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1. Introduction 

In the 1847 G. Stokes pointed out in his work [G.G. Stokes, 1847] that the propagation of 
periodic gravitational waves on the horizontal surface of a liquid induces the total drift of 
liquid particles at a velocity lower than the phase velocity of waves, which became known 
as the Stokes drift. Stokes considered the problem of calculation of the velocity field in an 
infinitely deep inviscid incompressible liquid with a gravitational wave propagating over its 
surface, the wave amplitude being much smaller than the wavelength. The solution of the 
problem in the second order approximation in the wave amplitude showed that the periodic 
wave perturbation of the free surface induces not only a periodic motion of liquid particles 
about a certain mean position in the bulk of the liquid, but also a horizontal motion of the 
mean position in the direction of wave propagation. 
Stokes derived the following expression for the absolute value of the velocity of this drift 
[G.G. Stokes, 1847, 1880]: 

 ( )2
S 0w = A kǚ exp -2kd . (1) 

Here, A  is the wave amplitude, k  is the wavenumber, 0ǚ  is the circular frequency of 
oscillatory motion, and d  is the depth at which the drift velocity is calculated. Formula (1) 
was derived for the velocity of the drift induced by the gravitational wave is also valid for a 
capillary-gravitational wave if we use the following expression for circular frequency 0ǚ  
[Le Blon & Mysak, 1978]: 

 ( )2 2
0ǚ = gk 1 +ǂ k ; 

Ǆǂ =
ρg

. (2) 

Here, ǂ  is the capillary constant of the liquid, g  is the free-fall acceleration, Ǆ  is the surface 
tension , and ρ  is the density of the liquid. 
The existence of the Stokes drift was confirmed by various observations and experiments 
[Le Blon & Mysak 1978; Longuet-Higgens 1953, 1986]. The drift phenomenon induced by a 
small-amplitude periodic traveling wave is second-order effect in wave amplitude. The rough 
analysis of the problem in the linear (first-order) approximation in the wave amplitude 
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reveals only a circulating of liquid particles in the vertical plane around a certain stationary 
position with period π 0T = 2 /ǚ  . The radius of the circular trajectory of liquid particles 
relating to the free surface is estimated as the wave amplitude A. But second-order 
approximation shows that during the period T  liquid particle draws trajectory which is not 
an exact circle but a disconnected loop. The lower part of the trajectory must be shorter than 
the upper one by a certain quantity much smaller than the amplitude, for particle motion 
decays with increasing depth. Consequently, after time T, the particle does not return to the 
initial position but is slightly shifted relative to this position in the direction of propagation 
of the wave. With each new period, this displacement is systematically accumulated and 
adds up into average drift with the velocity defined by formula (1). Liquid particles located 
not on the free surface but at a certain depth perform analogous movements. With 
increasing depth, the amplitude of periodic movements, as well as the mean drift velocity, 
decreases. 
In various applications dealing with wave motion on the free surface of a liquid, it is 
important to take into account the drift flow emerging as a result of propagation of surface 
waves, which can be responsible for the transport of a surfactants or electric charge 
distributed on the liquid surface. It is important to note that in the general case, the 
dynamics of distribution of a certain substance over the free surface of a liquid is controlled 
by viscous shear stresses [Belonozhko & Grigor’ev, 2004; Belonozhko et. al, 2005] which are 
disregarded in the Stokes drift model.  
In 1953 M.S. Longuet-Higgins supposed an improved model of the mass-transport induced 
by surface progressive waves propagating over the free surface of a low viscous liquid and 
currently this model is the main tool for making a various estimations concerning the drift 
phenomena in a viscous liquid [Longuet-Higgins, 1953]. The base of the model is several 
auxiliary assumptions corresponding to properties of viscous boundary layer located in the 
vicinity of the free surface. Thereby the supposed reasoning is suitable only for a low-
viscosity limit. The practical employment of Longuet-Higgins’s approach is essentially 
complicated, for the model has somewhat artificiality and a cumbersome structure.  
Analytic description of the influence of arbitrary viscous forces on the structure of the drift 
flow caused by the propagation of waves has not been obtained for more than 150 years 
after the formulation of the problem because of the absence of an appropriated nonlinear 
solution to the problem of the arbitrary viscosity influence on the propagation of periodic 
capillary-gravitational wave. The suited solution was obtained in works [Belonozhko & 
Grigor’ev, 2003, 2004] only at beginning of XXI century and analytical analysis of the 
problem had become possible.  

2. Determination of the mean drift caused by nonlinear periodic waves 
propagating over the surface of viscous liquid 

We will consider analytic calculations of the velocity field in an infinitely deep and 
unbounded in horizontal direction incompressible viscous liquid with a periodic capillary-
gravitational wave propagating over its free horizontal surface. The solution will be 
constructed in the second order of smallness in wave amplitude. The main attention will be 
paint to the details of the solution associated with the appearance of the drift terms. The 
notations used in the procedure of the solution permit to concentrate efforts only to 
definition of the drift part of the flow without calculating total expression for the velocity 
field. The suggested approach makes it possible to effectively analyze more complicated 
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questions concerning to a medium drift induced by the wave motion, for instance an 
analytic calculation of the mean surface drift of surfactant or redistributing surface electric 
charge. 

2.1 Decomposition of the problem of the velocity field calculating on the problem of 
the first and second order of smallness in wave amplitude 

Let us suppose that an incompressible Newtonian liquid of kinematic viscosity ν , density 
ρ , and surface tension Ǆ  in a Cartesian system of coordinates with the z  axis directed 
vertically upwards fills the half-space z < 0  in the gravity field g. We disregard the physical 
properties of the medium above the liquid and consider a periodic capillary-gravitational 
wave propagating over the free surface of the liquid along the horizontal x  axis, assuming 
that the wave amplitude is much smaller than the wavelength. We also assume for 
simplicity that the flow of the liquid is independent of horizontal coordinate y . Let us 
determine the mean velocity of the horizontal drift of the liquid, induced by the propagation 
of a periodic wave with known amplitude and wavenumber. 
We denote by ( )u = u t,x,z  and ( )v = v t,x,z  the horizontal and vertical components of the 
velocity field of the liquid; xe  and ze  are the unit vectors along the x  and z  axis. The 
deviation of free surface ( )ξ = ξ t,x  of the liquid from equilibrium state = 0z , which is 
associated with the wave motion, and velocity field x z= u + vU e e  induced in the liquid 
satisfy the familiar set of hydrodynamic equations for an incompressible Newtonian liquid 
and the corresponding boundary conditions [Le Blon & Mysak, 1978; Le Méhauté, 1976]: 

 

( )

( )

( )( ) ( )( )

2

-3/222

2

x z

1
:   - p + ;   = 0;

ρ

ξ ξ ξ ξ
:   + u = v;   p - 2ρ = -Ǆ 1 + ;

t

                     = 0;

z :   u 0;   v 0;   .
x z

z
t

z
x x x

ξ ν

ξ ν

∂
< + ⋅∇ = ∇ ∇ ∇ ⋅

∂

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= ⋅∇ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⋅ ⋅∇ + ⋅ ⋅∇

∂ ∂
→ −∞ → → ∇ ≡ +

∂ ∂

U
U U U U

n n U

τ n U n τ U

e e

 (3) 

Here, ( )p = p t,x,z  is the pressure in the liquid; ( )= t,xn n  is the unit vector of the outward 
normal to the free surface constructed from the point of the surface with horizontal 
coordinate x  at instant t ; ( )= t,xτ τ  is the unit vector of the tangent to the free surface.  
Instead of the initial conditions, which determine in the general case the spectrum of modes 
of the wave motion generated at the initial instant, we will follow the considerations of the 
simplest spectral composition of the sought solution. The appropriate approach is 
traditionally used in similar problems to obtain the least cumbersome solution fittest for 
analytic description and qualitative analysis [Le Blon & Mysak, 1978; Le Méhauté, 1976; 
Belonozhko & Grigor’ev 2003, 2004]. 

Following the standard procedure in the nonlinear theory of periodic waves of small but 
finite amplitude [Le Blon & Mysak, 1978; Le Méhauté, 1976], we will construct the solution 
to problem (3) in the form of power expansions of unknown quantities in the small 
parameter equal to the product of the wave amplitude and wavenumber ε = kA . We will 
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seek unknown quantities confining our analysis to the second approximation in parameter 
ε  in the form of asymptotic expansions: 

 

 

( ) ( )
( ) ( )

( ) ( )

j3
1 2 j

j3
0 1 2 j

j3
1 2 j

= + + O ǆ ;  = O ǆ ;

p = p + p + p + O ǆ ;   p = O ǆ ;      j = 1,2

ξ = ξ + ξ + O ǆ ;   ξ = O ǆ ;

U U U U

. (4) 

 

Here, O  is the symbol of the order of magnitude. In expressions for the velocity vector, the 
order of magnitude is estimated for each vector component. In final expressions, we will 
disclose the definition of parameter ǆ = kA , 2 2 2ǆ = k A  and, using the traditional 
terminology in the theory of waves with a small but finite amplitude on the surface of an 
liquid, refer to variables jU , jp  and jξ  as j-th order quantities in the wave amplitude, 
bearing in mind that the small parameter is in fact the ratio of the wave amplitude to the 
wavelength, which is proportional to dimensionless parameter ǆ = kA . 
Substitution of expansions (4) into relations (3) and transposition of the boundary conditions 
to unperturbed surface z = 0  allow separate the problem (3) into the zeroth-, first, and 
second-order problems in the wave amplitude. The procedure of the separation of problem 
(3) in accordance with the order of magnitude is described in detail in [Le Blon & Mysak, 
1978; Le Méhauté, 1976]. 
The analytic formulation of the first-order problem in the wave amplitude has the form 
 

 21
1 1 1

1
0 :   + p - 0;   = 0;

ρ
z

t
ν∂

< ∇ ∇ = ∇ ⋅
∂
U

U U  (5) 

 
2

1 1 1 1 1
1 1 1 2

ξ v ξ u v
0 :   - v = 0;   -ρg ξ - p - 2ρ + Ǆ = 0;   = 0;

t z x
z

z x
ν∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

  (6) 

→−∞z :  →1u 0 ;  →1v 0 . 
 

The formulation of the second-order problem consists of relation: 
 

 < 0z :  ( )ν∂
∇ ∇ = − ⋅∇

∂
22

2 2 1 1

1
+ p -
ρt

U
U U U ;  ∇ ⋅ 2 = 0U ; (7) 

 

2 2
2 1 1 2 2 1 1

2 1 1 2 2 12 2

2 2 1 1 1 1
1

ξ v ξ v ξ v p
0 :   - v = ξ u ;   -ρg ξ - p - 2ρ + Ǆ = ξ 2ρ ;

t z x

u v v ξ v u
                               = -4 - ξ ;

z x x z

z
z x z z

z z z

ν ν
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

= − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (8) 

→−∞z :  →2u 0 ;  →2v 0 . 

2.2 Solution of the first-order problem in wave amplitude 

The solution to the first-order problem (5), (6) is well known and can be described by 
expressions of the type of a traveling wave [Belonozhko & Grigor’ev, 2003]: 
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( ) ( ) ( )
( ) ( ) ( )

( )

( )
ν ν

ν ν

ν

⎛ ⎞
⎜ ⎟⎛ ⎞

+⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎛ ⎞+⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

1 2

1
2 2

1

1

1
ξ

-i S + 2 k exp kz 2 i kqexp qz
u A

exp St - ikx c.c.S + 2 k exp kz 2 i k exp qzv 2
Sp -ρS 2 k exp kz
k

; (9) 

where 

 
ν

2 S
q = k + ; (10) 

or a superposition of the waves (9) with different wavenumbers k . For a fixed value of k , 
set of relations (9) is an individual mode of the wave motion. Abbreviation "c.c." means 
"complex-conjugate terms" and i  is the imaginary unit. Parameter S  is the complex 
frequency. It is connected with the wavenumber and other parameters of the problem via 
the dispersion relation : 

 ( )ν ν
ν

22 2 2 3 2
0

S
S + 2 k +ǚ = 4 k k + ; (11) 

where 0ǚ  is defined by (2). The physical meaning can be attached not to all values of 
complex frequency S  satisfying the dispersion relation, but only to those for which the 
condition holds: 

( )ν >
22 2

0S + 2 k +ǚ 0 . 

In this case only, the vortex part of the velocity field, which is described in set (9) by the 
terms proportional to ( )exp qz ,  decays with increasing depth. 
We will use in further analysis the following notation: 

 ( )r = Re S ;  ( )ǚ = Im S ;  ( )b = Re q ;  ( )ǘ = Im q . (12) 

The absolute value of real-valued parameter r  characterizes the rate of variation of the 
amplitude of wave motion. The value of r  is smaller than zero and for this reason r  is the 
damping decrement of the wave motion. Real-valued quantity ǚ  has the meaning of the 
circular frequency of wave motion in the viscous liquid. 
In accordance with the results of work [Belonozhko & Grigor’ev, 2004] in the limit of a low 
viscosity dispersion relation (11) reduces to the asymptotic expansions for quantities r  and 
ǚ  as well as for auxiliary parameters b  and ǘ : 

 

( ) ( )

( ) ( )

2 3 2 3

0 0

3 2 30 0

0

r ǚ
= -2N + O N -2 k ;   = 1 + O N 1;

ǚ ǚ

b 1 1 1 ǚ 1 1 1 ǚ
= - N + O N ;   = + N - N + O N ;

k k 2 k k 2N 2 2 2 N 2 2 2

N = k << 1.
ǚ

ν

χ
ν ν

ν

≈ ≈

≈ ≈  (13) 
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In the right-hand sides of the relations (13) after the symbol ≈" "  the expressions are written 
witch retain only the principal terms of the expansions in the viscosity. 
Expressions (9) were deliberately written in complete form, although these expressions do 
not contain the drift terms explicitly, for the following two reasons. First, to solve the 
second-order problem in the wave amplitude, we must calculate the right-hand sides of first 
relation (7) and relations (8) containing quantities 1u  1v , 1ξ  and 1p .  Second, it will be 
shown below that the expressions for quantities 1u  1v  play an important role in calculating 
the velocity of the mean drift flow. 

2.3 Structure of expressions for the velocity field in the second order in wave 
amplitude 

In contrast to first-order problem (5), (6), the solution to second-order problem (7), (8) 
contains the component describing the explicit drift of the liquid along the x  axis. To 
simplify our analysis, we will confine ourselves to determining the form of this particular 
part of the solution. It will be shown below that the rest part of the solution is not used in 
constructing the expression for the velocity of total drift. 
We assume that the solution to the starting problem (3) in the first approximation in the 
wave amplitude is described by only one mode of the wave motion, viz., a set of relations of 
type (9) with a specified wavenumber k . Using set (9), we can write the right-hand side of 
the first equation in system (7) in a more detailed form: 

< 0z :   ν∂
∇ ∇ =

∂
22

2 2 x x z z

1
+ p - V + V
ρt

U
U e e ; 

( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )

2 3 * 2
x

*
2 * 2

i k S
V = A -2k ǚ exp 2 b z - S + 2 k exp . .

2

i k S
S + 2 k exp k + q z + c.c. exp 2r t + A Π 2ǉ exp 2r t ;

2

k q z c cν ν

ν

⎛ ⎧ ⎫+ + + +⎨ ⎬⎜
⎩ ⎭⎝

⎞⎧ ⎫
+ ⎟⎨ ⎬⎟⎩ ⎭⎠

 

( ) ( )(
( )( ) ( )( ){ }
( )( ) ( )( ){ }) ( ) ( ) ( )

22 2 2 4
z

2 * 2

2 * 2 * 2

V = A - S + 2 k k exp 2k z 4 k  b exp 2 b z

k k + q S + 2 k exp k + q z + c.c.

k k + q S + 2 k exp k + q z + c.c. exp 2r t 2ǉ exp 2r t ;A

ν ν

ν ν

ν ν

− +

+ +

+ + Π

 

 ǉ = ǚ t -k x . (14) 

The asterisk in the superscript indicates complex conjugation. Here and below, symbol  

( )Π Θ  is used as the general notation for various sums consisting of terms proportional to 

( )cos Θ  and ( )sin Θ  with constant coefficients of proportionality or with coefficients 
depending only on coordinate z . For the column of quantities each of which is the sum of 
this type will be denoted by bold symbol  ( )ΘΠ . 
The expressions obtained for xV  and zV  describe the right-hand side of the first equation in 
system (7) explicitly. This allows us to use the method of undetermined coefficients and find 
partial solution  (7) a

2u , a
2v , a

2p : 
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( ) ( )

( )
( )( )

( )
( )( )

a 2
2

a 2
2

a 2 42
2

* 2

2

2 * 2

2 k bǘ
u 0 r - 2 b

v 0 exp 2k z 0 exp 2 bz

p -2ρ k-ρ S + 2 k

2

ik S + 2 k

2 2r - k + q

0 exp k + q z . .

ρ k S + 2 k

A

S

c c

ν
ν

νν

ν

ν

ν ν

⎛⎛ ⎞ ⎛⎛ ⎞−⎜⎜ ⎟ ⎜⎜ ⎟⎛ ⎞ ⎜⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟= + +⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟⎝ ⎠
⎜ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎝⎝ ⎠⎝

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟⎪ ⎪⎜ ⎟+ +⎨ ⎬
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪
⎜ ⎟⎪ ⎪⎜ ⎟⎪⎝ ⎠⎩ ⎭

( ) ( ) ( )2exp 2r t A Π 2ǉ exp 2r t .

⎞
⎟
⎟
⎟
⎟ +
⎟
⎟
⎟
⎟⎪⎠

 (15) 

The values a
2u , a

2v , a
2p  are auxiliary. They satisfy (7) and can therefore be used to construct 

the substitution: 

a b
2 2 2

a b
2 2 2

a b
2 2 2

u u u

v v v

p p p

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ = + ⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

which reduces (7), (8) to the problem with homogeneous equations and nonhomogeneous 
boundary conditions 

z < 0 :  

 

b b 2 b 2 b
2 2 2 2

2 2

b b 2 b 2 b
2 2 2 2

2 2

b b
2 2

u 1 p u v
+ - + 0;

t ρ x x z

v 1 p v v
+ - + 0;
ρ z x z

u v
+ = 0;

x z

t

ν

ν

⎛ ⎞∂ ∂ ∂ ∂
=⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂
=⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

 (16) 

z = 0: 

 b a2 1 1
2 1 1 2

ξ v ξ
- v = ξ u v ;

t z x

∂ ∂ ∂
− +

∂ ∂ ∂
 (17) 

 
b 2 2 a

b a2 2 1 1 2
2 1 22 2

v ξ v p v
p - 2ρ + Ǆ = ξ 2ρ - p 2ρ ;

z x z z z
ν ν ν

⎛ ⎞∂ ∂ ∂ ∂ ∂
− +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (18) 

 
b b a a
2 2 1 1 1 1 2 2

1

u v v ξ v u u v
= -4 - ξ ;

z x x z z xz z z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (19) 

→−∞z : 

 b
2u 0→ ;  b

2v 0→ . (20) 
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Taking into account the explicit expressions (9) for quantities 1ξ , 1u  1v , 1p  and (15) for a
2u , 

a
2v , a

2p , we can easily establish even without detailed calculations that the structure of the 
right-hand side of each boundary condition from (17)-(19) defined at the level of z = 0 can be 
described by the formula ( ) ( ) ( )( )2A F t +Π 2ǉ exp 2r t , where ( )F t  is a certain function of 
time for each condition from (17)—(19). This means that the unknown quantities (in 
particular, ( )=b b

2 2u u t,x,z  and ( )=b b
2 2p p t,x,z  should be sought in the form of a term 

independent of coordinate x  and a term proportional to ( ) ( )2A Π 2ǉ exp 2r t : 

 ( ) ( ) ( )( )b 2
2u = A w t,z +Π 2ǉ exp 2r t ;   ( ) ( ) ( )( )b 2

2p = A h t,z +Π 2ǉ exp 2r t . (21) 

Here, ( )w t,z  and ( )h t,z  are the functions to be determined. 
Using relations (9), (15) we can easily calculate the right-hand side of boundary condition 
(19): 
 

= 0z : 

 ( ) ( ) ( )
b b

2 22 2u v
= A Λexp 2r t A Π 2ǉ exp 2r t

z x

∂ ∂
+ +

∂ ∂
; (22) 

 

( )( )( )
( )( ) ( )

( )

32 3 *

2 * 22

22

1
= - i k 2i ǚk + 6 i k ǘ

2

i q - k q + k k4k ǚb1
k . .  .

2 r + b 2r + q + k

q q

S
c c

ν ν

ν
ν

Λ + − +

⎛ ⎞⎧ ⎫+⎪ ⎪⎜ ⎟+ + +⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

 (23) 

 

Substituting relations (21) into the first equation of system (16) and conditions (20), (22) and 
noting that ( ) ( )b

2p / x ~Π 2ǉ∂ ∂ , we can easily separate the component independent of 
parameter ǉ  in these expressions and obtain the individual problem for determining 
function ( )w = w t,z : 

 ( )

2

2

w w
0 :                              0;

t z
w

0 :                              Λexp 2r t ;
x

:                          w 0.

z

z

z

ν∂ ∂
< − =

∂ ∂
∂

= =
∂

→ −∞ →

 (24) 

 

In accordance with relations (21), value ( )2 2A w = A w t,z  at fixed z  is velocity of the 
horizontal drift for all liquid particles that reside on the level = constan tz .  
The solution to problem (24) has the form [Polyanin, 2002]: 

 

( ) ( )
( )

( ) ( ) ( )

t 2

0

2 2

0

exp 2rǈz
w = w t,z =Λ exp - dǈ+

4 t - ǈ t - ǈ

z - Ǉ z + Ǉ1
+Λ exp exp Ψ Ǉ dǇ ;

t 4 t 4 t

ν
π ν

πν ν ν

∞

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪⎜ ⎟ ⎜ ⎟− + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∫

∫
 (25) 

 ( ) ( )Ǚ z w 0,z≡ . (26) 
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For the vertical component of the velocity field, we have, analogously to relations (21), 

( ) ( ) ( )( )b 2
2v = A ǃ t,z +Π 2ǉ exp 2r t  where ( )ǃ t,z  is the function to be determined. 

Substituting the expression for b
2v  and the second relation from (21) into last equation (16), 

we can easily see that ( )ǃ/ z 0∂ ∂ =  and hence ( ) ( )ǃ t,z = F t  is a function of time. We must 
set ( )F t 0≡ , for the liquid is not moves with time along the z  axis as a "whole". Thereby 

( ) ( )b 2
2v = A Π 2ǉ exp 2r t .  

The above calculations show that when a periodic capillary-gravitational wave with 
wavenumber k propagates over the horizontal surface of an infinitely deep liquid, a velocity 
field emerging in the liquid has following structure of the components in the second 
approximation in wave amplitude: 

 ( ) ( ) ( )2 a 2
1 2u = u + A w t,z + U + A 2ǉ exp 2r tΠ ; (27) 

 ( ) ( )2
1v = v + A Π 2ǉ exp 2r t ; (28) 

 ( ) ( ) ( )( ) ( )2
1

A
u -i S + 2 k exp kz 2 i kqexp qz exp St - ikx c.c.

2
ν ν= + + ; (29) 

 ( ) ( ) ( )( ) ( )2 2
1

A
v S + 2 k exp kz 2 i k exp qz exp St - ikx c.c.

2
ν ν= − + ; (30) 

 ( ) ( )
( )( ) ( )( ) ( )

* 2

a 2
2 2 2

i k S S + 2 k2 k bǘ
U A exp 2 bz exp k + q z . . exp 2r t

r - 2 b 2 2r - k + q
с с

νν
ν ν

⎛ ⎞⎞⎧ ⎫
⎪ ⎪⎜ ⎟⎟= − + +⎨ ⎬⎜ ⎟⎟⎟⎪ ⎪⎜ ⎟⎩ ⎭⎠⎝ ⎠

. (31) 

Here a
2U  is the part of the expression for a

2u  without the terms proportional to ( )Π 2ǉ . 
The function ( )w t,z  is given by (25), (26) with parameter Λ  defined by (23). In limit of low 
viscosity ( )r = Re S , ( )ǚ = Im S , ( )b = Re q , ( )ǘ = Im q  are described by asymptotic 
relations (13) and in this regard asymptotic expressions for Λ  and a

2U  containing only the 
principle on the viscosity terms take on the form: 

 2 2
0Λ 2k ǚ≈ ; (32) 

 ( )( ) ( )a 2 -1 2
2 0

z
U A kǚ cos exp k + z exp -4 k tδ ν

δ
⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

; (33) 

 
0

2

ǚ
ν

δ = . (34) 

The value of parameter δ  is rough estimation for the thickness of viscous boundary layer in 
vicinity of free surface. At the depth δ  the amplitude of the vortex motion decreases in e  
time compare to value of the amplitude at the surface [Longuet-Higgins, 1953]. There is 
improving estimation δ4  for the boundary layer thickness [Belonozhko & Grigor’ev, 2008]. 
On this depth the amplitude of the vortex motion decreases to only several percent from 
value of the amplitude at the surface. The liquid flow is essentially rotational inside the 
boundary layer and can be considered as nearly irrotational outside the layer. 
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2.4 Construction of expression for the velocity of the mean horizontal drift taking 
viscosity into account 

Expressions (27), (28) describe the velocity field of a liquid flow in the Euler representation 
[Longuet-Higgens, 1986)]. To calculate the velocity of an individual particle, we must pass 
from the description of the velocity field in the Euler variables 

( ) ( ) ( ) ( )x zt, = U t,x,z = u t,x,z e v t,x,z≡ +U U r e ; 

to the description in the Lagrange form: 

( ) ( ) ( ) ( )L L L L x L zt, = U t,x,z = u t,x,z e v t,x,z≡ +U U r e . 

In both cases, the argument of the quantities considered here is the radius vector r of a point 

with coordinates x and z. In the Euler representation, r defines the position of a stationary 

point in space, through which various liquid particles pass in time t with velocity ( )t,U r . In 

the Lagrange representation, r fixes the position of an individual liquid particle at instant 

t = 0 , while vector ( )L t,rU  characterizes the time variation of the velocity of namely this 

liquid particle. 
It was shown in [Le Blon & Mysak L, 1978; Lokenath, 1994] that in the problem of 
propagation of a periodic small-amplitude capillary-gravitational wave over the horizontal 
surface of a liquid in the second approximation in amplitude of the wave motion, the 
velocity vector in the Lagrange representation can be expressed via components of velocity 
vector in the Euler representation: 

( ) ( ) ( ) ( )
t

L

0

t, = t, ǈ, dǈ t, .
⎛ ⎞⎛ ⎞

+ ∇⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫U r U r U r U r  

For the horizontal velocity component, we have 

 ( ) ( ) ( ) ( ) ( ) ( )t t

L

0 0

u t,x,z u t,x,z
u t,x,z u t,x,z u ǈ,x,z dǈ v ǈ,x,z dǈ

x z

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪ ⎪ ⎪= + +⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
∫ ∫  (35) 

Substituting relations (27), (28) into (35) and retaining the terms of the order not higher than 

second in wave amplitude we can easily derive the expression for the horizontal velocity of 

the individual liquid particle, which was at the point with coordinates x  and z  at t = 0 : 

 

( )

( ) ( ) ( ) ( )

( ) ( )

2
1

t t
1 1a

2 1 1

0 0

2

u u + A w t,z +

u t,x,z u t,x,z
+U + u ǈ,x,z dǈ v ǈ,x,z dǈ

x z

+A 2ǉ exp 2r t .

=

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂⎪ ⎪ ⎪ ⎪+ +⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂⎪ ⎪ ⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭
Π

∫ ∫  (36) 

To derive the formula (36) we have taken into account that in the second approximation in 
wave amplitude the asymptotic relations hold: 

( ) ( ) ( ) ( )t t
1

1

0 0

u t,x,z u t,x,z
u ǈ,x,z dǈ u ǈ,x,z dǈ

x x

⎛ ⎞ ⎛ ⎞∂ ∂
≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ; 
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( ) ( ) ( ) ( )t t
1

1

0 0

u t,x,z u t,x,z
v ǈ,x,z dǈ v ǈ,x,z dǈ

z z

⎛ ⎞ ⎛ ⎞∂ ∂
≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ . 

Expressions for 1u , w  and a
2U  are known. The explicit form for part of expression (36) 

enclosed in braces is derived by substitution (29) (30) in the braces. But total form of the 
expression is not needed. A significant part of the terms on the right-hand side of expression 
(36) is sums consisting of terms proportional to ( )cos ǉ  and ( )sin ǉ  or ( )cos 2ǉ  and ( )sin 2ǉ  
( ǉ = ǚt - kx ). Obviously they are responsible for an apptoximatly circular motion of liquid 
particle relative to a certain average position. Let call them the cyclic components of the 
velocity. According to (29) and definition of symbol Π  the terms 1u , ( ) ( )2A 2ǉ exp 2r tΠ  are 
cyclic components of the velocity. All cyclic terms in (36) must be drooped in order to write 
the expression for mean horizontal velocity of liquid particle. Specifically for the part (36) in 
braces it is sufficient to obtain an explicit expression only for noncyclic terms without 
making complete calculations. As result relation (36) is transformed to expression for 
velocity of mean drift caused by periodical capillary-gravitational wave propagating over 
the surface of a viscous liquid: 

 ( ) ( )2
d Su A w t,z + u t,z= ; (37) 

 ( ) ( ) ( )= + a
S B 2u t,z U t,z U t,z . (38) 

Here UB  denotes the noncyclic part of relation enclosed in braces in the expression (36). 
Taking into account the explicit relations for 1u  and 1v  (see (9)) the expression for BU  may 
be written in the form: 

 

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

2

B

A
U t,z M exp 2k z + Nexp 2 bz

+ k Gcos ǘz + Hsin ǘz exp k + b exp 2r t ;

S

zν

⎛
= +⎜

⎝
⎞
⎟
⎠

 (39) 

( )( )2
2 2M = ǚk r + 2 kω ν+ ;  ( )2 3N = 4 k b bǚ+ ǘrν ; 

( )( ) ( )( )( )22 2 2G = -2 ǚ k + b ǘǚ+ k r + bǘr + k ǚ k + b - ǘ + 2 bǘrν
⎛ ⎞
⎜ ⎟
⎝ ⎠

; 

( ) ( ) ( )

( )( ) ( )( )
22 2 3

2 2 2

H = 2kǚ ǘr - bǚ ǘ - b + 2 k 2 ǘǚ+ k r

k r r + 2 ǘ - b -ǚ ǚ - 4 ǘb .

S ν

ν ν

+ +

+
 

With help of asymptotic expression (13) we can proceed to the limit of low viscosity and 
write asymptotic expressions for UB  containing only the principle on the viscosity terms: 

 ( ) ( )2 2
B 0U A kǚ exp 2k z exp 4 k 1 exp cos

z z
t k zν

δ δ
⎛ ⎞⎛ ⎞ ⎛ ⎞≈ − − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. (40) 

The expression (40) follows from (39) on the basis of (13). The parameter δ  is defined in (34).  
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In what follows one term ( )2A w t,z  in the sum (37) will be called velocity of “Additional 
drift” and another term ( )Su t,z  will be referred to velocity of “Modified Stokes drift”. 
Reasons for using the above terminology and individual notation ( )Su t,x  for sum of 

( )U t,xB  and ( )2U t,xa  will be clarified below. 

2.5 Modified Stokes drift 

The drift component (38) with ( )U t,xB  defined by (39) ((40) in limit of low viscosity) and 

( )2U t,xa  defined by (31) ((33) in limit of low viscosity) is called Modified Stokes drift due to 
closeness of its properties with features of the classical Stokes drift defined by (1). The best 
agreement of the properties is archived when one takes into account both terms ( )U t,xB  
and ( )2U t,xa  together.  
The fig.1 show the behavior only term ( )U t,xB  calculated at different times (line 1-3) 
compare to the classical Stokes drift (line 4). For instance we assumed that the drift is caused 
by the propagation of a periodic wave with a length 5 sm over the surface of water 
( 31 /kg mρ = ; 372 10 /N mγ −= ⋅ ; -6 210 /m sν = ). It was thought that at initial time moment 
the wave amplitude is equal to 1  mm.  
 

 

0

- 0.2

- 0.4

0.1 0.2 0.3 0.4 0.5

123

z, sm

uB , wS , sm/s 

z≈-4δ

4

 

Fig. 1. The behavior of the drift velocity component ( )U t,xB  from (38) at different depth is 
plotted. Calculations are performed for the drift caused by periodic wave with wavelength 
5  sm and amplitude 1  mm propagating over horizontal water surface. The curves 1,2,3  
specify profile of ( )U t,zB  at moment times: t = 0 s;  t = 20 s;  t = 40 s.  The curve 1  show 
behavior of the classical Stokes Drift (1). The horizontal dotted line held at the lower border 
of the surface boundary layer z = -4ǅ  

In the course of time a monotonic profile of the classical Stokes drift is not changed since an 
approximation of inviscid liquid is working. Fig 1 show that the velocity of the component 

( )U t,xB  at all depths decreases with a time proportionally to factor ( )exp 2r t  where r < 0  
(at low viscosity 2r -4 kν≈ ). The damping of the liquid motion in time is natural since the 
influence of viscous dissipation was taken into account. A characteristic shape of the profile 

( )U t,xB  remains same for all time but horizontal extent of the profile shrinks with the 
course of time.  
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The characteristic shape of the profile ( )U t,xB  qualitative distinguishes from profile of the 
classical Stokes drift. In contrast to classical model the profile of velocity ( )U t,xB  is not 
monotonic near the liquid surface but one has a maximum on some level inside viscous 
boundary layer. Above the level corresponding to the maximum of velocity the values 

( )U t,xB  dramatically decrease with decreasing a depth and tend to zero at the liquid 
surface. But it should be noted that pure classical drift (1) (see curve 4 at fig.1) rigorously 
monotonic on all depth and one reaches its maximum exactly at the liquid surface.  
 

 

- 0.2

- 0.4

z, sm

0 0.1 0.2 0.3 0.4 0.5

2 13

us , sm/s  

Fig. 2. The behavior of the Modified Stokes Drift ( )Su t,z  (see (38)) at different depth is 
plotted. The physical conditions are same that was used for plotting fig.1. The curves 1,2,3  
specify profile of ( )Su t,z  at moment times: t = 0 s;  t = 20 s;  t = 40 s   

Analysis of expression (40) presenting the limit values of ( )U t,xB  at a low viscosity show 
that the discovered difference between ( )U t,xB  and classical Stokes drift dos not vanish 
even for an arbitrary small viscosity. The decreases of viscosity leads only to a narrowing of 
the field near the liquid surface within which the deference between velocities (1) and (40) is 
essential. Directly on the surface the value of the difference at limit of zero viscosity tends to 

2A kǚ  and not equal to zero. The observed discrepancy between behavior of ( )U t,xB  and 
drift (1) in vicinity of liquid surface suggests that the component ( )U t,xB  alone can not be 
regarded as naturally generalization of the classical Stokes drift.  
We have combined the components ( )U t,xB  and ( )a

2U t,z  of drift velocity in sum (38) in 
order to produce expression for special part of drift velocity in viscous liquid ( )Su t,x  that is 
named by velocity of the Modified Stokes drift. Values ( )a

2U t,z  are essential only in vicinity 
of the surface and negligible in region below the viscous boundary layer. The component 

( )a
2U t,z  is added to ( )U t,xB  in order to correct the properties of component ( )U t,xB  inside 

the viscous boundary layer. Profile of the sum in vicinity of liquid surface has no any drastic 
changes inherent in to the separate term ( )U t,xB . At least at low viscosity the shape of 
profile of the Modified Stokes drift ( )Su t,x  (sum ( )U t,xB  and ( )a

2U t,z ) is rather close to 
profile of the Classical Stokes drift.  
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The fig. 2 is similar to fig.1 but the profiles of velocity ( ) ( ) ( )= + a
S 2u t,z U t,x U t,zB  are 

depicted instead of the profiles related to the component ( )U t,xB . One can see that Modified 
Stokes drift at all depths behaves almost like the classical Stokes drift and it is only horizontal 
extent of the profile ( )Su t,x  that shrinks with time due to viscous dissipation.  

2.6 Additional drift flow  

Let consider the component ( )2A w t,z  of total mean drift (37) that was called the Additional 
drift flow. To find the reasons for the emergence of the Additional drift flow, let us consider 
an example of calculation of together evolution of horizontal velocity of the Modified Stokes 
drift ( )Su t,z  and the Additional drift velocity ( )2A w t,z  at a level of 0z = . To definiteness 
let suppose that initially velocity of the Additional drift equal to zero ( )2A w 0,z 0= .  
The time variation of velocities ( )Su t,z  and ( )2A w t,z  of the drift flows induced by a 
periodic capillary-gravitational wave having a wavelength of 5 cm and an amplitude of 
1 mm and propagating on the surface of water are plotted in the fig 3.  
 

10 20 30 40 t, s
0

0.1

0.2

0.3

0.4
1

1

2

2

us; 

 A2 w; 

 sm/s 

 

Fig. 3. The dependences of two velocity components of mean horizomtal drift on the water 
surface in the directions of propagation of the periodic capillary-gravitational wave. The 
values of all physical parameter same as used for plotting fig. 1 and fig. 2. Curve 1 - velocity 

( )Su t,0  of the Modified Stokes drift (formula (37)); curve 2 – velocity ( )2A w t,0  of the 
Additional drift (formula (25) under condition ( )2A w 0,z 0= ) 

It can be seen that at the initial stage of the flow, the Modified Stokes drift (curve 1) is the 
main part of the total horizontal drift. The drift flow almost follows the laws for an inviscid 
liquid, and it is only the magnitude of the drift velocity that weakly decreases with time due 
to viscous dissipation.  
At the same time, owing to components of viscous forces associated with the drift 
component of the flow, other types of changes occur in the velocity field. Viscous stresses 
emerging in the liquid have components periodic in the horizontal coordinate as well as 
aperiodic components. The aperiodic horizontal component of viscous stresses appears due 
to the drift component of the flow. Since horizontal drift velocity ( )Su t,z  varies with the 
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depth (see fig. 2) and the inequality ( )( )Su t,z / 0z∂ ∂ <  holds, horizontal viscous shear 
stresses ( )( )S-ρ u t,z / zν ∂ ∂  appear between adjacent horizontal layers in accordance with the 
properties of a Newtonian liquid [Faber, 1997]. Under the action of these shear stresses, the 
liquid is involved into an additional horizontal drift flow with a velocity described by 
function ( )2A w t,z  (curve 2). 
For chosen initial condition ( )2A w 0,z 0= , the Additional drift velocity increases 
monotonically with time from zero at t = 0  to the velocity of the Modified Stokes drift. For 
values of physical parameters used for construction of the fig. 3, the velocities of both drifts 
become equal approximately 8.5 s after the beginning of the flow. The Modified Stokes drift 
entrains the liquid due to horizontal viscous stresses distributed from the surface to the 
deep layers. After leveling out the drift velocities, the velocity of the Modified Stokes drift 
continues to decrease exponentially and becomes smaller than the velocity of Additional 
drift. At now the Modified Stokes drift decelerates the Additional drift due to the same 
viscous stresses, which are acting now in the opposite direction. The deceleration of the 
Additional drift takes a certain time (about 3 s in the figure), after which its velocity attains 
the maximal value and then decreases together with the decreasing velocity of the Modified 
Stokes drift.  
At fig. 4 the depths profiles of drift component ( )Su t,z  and ( )2A w t,z  are plotted at instant 
t = 8.5  s when velocities of the both component are equal (the physical conditions are same 
that used for plotting fig. 1-3). One can see the velocity of the Additional drift ( )2A w t,z  
decreases with depth faster than velocity of the Modified Stokes drift. This means that 
Additional drift decreases with depth faster than on exponential law. 
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Fig. 4. The profiles of drift component ( )Su t,z  and ( )2A w t,z  are plotted at t = 8.5  s after 
launching of the Additional drift ( ( )2A w 0,z 0= ). The values of all physical parameter are 
same as used for plotting fig.1-3. Curve 1 – the profile of the Modified Stokes drift (formula 
(37)); curve 2 – profile of the Additional drift (formula (25) under condition ( )2A w 0,z 0= ) 
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2.7 Example: qualitative investigation of influence of surface electric charge on the 
drift flow caused by periodic capillary-gravitational waves 

Let consider the problem similar to what was discussed in paragraph 2.1-2.4, but with an 
electric charge distributed over the liquid surface. We suppose that liquid is an ideal 
conductor and the upper half-space is filled with a dielectric medium having a permittivity 
approximately equal to unit (like water and air). Let upper medium has a negligible density 
and not affects on the motion in the lower liquid. We assume that in the equilibrium state 
the electric charge uniformly distributes at the plane surface with surface density 

0
σ .  

Now in order to calculate the liquid motion caused by capillary-gravitational wave we must 
take into account an effect of electric forces on the free surface. In electro-hydrodynamic 
approximation [Melcher, 1963] the formulation of the problem (3) should be supplemented 
by the equation for the electric potential ϕ  in the field above liquid and appropriate 
conditions at the surface and at the infinity: 

 z > ξ :  0ϕΔ = ; z = ξ : = constϕ ; z :→∞  

2
0- = 4 σ zϕ π∇ e . (41) 

In addition the effect of the electric ponderomotive force 2
04πσ  should be included in the 

condition for pressure: 
 

z = ξ :  ( )
-3/222

2
0 2

ξ ξ
p - 2ρ 4 = -Ǆ 1 + .

x x
ν πσ

⎛ ⎞∂ ∂⎛ ⎞⋅∇ + ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
n n U (42) 

 

We offer to draw attention on a one way of qualitative investigation of properties of the drift 
in depending on value of some parameter (in our case parameter is surface charge). In the 
introduction it was indicate on the physical mechanism responsible for the creation of the 
mean drift. A liquid particle makes approximately circular motion but returns not to initial 
position but is shifted a little in the direction of wave propagation. The shift is occurred due 
to that the lower part of the trajectory is shorter than upper since the motion decays with 
depth. In the viscous liquid these mechanism is responsible for initiating main drift or 
Modified Stokes drift (see 2.4). The Modified Stokes drift initiates Additional drift (see 2.6). 
Thereby the presence of cyclical movements of liquid particles is an important factor 
contributing to the formation of the mean drift. Of course in order to obtain the expressions 
for drift components we have omitted the cyclic component of velocity of a liquid particle. 
But it is important remember that the noncyclic particle’s velocity components that have 
been saved previously had been expressed via cyclic components of the velocity field in the 
liquid. The key role of the cyclic motion manifests itself in fact that in the low viscosity 
approximation all drift components are proportional to the circular frequency of cyclic 
motion (see (32), (33), (40)). More detailed calculations showed that the marked regularity 
holds for arbitrary viscosity too. In general, a drift of a liquid can be created through a 
variety of circumstance but we emphasize that our conclusion relate to the mean drift 
generated by propagation of the capillary-gravitational wave along the surface of a liquid.  
From the above we can conclude that qualitative investigation of the effect of a physical 
parameter on the drift is reduced to the question about influence of the parameter at the 
frequency of the cyclic motion. In other words it is necessary to study the behavior of the 
roots of a dispersion equation depending on value of the parameter. 
The problem (3), (41), (42) easy reduce to the problem of the first order of smallness in wave 
amplitude and then dispersion equation is found by standard method. For considered 
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problem the dispersion equation has already obtained (see for example [Belonozhko & 
Grigor’ev (2004)]) and has same view as equation (11), only the parameter ǚ0 is defined by 
the new formula: 

 ( )2 2
0ǚ = gk 1 +ǂ k - ǂk W ; 

2
04 σ

W =
ρgǄ
π

. (43) 

Here ǂ  as before is the capillary constant of a liquid. The dimensionless parameter W  can 

be regarded as the square of the dimensionless electric charge density in equilibrium state 

when a wave motion at the free surface is absent. On the other hand parameter W  is 

proportional to ratio of electric and capillary forces at the crest of the wave with wave 

number -1k = ǂ  propagating at the free surface. 
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Fig. 5. Dependences of real (a) and imaginary (b) parts of dimensionless complex frequency 

on parameter W  calculated at dimensionless values wave number k' 1=  and at 

dimensionless viscosity ' 0.5ν =  

Typical dependencies of real and imaginary parts of the complex frequency on parameter 

W , calculated by the dispersion equation (11) with taking into account relation (43) are 

plotted at fig. 5a,b. We used dimensionless variable 

( )
* *

Rer
r' =

r r

S
= ; 

( )
* *

Im Sǚǚ ' = =
ǚ ǚ

; 
*

k
k' =

k
; 

*

' =
νν
ν

. 

with characteristic scale 
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3 3

4 4
* * * * 3

1
r = = ;   k = ;  = .

g g

g

ρ ρ γω ν
γ α γ ρ

=  

 

According to work [Belonozhko & Grigor’ev, 2008] the position of the reference points WA 
and WB depicted at the fig. 5 are defined by formulas: 

 ( ) ( ) ( )2
2

A A B B

k
W W k = W 'k' W -

ǂg

ν
ν≡ − = ;  ( )B B

1 1
W W k = + k' ǂk

k' ǂk
≡ = + . (44) 

The fig. 5 show that for every value of wave number k there is a critical value of the surface 
charge density corresponding to condition W = WB(k). If the surface charge density larger 
than the critical value (W > WB), complex frequency is pure real and cyclic motion of liquid 
particle is absent (see curve 5: if W > WB then r′ > 0 and ǚ′ = 0). The liquid motion under 
these conditions can not be a wave. The real part of the complex frequency describes 
increment of well-known instability of the charged liquid surface relative to excess of a 
surface charge [Taylor, 1965; Baily, 1974]. Aperiodic growth over time is only an initial stage 
of the instability appearing owing to what electric forces on the free surface dominate over 
capillary and gravity forces. The experiments have shown that the instability leads to what a 
strongly nonlinear conical projections (Taylor’s cones) are formed on the charged liquid 
surface [Taylor & McEwan, 1965]. From the peak of the cones the emission of small strongly 
charged droplet is occurring. Analyses of expression for WB(k) shows that if condition W > 2 
is valid, there is a range of values k for which W > WB(k) and appropriated small wave 
perturbations (for example thermal fluctuating) are involved in formation of the Taylor’s 
cones. This phenomenon is well-known and underlies the work of different devices for 
electrodispersion of various liquid [Baily, 1974]. 
Thereby if W > 2, we can not speak about any drift flow caused by the propagation of the 
capillary gravitational waves. 
If WA < W < WB, real and imaginary parts of roots of the dispersion equation described by 
curves 3,4. It can be see that under these conditions there are two modes of liquid motion. 
Both modes are aperiodic damping (r′ < 0) and differ only in the damping rate. The cyclic 
motion of the liquid particle is absent (ǚ′ < 0). For both modes initially deformation of the 
liquid surface monotonically diminishes over time till complete disappearing. Liquid 
particles participate only in vertical motion and there is not any horizontal drift. 
If W < WB(k), there are two modes of wave liquid motion with same damping rate and ǚ′ ≠ 0 
(see curves 1,2 at fig.5). One mode ǚ′1 > 0 (curve 1) correspond to wave that is propagating 
in direction Ox and another mode ǚ′2 = −ǚ′1 < 0 (curve 2) describes the wave that is 
traveling in the opposite direction. One can see that for the capillary-gravitational wave 
with wave number k the dimensionless circular frequency ǚ′ (in absolute value) decreasing 
with increasing value of W and vanishes if W ≥ WB(k). As was notice above the drift velocity 
is proportional to the frequency and consequently behaves as it.  
Summarizing the above-said we can conclude that horizontal drift caused by propagation of 
the periodic capillary-gravitational wave with wave number k is possible only under 
conditions W < 2 and W < WB(k) where W and WB(k) is defined by (43) and (44). The first 
condition ensures that liquid surface is not subjected to instability with respect to an excess 
of surface electric charge. The second condition provides circumstances under which 
frequency of cyclical motion of the liquid is not zero. The velocity of the drift flow 
decreasing with increasing of surface charge density and vanishes if values of surface charge 
density is reached quantity so that W = WB(k).  
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We have demonstrated the possibilities of qualitative investigation of behavior of the mean 
drift caused by propagation of capillary-gravitational wave over surface of a viscous liquid 
in dependence on values of certain parameter responsible for supplementary physical effect. 
In any more complicated physical circumstance the qualitative investigation can be carried 
out by similarly. 

3. Conclusion  

Viscous forces play an important role in formation and evolution of the mean horizontal 
drift induced by periodic capillary-gravitational waves propagating over liquid surface. 
There are two components of the mean drift flow caused by the propagation of waves: main 
part that is called the Modified Stokes drift and supplementary part that is named the 
Additional flow or Additional drift. 
At low but nonzero viscosity the Modified Stokes drift behaves almost like classical Stokes 
drift (model of drift phenomenon without a viscosity) at all depths there is only exponential 
decrease in the rate of flow over time due to viscous dissipation. The physical mechanism 
responsible for an appearance of the Modified Stokes drift is same as that of the classical 
Stokes drift. For period of the wave motion a liquid particle makes approximately circular 
motion but returns not to initial position but is shifted a little in the direction of wave 
propagation. The shift is occurred due to that the lower part of the trajectory is shorter than 
upper since the motion decays with depth.  
A considerable contribution to the total drift flow comes from Additional drift into which 
the liquid is entrained by horizontal viscous stresses acting along the direction of propagation 
of the Modified Stokes drift. The horizontal viscous shear stresses appear between adjacent 
horizontal layers since velocity of Modified Stokes drift decreases with the depth. The 
phenomenon of the Additional drift appears exclusively in the model of a viscous liquid and 
is ruled out by the laws of an inviscid liquid flow. 
Velocities of the Modified Stokes drift and the Additional drift are values of the second 
order of smallness in wave amplitude. In present work we have offered an analytical 
procedure of calculation of both drift components.  
Expression for velocity of the Modified Stokes drift consists of two terms. The first term is 
calculated in the same way as in the case of the classical Stokes drift and it is a result of 
special manipulation with products of values of first order in wave amplitude. Thereby, first 
term of the Modified Stokes drift is expressed only via quantities that are found as result of 
calculating in the first order in wave amplitude velocity field caused by propagation of a 
capillary-gravitational wave over liquid surface. 
The second term of the Modified Stokes drift is a special particular solution of the problem 
of calculating of second order in wave amplitude corrections for the velocity field caused by 
propagation of a capillary-gravitational wave over liquid surface. This term is essential only 
in vicinity of liquid surface in the narrow field of viscous boundary layer and negligible in 
deeper layers. In the limit of almost vanishing viscosity the thickness of the surface viscous 
boundary layer becomes nearly zero. At the upper bounder of this layer the first term tends 
to zero and the second term takes care of the correct description of the drift. The best 
agreement of the properties classical and Modified drifts is archived only when one takes 
into account both terms. 
Expression for the Additional drift is derived as a special part of solution of the problem of 
calculating of second order in wave amplitude corrections for the velocity field caused by 
propagation of a capillary-gravitational wave over liquid surface. 
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The procedure developed here for calculating the drift is especially important for applications 
associated with phenomena on the free surface of a liquid with the participation of viscous 
stresses. In particular, the approach proposed here makes it possible to calculate analytically 
the velocity of surface drift caused by wave perturbation for various surface substances 
(surface charge, surface-active substances, etc.) distributed over the free surface. If there is a 
total motion of the upper liquid along the interface between liquids (like wind along surface 
of ocean) then is interesting to study influence of the total upper liquid velocity on the 
arising of drift flow in lower liquid. Especially interesting if total upper liquid velocity is 
sufficient to excite an oscillatory instability which in the case of ideal liquids is known as 
Kelvin-Helmholtz instability. For all cases the qualitative preliminary analysis is helpful 
which is based on what the velocity of drift caused by the wave propagation is proportional 
to frequency of the wave motion and hence supporting information about behavior of the 
drift is contained in dispersion equation of the analyzed problem.  
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