Yb 
and Al2Yb. The X-ray analysis of the deposits, obtained after potentiostatic electrolysis at the 
potential –2.88 V show the existence of Al3Yb alloy on the surface of aluminum electrode 
and at potential –3.04 V show the existence of the mixture of Al3Yb and Al2Yb alloys. 
Analyzing the results of investigations it can be concluded that the mechanism of the 

reduction of Yb(III) ions in fused NaCl-KCl-CsCl eutectic on active electrode occurs in two 

steps with the formation of Al3Yb and Al2Yb alloys: 
 

 Yb(III) + ē = Yb(II) (26) 

 Yb(II) + nAl + 2 ē = AlnYb, (27) 
 

where n is equal 2, 3. 

Potentiostatic electrolysis allow to deposit Al3Yb or the mixture of Al2Tm and Al3Tm alloys 

as a thin films on the aluminum surface. 

3.2 Electromotive force method 
3.2.1 Apparent standard potentials of the redox couple Ln(III)/Ln(II) 
The typical dependences of the redox potential of the couple Yb3+/Yb2+ with different ratio 

Yb(III)/Yb(II) versus the duration at the temperature 818 K in NaCl-KCl-CsCl-YbCl3 melt 

are presented in Fig. 13. 

The same type of the pictures was obtained for Tm3+/Tm2+ and Yb3+/Yb2+ systems in all 
investigations solvents. The equilibrium potential were fixed after 30-90 minutes after 
finishing of the electrolysis and depends from the conditions of the experiment. If the value 
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of potential is constant during 30-40 minutes within the limits of ± 0.001 V then it is possible 
to say that the investigation system is in equilibrium conditions. 
The value of the apparent redox potential is determined by: 

 3 2 3 2

3
*

2

[ ]
ln

[ ]Ln Ln Ln Ln

RT Ln
E E

nF Ln
+ + + +

+

+

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
            (28) 

where 3 2Ln Ln
E + +  is the equilibrium potential of the system, V; 3 2

*
Ln Ln

E + +  is the apparent 

standard redox potential of the system, V; n is the number of exchange electrons; [Ln3+] and 

[Ln2+] are the concentrations of lanthanide ions in mole fraction. 
Variation of the equilibrium potential of the couple Ln3+/Ln2+ as a function of the napierian 
logarithm  ratio of concentrations [Ln3+] and [Ln2+] in fused LnCl3 solutions on vitreous 
carbon indicated electrode  at 818 K  (NaCl-KCl-CsCl eutectic) and  at 973 K  (CsCl) is shown 
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Fig. 13. The typical dependences of the redox potential of the couple Yb3+/Yb2+ versus the 
duration in NaCl-KCl-CsCl-YbCl3 melt. Temperature – 818 K. Initial concentration of  
[Yb3+] = 3.96 mol%. Working electrode – GC. 1 – ln[Yb3+]/[Yb2+] = 1.96; 2 – ln[Yb3+]/[Yb2+] = 
1.58; 3 – ln[Yb3+]/[Yb2+] = 0.54; 4 – ln[Yb3+]/[Yb2+] = 0 

In Fig. 14. Linear dependences of 3 2/Ln Ln
E + +  vs. 3 2ln([ ] [ ])Ln Ln+ +  obeys the Nernst’s law by 

the following equations using Software Origin Pro version 7.5: 

 3 2
3 2

/
(2.827 0.005) (0.083 0.005)ln([ ] [ ]) 0.007 /

Tm Tm
E Tm Tm V+ +

+ += − ± + ± ±   CsCl (29) 

3 2
3 2

/
(2.906 0.001) (0.070 0.001)ln([Tm ] [Tm ]) 0.002 / V

Tm Tm
E + +

+ += − ± + ± ±   (Na-K-Cs)Cl(30) 

 3 2
3 2

/
(1.809 0.001) (0.086 0.001)ln([ ] [ ]) 0.002 /

Yb Yb
E Yb Yb V+ +

+ += − ± + ± ±    CsCl (31) 

3 2
3 2

/
(1.805 0.005) (0.071 0.004)ln([Yb ] [Yb ]) 0.006 / V

Yb Yb
E + +

+ += − ± + ± ±   (Na-K-Cs)Cl (32) 
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Fig. 14. Variation of the equilibrium potential of the couple Ln3+/Ln2+ as a function of the 
napierian logarithm ratio of concentrations [Ln3+] and [Ln2+] in fused NaCl-KCl-CsCl 
eutectic (1 -  Yb; 2 – Tm) at 818 K and in fused CsCl (3 – Yb; 4 – Tm)  at 973 K on vitreous 
carbon indicated electrode. [Yb3+] = 3.96 mol%. [Tm3+] = 4.28 mol% 

The number of exchange electrons (n) taking part in the process of electrochemical reduction 

of rare-earth trichlorides was determined from the slopes of the straight lines. From 

equations (29-32) the number of exchange electrons for the reaction (33): 

 3 2Ln Lne+ ++ =  (33) 

was 0.99 ± 0.01 for Tm and 0.99 ± 0.02 for Yb. 

The chemical analysis of the solidified thulium or ytterbium chloride melts performed after 

experiments confirmed the results of the electrochemical measurements. The difference in 

concentrations of LnCl2 determined by coulometry (i.e., calculated from the amount of 

electric charge passed through the melt for the reduction of Ln3+ ions) and analytically did 

not exceed 2.5 %. 

The temperature dependences of apparent standard redox potentials of Ln3+/Ln2+ systems 

on vitreous carbon indicated electrode were linear in the whole temperature range studied, 

Fig. 15. The experiment data were fitted to the following equations using Software Origin 

Pro version 7.5: 

3 2
* 5(3.742 0.006) (105.0 0.6) 10 0.001 /
Tm Tm

E T V+ +
−= − ± + ± ⋅ ±   [823-973 K]  (Na-K-Cs)Cl (34) 

3 2
* 5(2.580 0.013) (80.6 1.5) 10 0.003 /
Yb Yb

E T V+ +
−= − ± + ± ⋅ ±   [823-973 K]  (Na-K-Cs)Cl (35) 

 3 2
* 5(4.029 0.03) (124.0 2.7) 10 0.005 /
Tm Tm

E T V+ +
−= − ± + ± ⋅ ±   [973-1123 K]  CsCl (36) 

 3 2
* 5(2.464 0.008) (65.0 0.7) 10 0.001 /
Yb Yb

E T V+ +
−= − ± + ± ⋅ ±   [973-1123 K]  CsCl (37) 
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The results of our investigations show that at equal temperatures the apparent redox 

potentials of thulium ( )3 2
*
Tm Tm

E + +  are more negative than ytterbium ( )3 2
*
Yt Yb

E + + . The 

comparison of data for apparent standard redox potentials of thulium (-2.822 V) and 

ytterbium (-1.831 V) in molten CsCl ( 0.165
Cs

r nm+ = ) with data in fused NaCl-KCl-CsCl 

eutectic (
.

0.137
eut

r nm+ = ) [Lebedev, 1993] for thulium (-2.720 V) and ytterbium (-1.796 V) at 

973 K show the natural shift of the potential values to more negative region in line LiCl-

CsCl. 
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Fig. 15. Apparent standard redox potentials of the Ln3+/Ln2+ system as a function of the 
temperature on vitreous carbon indicated electrode. 1 – System YbCl3-YbCl2-NaCl-KCl-
CsCl. 2 – System TmCl3-TmCl2-NaCl-KCl-CsCl. 3 – System YbCl3-YbCl2-CsCl. 4 – System 
TmCl3-TmCl2-CsCl 

Typical complexes of dilute solution of lanthanide chlorides in alkali chloride melts are 
3
6LnCl −  and 2

4LnCl −  [Papatheodorou & Kleppa, 1974; Yamana et al., 2003]. Their relative 

stability increases with increasing of solvent cation radius from Li+ to Cs+ and the apparent 

standard redox potentials are shifted to more negative values. These results are in good 

agreement with literature data concerning the second coordination sphere influence on 

apparent standard redox potentials. 

3.2.2 Thermodynamics properties 
Using the values of the apparent standard redox potentials the formal free Gibbs energy 
changes and the apparent equilibrium constants of the redox reaction (38): 

 LnCl2(l) + ½ Cl2(g) ⇔ LnCl3(l) (38) 

can be calculated using the well-known expressions: 

 3 2
* *

Ln Ln
G nFE + +Δ =  (39) 

and 
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 * *
.ln eqG RT KΔ = −  (40) 

The temperature dependence of the Gibbs energy change can be described by the following 
equation: 

 * * *G H T SΔ = Δ − Δ  (41) 

The experiment data were fitted to the following equations using Software Origin Pro 
version 7.5: 

 * 3(354.1 0.6) (94.5 0.6) 10 0.1 /G T kJ mol−Δ = − ± + ± ⋅ ±    TmCl3-NaCl-KCl-CsCl (42) 

 * 3(249.0 1.3) (77.8 0.1) 10 0.3 /G T kJ mol−Δ = − ± + ± ⋅ ±    YbCl3-NaCl-KCl-CsCl (43) 

 * 3(388.8 0.9) (119.7 0.9) 10 0.2 /G T kJ mol−Δ = − ± + ± ⋅ ±    TmCl3-CsCl (44) 

 * 3(237.8 0.8) (62.7 0.7) 10 0.1 /G T kJ mol−Δ = − ± + ± ⋅ ±    YbCl3-CsCl (45) 

By the expression (40) one can calculate the apparent equilibrium constants for the redox 
reaction (38) in fused salts. The temperature dependences are the following: 

 *
.

44997
ln 13.78 0.01eqK

T
− + ±    TmCl3-NaCl-KCl-CsCl (46) 

 *
.

31114
ln 10.56 0.01eqK

T
− + ±    YbCl3-NaCl-KCl-CsCl (47) 

 *
.

46787
ln 14.40 0.02eqK

T
− + ±    TmCl3-CsCl (48) 

 *
.

28602
ln 7.54 0.01eqK

T
= − + ±    YbCl3-CsCl (49) 

The activity coefficients of YbCl3 in fused salts was determined from the difference between 
the apparent Gibbs free energy derived from the experimental measurements and the 
standard Gibbs free energy for pure compounds obtained in the literature [Barin, 1994]: 

 
3

4436
log 1.23 0.02YbCl

T
γ = − − ±    YbCl3-NaCl-KCl-CsCl (50) 

 
3

3761
log 2.09 0.02YbCl

T
γ = − − ±    YbCl3-CsCl (51) 

The dependence of the activity coefficient of YbCl3 versus the reverse temperature is given 
by the expressions (50, 51). Database for thulium compounds is absent in the literature 
[Barin, 1994]. 
It is also possible to estimate the equilibrium chlorine gas pressure above an alkali metal 
chloride melts containing hulium or ytterbium tri- and dichlorides for the reaction (52) by 
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 LnCl3(l) ⇔ LnCl2(l) + ½ Cl2(g) (52) 

well-known equation (53) [Smirnov, 1973]. Such kind of calculations were done for the 
concentration ratio of [Ln3+]/Ln2+] equals one in fused NaCl-KCl-CsCl eutectic and 
individual CsCl. 

 3 2
2

3

2

[ ]
ln ln

2 [ ]
Cl Ln Ln

RT RT Ln
P E

F F Ln
+ +

+

+= +  (53) 

The calculated values are summarized in Table 2. The average value of the radius of these 
molten mixtures in this line, pro tanto, is 0.137; 0.165 nm [Lebedev, 1993]. From the data 
given in Table 2 one can see that the relative stability of lanthanides(III) complexes ions is 
naturally increased in the line (NaCl-KCl-CsCl)eut. – CsCl. 
 

Tm Yb Thermodynamic 
properties NaCl-KCl-CsCl CsCl NaCl-KCl-CsCl CsCl 

E*/V –2.721 –2.822 –1.796 –1.846 

∆G*/(kJ·mol-1) –262.6 –272.3 –173.3 –178.2 

∆H*/(kJ·mol-1) –354.1 –388.8 –249.0 –258.7 

∆S*/(J·K-1·mol-1) 94.5 119.7 77.8 82.8 

γ – – 1.6·10-6 9.0·10-7 

K*eq. 1.31·1014 4.40·1014 2.08·109 3.80·109 

2
/Clp Pa  5.86·10-29 1.05·10-24 2.31·10-19 6.92·10-20 

Table 2. The comparison of the base thermodynamic properties of Tm and Yb in molten 
alkali metal chlorides at 973 K. Apparent standard redox potentials are given in the molar 
fraction scale 

4. Conclusion 

The electrochemical behaviour of [ ] 3
6YbCl

−
ions in fused alkali metal chlorides was 

investigated. It was found that the reduction of Yb(III) to Yb(II) ions is a reversible process 
being controlled by the rate of the mass transfer. The diffusion coefficient of  [ ] 3

6YbCl −  ions 
was determined at different temperatures in all investigation systems. The apparent 
standard electrode potential of the redox couple 3 2/Yb Yb+ +  was calculated from the 
analysis of the cyclic voltammograms registered at different temperatures. The apparent 
standard redox potentials of 3 2

*
Tm Tm

E + +  and 3 2
*
Yb Yb

E + +  in molten alkali metal chlorides were 
also determined by emf method. The basic thermodynamic properties of the reactions 
TmCl2(l) + ½ Cl2(g) ⇔ TmCl3(l) and YbCl2(l) + ½ Cl2(g) ⇔ YbCl3(l) were calculated. 
The influence of the nature of the solvent (ionic radius) on the thermodynamic properties of 
thulium and ytterbium compounds was assessed. It was found that the strength of the Ln–
Cl bonds increases in the line from Li to Cs cation. 
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