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1. Introduction 

In the soil-plant-atmosphere continuum the major resistance to water flux is the leaf-
atmosphere interface which determine the rate of transpiration for a specific evaporative 
demand. In this scenario, the hydraulic resistance of the different plant tissues is minor; 
however, the hydraulic conductivity of the whole plant is subjected to a tight physiological 
regulation in which the aquaporins role may result fundamental. The expression of a large 
number of aquaporins occurs predominantly in roots and different experimental procedures 
have demonstrated that aquaporins activity is linked to the hydraulics of some species 
during abiotic stress. However, the plants roots hydraulic properties also depend on the 
morphology and anatomy of roots and the length of the absorbing region in addition to the 
influence of aquaporins. These features change during the plant development and in 
response to environmental stimuli by altering the hydraulic conductivity of the root. To 
fully understand root system hydraulics and the contribution of native aquaporins, 
comprehensive studies at different scales are required. In this chapter the definitions used to 
describe the plant hydraulic resistances are mentioned and the influence of the root anatomy 
and morphology on hydraulic conductivity is reviewed. Also, the variations in the hydraulic 
resistances under different abiotic stresses and distinct environmental conditions have been 
explored. Finally, the different properties and characteristics among various measuring 
methods are reviewed. 

2. Hydraulic resistances: the physiological significance 

The water pass from soil though plant to atmosphere has been classically described as a 
system of hydraulic resistors arranged in series (van den Honert, 1948). However, plants can 
vary this resistance (and conductance) of the pathways to maintain the water balance of the 
shoot (Steudle, 2000). When water exists in the vapour phase, the greatest resistance is the 
stomatal aperture. However, in the liquid phase, the root system constitutes a highly 
significant and important resistance to overall flow of water in the plant (Steudle, 2000). 
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A common error in plant water relations is the interchangeable use of hydraulic 
conductance and conductivity although both parameters are related. Hydraulic conductance 
is a measure of the ability of an entity to conduct water, independent of the specific entity’s 
dimensions, whereas hydraulic conductivity is a property of an entity with specified 
dimensions, usually surface area. Conductance or conductivity may be normalized to 
various dimensions of the particular organ or system relevant to the flow-path, thus 
conductance of the root system may be normalized to root length or root weight (Tyree et 
al., 2002). When water transport across a surface is considered (a cell or a root) the concept is 
expressed by surface area to give what is also termed hydraulic conductivity (Lp, m s-1 MPa-

1). Conductivity of a stem segment or petiole can be normalized to xylem cross sectional area 
of a stem segment. Leaf hydraulic conductivity is generally measured as the flux (mmol s-1) 
divided by the gradient in water potential, ΔΨ (MPa), and leaf surface area to give units of 
mmol m-2 s-1 MPa-1 (Sack & Holbrook, 2006). 
Root hydraulic conductivity (Lpr), is one of the major parameters reflecting root water 
uptake ability. It has a close correlation with plant water relations under both normal and 
stressed conditions. The root ability to respond rapidly to fluctuating conditions suggests 
that Lpr may participate in plant adaptation to diverse environments (Steudle, 2000). The 
study of root water uptake has been made progress recently from the anatomical structure 
of the root to molecular level, i.e., aquaporins activity (Steudle, 2000; 2001). Aquaporins are 
transmembrane proteins that belong to the Mayor Intrinsic Proteins (MIP), a large family of 
water channel proteins located in plasma and intracellular membranes and are the main 
determinants of water flow across plant cells and tissues. Aquaporins can be divided into 
different subfamilies depending on the sequence homology and subcellular localization, the 
plasma membrane proteins (PIP, with two phylogenic subgroups PIP1 and PIP2), the 
tonoplast intrinsic proteins (TIP) the nodulin- 26–like intrinsic membrane proteins (NIPs) 
and the small basic intrinsic proteins (SIPs) (Javot et al., 2003; Maurel et al., 2008). 
The dynamic changes in Lpr in response to chemical or environmental stimuli may result 
from modifications of aquaporin abundance or activity (Carvajal et al., 1996; Tournaire-
Roux et al., 2003; Boursiac et al., 2005). However, due to the high plasticity of plant root 
systems both in architecture and metabolism (Liang et al., 1997; Joslin et al., 2000; Linkohr et 
al., 2002; López-Bucio et al., 2003), and the different properties among various measuring 
methods and experimental conditions, the root hydraulic conductivity could be highly 
variable even for the same plant.  
Also, leaves contribute to a substantial part of the hydraulic resistance in whole plants (Sack 
et al., 2003; Sack & Holbrook 2006). Leaf hydraulic conductance may also be linked to 
transpiration efficiency through regulation of water transport by aquaporins and effects on 
mesophyll cell water status (Zwieniecki et al., 2007). In fact, ABA (abcisic acid) controls 
aquaporin PIP levels in the leaf (Morillon & Chrispeels, 2001; Aroca, 2006; Lian et al., 2006; 
Parent et al., 2009), thereby contributing to the leaf hydraulic conductivity (Morillon & 
Chrispeels 2001). However, this is not always the case and it has been reported that an 
antisense inhibition of PIP1 and PIP2 expression did not affect the leaf hydraulic 
conductance in Arabidopsis (Martre et al., 2002).  

3. The root anatomy influence on the hydraulic conductivity 

In the radial pathway, the water absorbed by the roots has to pass through living tissue, 
through the walls of the root before reaching the xylem vessels. In the axial plane, the flow 
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of water occurs along the xylem vessels and tracheids. The relationship between radial and 
axial resistances determines the resistance of the whole root and distribution of water 
uptake (Zwieniecki et al., 2003). The composite transport model of water proposed in the 
roots (Steudle & Frensch, 1996; Steudle & Peterson, 1998) accounts for variable contributions 
of transmembrane (where aquaporins may exert a control) and apoplastic (independent of 
aquaporin activity) pathways to the overall root water uptake, depending on the nature and 
the intensity of the driving force. The model explains why hydrostatic gradients may result 
in higher root hydraulic conductivity (Lpr) than for osmotic gradients (Steudle, 2000). 
However, higher root Lpr for hydrostatic than for osmotic gradients is not always observed 
(Bramley et al., 2007b). For example, Lpc of epidermal and cortical cells was much greater 
than Lpr in Hordeum distichon and Phaseolus coccineus roots, indicating that water flow 
mainly via the cell-to-cell pathway (Steudle & Brinckmann, 1989). By contrast, analogous 
measurements on maize (Zea mays) roots revealed a predominantly apoplastic flow (Steudle 
et al., 1987). Comparing the measured values of Lpr and Lpc for each cortical cell layer 
indicated that radial water flow through wheat (Triticum aestivum) roots occurs by a similar 
contribution of the parallel pathways, but radial water flow in the roots of narrow-leafed 
lupin (Lupinus angustifolius) and yellow lupin (Lupinu luteus) appears to be predominantly 
apoplastic (Bramley, 2006). 
In addition, the dynamics of root permeability to water has been also associated with the 
anatomical and morphological features (Kramer, 1983; Moreshet & Huck, 1991). In cereal 
roots, a maximum of water absorption in the region of less than 100 mm from the root apex 
has been observed (Sanderson, 1983) since the water flow resistance is higher in both the 
radial and the axial pathway in the root zones where there is a developed xylem (Steudle, 
2001). Also, the Lpr of wheat roots decreased with the distance from the root tip, indicating 
that water absorption occurs preferentially in the apical region (Bramley, 2006).  
Rieger and Litvin (1999) found that the root diameter was negatively correlated with Lpr in 
five species and that drought stimulated the suberisation and other anatomical changes that 
reduced the Lpr.  Thus, the apoplastic pathway can be inhibited by the presence of 
Casparian bands, which are deposits of suberin or lignin in the cell wall (Steudle, 2000). 
Casparian bands occur in radial and transverse walls of the endodermis and exodermis 
(Steudle & Peterson, 1998). Hydraulic conductivity uses to decline with root age which is 
likely due to suberization and loss of the cortex reducing surface area available for water 
uptake (Wells & Eissenstat, 2002). Frequently, suberized layers may assist in reducing water 
loss to soil during water deficits. Huang and Eissenstat (2000) determined that structural 
differences in the radial pathway were the main factors that determined the Lpr in the roots 
of citrus rootstocks. In maize plants the development of an exodermis in the roots reduced 
the radial hydraulic conductivity (Hose et al, 2000; Zimmermann et al, 2000). By contrast, 
Steudle et al. (1993) demonstrated that the endodermis of young maize roots did not affect 
the Lpr. In a similar way, Barrowclough et al. (2000) found that in the roots of onion plants 
(Allium cepa), the highest values of radial hydraulic conductivity were correlated with the 
presence of exodermis. Thus, the anatomical changes are slow and depend on the plant 
growth and the genotype, and can act as a survival strategy to reduce long-term Lpr when 
environmental changes are slow. 
In addition, depending on the length of the root species the absorption region can change 
(Kramer, 1983). For example, the wheat root length is two to ten times higher than the 
lupino plants (Gallardo et al., 1996). However, despite these differences in root length, the 
roots of eudicotyledon species tend to have a higher specific rate of water uptake than 

www.intechopen.com



 
Hydraulic Conductivity – Issues, Determination and Applications 

 

106 

cereals. Moreover, these higher rates of water absorption appear to be due to greater 
hydraulic conductivity (Bramley, 2006; Gallardo et al., 1996) as occurred in wheat roots 
where aquaporin activity increased causing an overshoot in Lpr (Bramley et al., 2010).   
Although it was believed that the relation between root water uptake and Lpr was due only 
to differences in axial and radial anatomy (Hamza & Aylmore, 1992a; Gallardo et al, 1996), 
the discovering of the aquaporins supposed a tight regulation mechanism of water flux. 
Since a significant proportion of radial flow of water occurs from cell to cell through the cell 
membrane, Lpr can be controlled by the activity of aquaporins. Thus, measurements of the 
radial hydraulic conductivity after removal of tissue layers and the application of mercury 
have shown variable activity of aquaporins in different regions of Agave deserti, where 
aquaporins were to be active in regions associated with living cells with high metabolic 
activity (Martre et al., 2001; North et al., 2004). Also, in Arabidopsis thaliana roots the relative 
contribution of the apoplastic pathway increased when aquaporin activity was inhibited by 
mercury treatment which was reflected in L0 (Martinez-Ballesta et al., 2003).  
Finally, the absorption of water for several or all of the individual roots can contribute to Lpr 
of the entire root system (Bramley, 2006). There is also evidence that individual roots are 
capable of varying its hydraulic conductivity. In several experiments Vysotskaya et al. 
(2004a, 2004b) removed four of the seminal roots of durum wheat (Triticum durum) and an 
increased Lpr of the remaining roots was observed maintaining the shoot water supply.  

4. Hydraulic conductivity and environmental stress 

It is known that roots offer the greatest resistance to water flow and that the hydraulic 
conductivity of the root (Lpr), may be affected by diverse forms of abiotic stress. Although 
the hydraulic conductivity of the tissues could be regulated by changes in the level of 
specific aquaporins, regulation could also occur by changing the activity of these proteins 
(Carvajal et al., 2000; Zimmermann et al., 2000). Thus, the ability to increase or decrease the 
water permeability of a cell seems to justify the enormous effort in expressing large amounts 
of these proteins (Schäffner, 1998). However, water uptake by roots is a variable process that 
depends on the structure and anatomy of roots which, in turn, is affected by environmental 
factors such as drought, temperature and heavy metals (Azaizeh et al., 1992; North and 
Nobel, 1996; Peyrano et al., 1997; Schreiber et al., 1999).  

4.1 Water stress 

Some stresses, such as drought, could be perceived by the roots and transduced to the aerial 
part as a hydraulic signal reducing cell turgor in the leaves (Christmann et al., 2007). This 
change increases the leaf ABA levels and subsequently induces the stomatal closure. The Lpr 
drop due to the water deficit could amplify this root-shoot signal, decreasing finally the 
plant transpiration rate. It has been found a correlation between Lpr and the transpiration 
rate for eucalyptus (Franks et al., 2007) or grapevine (Vanderleur et al., 2004). However, 
under specific physiological context, stomatal regulation and Lpr are uncoupled and more 
research about the root-shoot hydraulic signalling is necessary. Thus, it has been reported 
than under low evaporative demand the stomatal conductance was not affected by the 
application of aquaporin inhibitors on roots. Consequently, transpiration was steady and 
the water potential gradient between the root medium and the xylem at the leaf base was 
increased and counteracted the Lpr reduction. However, this chemical manipulation of root 
hydraulic conductivity caused simultaneous effects on leaf growth rate and on cell turgor in 
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the growing zone suggesting that turgor and growth are coupled (Ehlert et al., 2009). By 
contrast, under higher evaporative demand, which induced a dramatic decrease in leaf 
water potential, Lpr was reduced to values similar to those observed in maize in field 
conditions (Tardieu & Simonneau, 1998). Also, previous studies of aspen (Populus species) 
(Wan & Zwiazek, 1999) and pepper (Capsicum annuum) (Martinez-Ballesta et al., 2003a) also 
reported that, on a slightly longer term exposure of the roots to HgCl2 induced a significant 
decrease in stomatal conductance. 
The effects of drought on the root hydraulic conductivity depend on the stress level 
(Siemens & Zwiazeck, 2004) and plant genotype (Saliendra & Meinzer, 1992). If water 
uptake becomes limiting, the up-regulation of aquaporins expression could enhance cellular 
water permeability, increasing root hydraulic conductivity, relieves osmotic pumps, and 
supports the survival during dry periods (Siefritz et al., 2002). 
Gene expression studies in various plant species have shown variable responses of 
aquaporin isoforms to water stress, with both up- and down-regulation of genes evident 
(Alexandersson et al., 2005; Jang et al., 2004; Sarda et al., 1999; Suga et al., 2002; Yamada et 
al., 1997). The down-regulation of PIP gene expression and Lpr by drought stress may result 
in reduced membrane water permeability, and may promote cellular water conservation 
during periods of dehydration stress (Jang et al., 2004). In desert plants, the closure of water 
channels during drought would help prevent root water loss to a soil that generally has a 
lower water potential than does the plant (North et al., 2004). In leaves, roots, and twigs of 
olive (Olea europaea), OePIP1;1, OePIP2;1, and OeTIP1;1 were significantly reduced at 3 and 
4 weeks after water was withheld (Secchi et al., 2007). Overexpression of AtPIP1b in 
transgenic tobacco (Nicotiana tabacum) caused plants wilting faster when water was withheld 
(Aharon et al., 2003). In contrast, Siefritz et al. (2002) observed reduced resistance to water 
stress in antisense tobacco plants with reduced expression of NtAQP1, the homologous 
aquaporin. Recently, Sade et al. (2009) showed that the tonoplast aquaporin SlTIP2;2, is a 
key to isohydric to anisohydric behaviour conversion, increasing transpiration under 
normal growth conditions and limiting the reduction in transpiration under drought and 
salt stresses. This characteristic attributable to overexpression of the TIP isoform SlTIP2;2 do 
not appear to exist in many PIP-overexpressing plants.  
Effects of drought on root hydraulic conductivity will then have different consequences on 
whole hydraulic resistance and on leaf water potential depending on species. Isohydric 
cultivars are those that keep their leaf water potential above a certain threshold regardless of 
soil water availability or atmospheric water demand. The finding of no variation in 
transcript level of most important root PIP aquaporins and suberisation implies a lower 
hydraulic conductance in water deficit conditions.  This supports the hypothesis of tight 
control on stomatal regulation that is typical of isohydric cultivars, which aims to avoid 
excessively negative xylematic water potential and, therefore, cavitation (Schultz, 2003a; 
Soar et al., 2006; Vandeleur et al., 2009). Anisohydric cultivars are those in which leaf water 
potential drops with decreasing soil water availability or increasing atmospheric water 
demand.  

4.2 Salinity 

It has been reported that salinity affect negatively to the hydraulic conductivity (Munns & 
Passioura, 1984; Joly, 1989). Although the reductions in root hydraulic conductivity or 
hydraulic conductance of salinised plants have been suggested as being due to the 
hyperosmotic stress and ionic imbalance caused by the high apoplastic concentrations of 
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Na+ and Cl– (Evlagon et al., 1990), it has been suggested that these reductions could be due 
to changes either in the aquaporins functionality or in the amount of this protein in the 
plasma membrane (Carvajal et al., 2000).  
In any case, the L0 results for the plant roots cannot be always explained in terms of 
aquaporins abundance in the plasma membrane, as shown in several reports (López-Pérez 
et al., 2007; Muries et al., 2011). Thus, in root cells of Brassica oleracea plants grown with 
NaCl, apparent disagreement between L0 values and PIP protein abundance has been 
observed (Muries et al., 2011). In these plants the most-important modification in the 
anatomy of the root was phi thickening, which increased in salinity-stressed plants and 
could be a physical barrier to apoplastic water transport (López-Pérez et al., 2007). The 
down-regulation of L0 under saline conditions and the increased protein amount 
observed could be interpreted as a mechanism to restore and compensate water uptake by 
roots. Other explanations for the disagreement between L0 values and PIP protein 
abundance under stressing conditions could be differences in the contribution of PIP 
isoforms to the L0 values or different PIP localisation along the root axis (Benabdellah et al., 
2009) or among cellular membranes (Boursiac et al., 2005; Zelazny et al., 2007). Furthermore, 
a reduction of the phosphorylation state of PIP proteins could cause the observed reduction 
in L0 (Wilder et al., 2008) and this and other post-translational modifications as gating 
control mechanism may be considered. 

4.3 Anoxia 
Soil compaction or flooding which restrict oxygen diffusion in the soil, result in root anoxia 
which, in turn, down-regulates Lpr in certain plant species. Thus, Zhang & Tyerman (1991) 
using the cell pressure probe showed a 10-fold decrease in the hydraulic conductivity of root 
cortical cells of wheat under anoxia conditions. These changes in the root hydraulics largely 
reflected the variations in the transport properties of root cell membranes. Thus, anoxia may 
reduce the rate of active pumping of nutrients without affecting the passive permeability of 
roots. Because of the reduction of root hydraulic conductivity, anaerobic conditions should 
have great consequences for the supply of the shoot with water and, hence, for the whole 
plant water status. Aquaporins that are highly expressed in roots and facilitate water 
transport across membranes tended to be down regulated after a few hours of hypoxia 
(Bramley et al., 2007b). Also, the closure of aquaporins in membranes decreased the 
hydraulic conductivity and hence increased the half-time of the rate of water exchange 
across the cell (Bramley et al., 2010). 
In Arabidopsis plants, hydraulic conductivity inhibition under anoxia or O2 deprivation by 
the gating of aquaporins was related to cytosolic acidosis (Tournaire-Roux et al., 2003). 
Thus, the closure of the plant plasma membrane aquaporin was triggered by the 
protonation of a conserved hystidine residue under anoxia conditions (Tournaire-Roux et 
al., 2003). Similarly, in spinach an acidification of the cytosol due to anoxia, would cause a 
protonation of His 193 in loop D of SoPIP2;1 thereby closing the channel (Törnroth-
Horsefield et al., 2006). Also, it has been characterized two protein kinases phosphorylating 
Ser 115 and Ser 274 in SoPIP2;1 which optima pH reflects the normal cytosolic pH (Sjövall-
Larsen et al., 2006). Thus, inactivation of these kinases due to an acidification of the cytosol 
would lead to a dephosphorylation of Ser115 and Ser274 of SoPIP2;1 and represent an 
alternative mechanism for aquaporin closing (Törnroth-Horsefield et al., 2006). 
These changes in cytosolic pH and H2O2 have recently emerged as cellular signals triggered 
by various external stimuli and mediating pronounced and rapid changes in Lpr (Aroca et 
al., 2005; Lee et al., 2004a; Tournaire-Roux et al., 2003). 
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4.4 Low temperatures 

Also, the root system can respond very quickly to changes produced by low temperatures 
through the variations in its root hydraulic conductivity (Fennell & Markhart, 1998). 
Chilling induced water stress in plants and it was initiated by the decreased of 17-23% in the 
root hydraulic conductance followed by a large decrease in leaf water and turgor potential 
(Aroca et al., 2001). Thus, the water deficit is caused by a reduction in the root water uptake 
greater than the leaf transpiration rate during chilling (Aroca et al., 2001). The effect of 
chilling on the root hydraulic conductivity can be attributed to changes in abundance 
and/or activity of aquaporins (Aroca et al., 2004; Cochard et al., 2007). Thus, in tulip Azad et 
al. (2004) identified the temperature as an environmental stimulus that induced 
phosphorylation or dephosphorilation of aquaporins accompanied by changes in the cells 
water permeability. Reversible phosphorylation is considered as a potent mechanism for 
plant aquaporin regulation, during development and in the response of plants to 
environmental stimuli (Luu & Maurel, 2005). 
Aroca et al. (2001) reported that chilling-tolerant maize genotype showed an acclimation of 
Lpr and root hydraulic conductance was recovered in chilling-tolerant but not in chilling-
sensitive varieties. Lee et al. (2004b) showed that in cucumber (Cucumis sativus), a cold 
sensitive species, a brief exposure to low temperature reduces root pressure, hydraulic 
conductivity, and active nutrient transport. These authors also postulated that changes in 
the activity of aquaporins underlie the changes in hydraulic conductivity (Aroca et al., 2005; 
Lee et al., 2004a). Thus, it was concluded that water permeability of cucumber root cell 
membranes was related to changes in the activity (open/closed state) of aquaporins that 
were effectively at low temperature (Lee et al., 2005). 
In addition to the aquaporins, increased water viscosity accounted for part of the decrease in 
the L0 early during chilling (Matzner & Comstock, 2001). Thus, it has been suggested that it 
is the result of low-temperature-induced alteration of membrane properties that lowers the 
hydraulic conductance of the symplastic component of radial root water flux (Sanders & 
Markhart, 2001). 

5. Effect of light intensity on hydraulic conductivity  

The plant water status is constantly changed by diurnal variations of light intensity as the 
stoma opening to fix CO2 is occurring. Therefore, as plants lose substantial amounts of water 
using the same pathway, they have to develop strategies to optimize the use of water 
efficiently in response to changes in the light regime, such as variations in hydraulic 
conductivities of the root (Lpr) and hydraulic conductance of the leaf (Kleaf) (Postaire et al., 
2010).  
It is well-described that plant leaves respond to light in a short time scale by adjusting leaf 
hydraulic efficiency. There is also a general consensus that up- or down-regulation of water 
channels in the plasma membrane of leaf cells plays a central role in the underlying 
mechanisms. In many plant species it has been reported that the Kleaf, can be increased 
several folds by high irradiance (Nardini et al., 2005, 2010; Lo Gullo et al., 2005; Sack & 
Holbrook, 2006; Cochard et al., 2007) and can depend on both light duration and intensity 
(Sellin et al., 2008). Other experiments showed no effect of light conditions on Kleaf as it 
occurs in laurel in laboratory experiments (Laurus nobilis) (Cochard et al., 2004) or on Klam 
(leaf lamina hydraulic conductance) of trembling aspen trees (Voicu et al., 2009). Despite of 
it, there is current agreement that aquaporin activation and/or expression plays a role in the 
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underlying mechanisms as the increase in Kleaf (Nardini et al., 2005; Voicu et al., 2008). In 
addition, other studies suggest that this light-induced enhancement involves expression or 
activation of plasma membrane aquaporins in mesophyll or bundle sheath cells (Tyree et al., 
2005; Cochard et al.; 2007, Voicu et al., 2008). This idea is supported by the results obtained 
by Cochard et al. (2007) who found a very good kinetic correlation between the increase in 
Kleaf and the increase in two walnut aquaporin (JrPIP2,1 and JrPIP2,2) expression during a 
transition from dark to high light. In the same way, pressure probe measurements revealed 
that the effect of light on leaf water transport was mediated in part through changes in cell 
hydraulic conductivity (Lpc) in midrib parenchyma cells of maize leaves (Kim & Steudle, 
2007) where an increasing light intensity increased both Lpc and aquaporin activity. 
However higher light intensities (800 and 1800 μmol m-2 s-1) dramatically decrease Lpc 
probably due to an oxidative gating of aquaporins by ROS (Kim & Steudle, 2009). There 
should be an optimal light intensity to maximize water flow across leaf cells, but enhanced 
water flow could be inhibited at a certain light intensity.  
Although recent findings showed an inhibition of aquaporin-mediated water transport in 
tobacco and bur oak leaves exposed to high irradiance (Lee et al., 2009; Voicu et al., 2009), 
these papers rather indicate that regulation of the aquaporin-mediated water transport 
processes is more complicated and can not always be explained merely by changes in the 
transcript level. On the other hand, it has also been shown that exposure of Arabidopsis 
plants to darkness increased the hydraulic conductivity of excised rosettes (Kros) by up to 
90% and enhanced the transcript abundance of several PIP genes, including AtPIP1;2 which 
represent a key component of whole-plant hydraulics (Postaire et al., 2010). 
The impact of high irradiance on stem (Kstem) and leaf lamina (Klam) hydraulic conductance 
has also been demonstrated with an increase in Kstem (field-grown laurel plants - Nardini et 
al, 2010; silver birch - Sellin et al., 2010) and in Klam (Voicu et al., 2008) whereas some data 
suggest that petiole hydraulic conductance (Kpet) was unchanged upon illumination (Voicu 
et al., 2008). The quality of light was also found to have an effect in Klam with a higher 
increase ranked in descending order as follows, white, blue and green, red and amber light, 
after  a  30-min exposure to high irradiance (Voicu et al., 2008) but not in Kpet. Neither of 
these studies demonstrated a direct involvement of the aquaporins on hydraulic 
conductance changes. 

6. Hydraulic conductivity and biological rhythm 

The plant water status is not only challenged by light intensity or darkness but also by 
diurnal variations (biological rhythm). Since the transport of water and certain other small 
solutes is facilitated by the function of aquaporins, whose expression and functionality 
follows the changing demands of the plant physiology during the day or night, it is not 
surprising that root hydraulic conductivity which is indicative of plant water uptake may 
also be regulated in a day/night-dependent manner and modified by aquaporin activity 
(Siefritz et al. 2002). In classic experiments, it was observed that the root hydraulic 
conductivity declined towards the end of the light period and rose again at the end of the 
dark period (Parsons & Kramer, 1974). In addition, a diurnal variation of Lpr was shown in 
young roots of Phaseolus coccineus (Peters & Steudle, 1999) and in excised roots of the legume 
Lotus japonicus grown in aeroponic (mist of nutrient reservoir around the plant roots) or in 
sand culture (Henzler et al., 1999) where Lpr was found to vary over a 5-fold range during a 
day/night cycle, with a maximum around noon. This was correlated to the expression of a 
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putative PIP1 aquaporin (Henzler et al., 1999) probably due to the conductivity of 
membranes of endodermal and stellar cells rather than first four cell layers of the cortex 
where there was no evidence of any diurnal fluctuation. 
Diurnal changes in Kleaf have been reported in numerous species, but, in most cases, Kleaf 

was increased during the day, concomitantly to a higher transpiration demand (Nardini et 
al., 2005; Tyree et al., 2005; Sack & Holbrook, 2006; Cochard et al., 2007). A midday 
depression of Kleaf has been reported in the tropical tree species Simarouba glauca (Brodribb 
& Holbrook, 2004), but in this case, it was due to a vulnerability of the vascular system to 
cavitation rather than aquaporin regulation. Contrary as it occurs in roots, a higher 
expression of most of the ZmPIP genes during the first hours of the light period than at the 
end of the day or at night (Hachez et al., 2008) was correlated with changes in the membrane 
water permeability measured using a cell pressure probe in maize leaves (Heinen et al., 
2009). 

7. Effect of plant nutrition on hydraulic conductivity 

An excess or absence of the main elements in plant nutrition can cause disorders in some 
parameters of water relations such as hydraulic conductance of roots and the activity of 
aquaporins at the cellular level (Clarkson et al., 2000). 
Several works revealed that both N- and P- deficient conditions decreased the Lpr (Carvajal 
et al., 1996; Shaw et al., 2002; Shangguan et al., 2005; Fan et al., 2007) and the Lpc (Radin & 
Matthews, 1989) in many plant species. This suggests that the lowered root Lpr of N-, or P-
deficient plants may be due to the decreaseds water channel activity or abundance on the 
plasma membrane (Carvajal et al. 1996, 1998; Clarkson et al., 2000; Shangguan et al., 2005). 
Such a decrease has also been observed in SO42--deprived barley (Hordeum vulgare) roots, 
where Lpr decreased to 20% of controls over a 4-d period (Karmoker et al. 1991) On the 
other hand, Mg2+ and K+ starvation produced a positive effect on L0 (Cabañero & Carvajal, 
2007) and Lpr (Benlloch-González et al., 2010) respectively. Nevertheless, available data 
regarding the effect of K+ deprivation on aquaporin activity are sparse and contradictory. 
Prolonged deprivation is reported not to lead to any increase in the activity of mercury-
sensitive aquaporins in plant roots of several plant species (Maathuis et al., 2003; Cabañero 
& Carvajal, 2007; Benlloch-Gonzalez, 2009), even though a greater PIP and MIP aquaporin 
activity has been observed in the early stages of deprivation (Maathuis et al., 2003). This 
would suggest that transcriptional regulation of aquaporins by low external K+ at early 
stages could provide a potential means of preventing osmotic stress during long-term K+ 
deprivation. 
Concerning nutrient supply or excess, Adler et al. (1996) were among the first to suggest 
that lower Lpr under NH4+ supply was due to an effect on aquaporin activity. In addition, 
the excess of nutrients such as of K+ and Ca+ produced a toxic effect on L0 in agreement with 
aquaporin functionality in pepper plants (Capsicum annuum L.) (Cabañero & Carvajal, 2007) 
while NO3- induction of root Lpr in maize was not correlated with aquaporin expression 
(Gorska et al., 2008). 

8. Different methods for root hydraulic conductivity measurements 

Root resistance is an important parameter in determining plant water relations and 
influencing whole plant responses to multitude of environmental changes and stress 
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situations, as it accounts for a significant fraction of the entire hydraulic resistance in most 
plants. Methods for determining the hydraulic conductivity of the entire root system relate 
the ratio of xylem sap flow, or change in flow, to the difference in water potential, 
hydrostatic pressure or osmotic potential gradient across the root system, or change of it. 
These methods include transpirational water flow, osmotically induced flow and 
hydrostatic pressure-induced flow through the root xylem. Hydrostatic pressure may be 
applied either to the soil or root medium to induce root exudation (Martínez-Ballesta et al., 
2003) or the root xylem through the cut stem surface following excision of the shoot, to 
induce reverse flow through the roots to the surrounding medium (Frensch & Steudle, 1989; 
Zhu & Steudle, 1991; Garthwaite et al., 2006; Knipfer et al., 2007).  

8.1 Evaporative water flow method 

Determination of the root hydraulic conductivity by means of the transpirational water flow 
method involves the ratio of transpiration to the water potential difference induced across 
the xylem (root surface to xylem) of the root system. By this method, the measurements are 
carried out under undisturbed conditions, since the use of transpiration require that the 
hydraulic pathway is followed by transpiration (Tsuda & Tyree, 2000) without imposed 
gradients. This method is very practical in the field conditions but its accuracy is limited by 
the relatively low precision by which the water potential and transpiration can be measured 
in the field, particularly with large plants. However, under controlled environment 
conditions with adequate evaporative demand, steady-state transpiration and differences in 
the osmotic pressure may be readily attained, preventing changes in tissue water content.  

8.2 Hydrostatic pressure-induced root exudation method 

Measurements of root hydraulic conductivity by pressurising roots are one of the methods 
most frequently used under laboratory conditions. The entire root system of a detached pant 
is sealed in a pressure vessel with the cut stem surface exposed to ambient pressure through 
a seal in the top. Hydrostatic pressure is applied to the root system inducing nutrient 
solution to flow through the root to the unpressurised cut stem surface (Martinez-Ballesta et 
al., 2003). The method imposes a unnatural gradient in water potential, and could lead to 
irreversible changes in the soil-root interface, so that root conductance determined by this 
method may not accurately reflect the true value under natural conditions, particularly with 
root systems grown in soil. However, this method, in plants grown in hydroponic solution, 
the root exudation is more readily attained and more linearly related to applied pressure. 

8.3 Natural exudation method 

Collecting root exudates under natural root pressure for measuring hydraulic conductance 
is also widely used (López-Perez et al., 2007). However the flow rate detected by this 
method hardly represents the natural status of transpiring plants (Emery and Salon, 2002). 
Using the hydrostatic pressure chamber to force xylem sap out from decapitated plants, it is 
difficult to know exactly how high the applied pressure should be, because different values 
of over pressure can result in different xylem water fluxes (Else et al., 1995). In any case, the 
flow rate is influenced by the inherent hydraulic conductivity of root systems, measured as a 
conductance. Therefore different values will be obtained, those using the pressurising 
chamber will be higher as a consequence of pressurizing the roots. In this case, water 
movement will occur through the apoplast to a greater extent than when the measurements 
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are obtained by natural exudation. Therefore, the resulting root hydraulic conductance will 
be higher.  

8.4 Root pressure probe method  

Root pressure probe (RPP) is one of the most reliable techniques able to measure hydraulic 
conductivity of plant roots. RPP have been used to measure root pressure and water and 
solute flows (Steudle, 1993). Other important issues is the ability for separating the axial 
hydraulic resistance of xylem vessels from that related to flow across the root cylinder and 
to measure the radial hydraulic resistance of individual root zone (Lee et al., 2004b). In this 
method, the excised segment of the root or whole root system (excised close to its base) from 
plants is fixed to pressure probe for continuously recording of the root pressures with the 
aid of a pressure transducer. Water flow across the root could be induced either by changing 
the hydrostatic pressure in the probe by moving a metal rod with the aid of a micrometer 
screw or by exchanging the root medium by a medium containing a test solute of known 
osmotic pressure (Frensch and Steudle, 1989; Lee et al., 2004b). Transient responses in root 
pressure allow Lpr to be calculated from rate constant or half-times of pressure relaxations 
(Steudle et al., 1987).  
Root pressure probe has been used to work out the water and solute permeability of roots. 
As for some species, the results indicate a considerable cell-to-cell component, whereas in 
others, the apoplast seemed to be preferred (López-Perez et al., 2007). However, the relative 
contribution of pathways also depended on the nature of the forces applied. In osmotic 
experiments, the cell-to-cell path was preferred, whereas in hydrostatic experiments the 
flow was predominantly in the apoplast. The results obtained with the pressure probe 
measurements indicated the consistence of the technique since the extended osmometer 
model in which the osmotic barrier in the root is looked at a composite membrane system. 
However, in spite of all these methodologies, the mechanism of water ascent has been the 
subject of much controversy during years. The development of thermocouple 
psychrometers and of the pressure chamber technique permitted indirect estimates of the 
xylem pressure on a large number of species.  
A major difficulty with the use of psychormeters approach is the extreme sensitivity of the 
measurement to temperature fluctuations. For example, a change in temperature of 0.01°C 
corresponds to a change in water potential of about 0.1 MPa. Thus, psychrometers must be 
operated under constant temperature conditions. For this reason, the method is used 
primarily in laboratory settings. Because of its feasibility and its simplicity, the pressure 
chamber technique is widely used by plant physiologists, but also by farmers to measure 
plant water stress and schedule irrigation. For many species, hydraulic conductance, as 
determined with these techniques, typically ranges between −1 and −2MPa. Also, direct 
measurements of hydraulic conductance have been attempted by the pressure probe. In this 
case, the pressures that were recorded with this technique were much less negative (in the 
range of 0 to −0.5MPa) than the values produced by the pressure chamber, although new 
experiments have recently been conducted with the pressure probe (Wei et al., 1999) and 
were found to agree with the pressure chamber. 
Thus by the pressure probe the hydrostatic pressure of individual cells may be measured 
directly. However, the primary limitation of this method is that some cells are too small to 
measure. Furthermore, some cells tend to leak after being stabbed with the capillary, and 
others plug up the tip of the capillary, thereby preventing valid measurements. However, 
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technical problems with cavitation limit the measurement of negative pressures by this 
technique. 

9. Conclusion 

Root hydraulic conductivity is one of the main parameters that reflect the capacity of the 
root to uptake water. It confers to the root the ability to respond rapidly to fluctuating 
conditions suggesting that this parameter may be involved in the plant adaptation to 
diverse environments. After the aquaporins discovery the dynamic changes in the hydraulic 
conductivity were attributable to the modifications of the abundance or activity of these 
water channels. However, root plasticity and its ability to adapt the water uptake to the 
variable environment is also the consequence of root architecture and metabolism. Thus, the 
anatomical and morphological features of the roots, such as the diameter or length, the cell 
layer and its degree of suberisation and the radial and axial water transport pathway have a 
great influence on the hydraulic conductivity. Thus, the heterogeneity of aquaporins and of 
root hydraulic properties feed each other and play critical roles in the integrated root 
functions. 
Several abiotic stresses such as drought, salinity, soil compaction or flooding and low 
temperatures as well as the light intensity, diurnal variations and the nutritional status affect 
the hydraulic conductivity of the tissues changing their resistance to water flow and where 
the role of aquaporins may be essential. The combination of aquaporin genetics with 
integrated plant physiology will provide critical insights into the hyadraulic conductance 
architecture in response to these stresses. 
Regarding hydraulic conductance methodologies the Scholander chamber is the best option 
for field measurements, however, the validity of the pressure chamber technique has been 
seriously challenged and new experimental evidences are needed to rehabilitate the 
technique. 
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