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1. Introduction  

The involvement of a humoral factor (named as haemopoietin) in the regulation of 
haematopoiesis, was firstly described in literature in 1906 (Carnot  Deflandre, 1906). 
However, only 40 years later a linkage between erythropoietin (EPO) and erythropoiesis 
was described (Bondsdorff  Jalavisto, 1948), and only in the 1950s was established that the 
kidney is the main site of production of EPO (Jacobson, 1957). In 1977, EPO was purified 
from urine collected from patients suffering from aplastic anaemia (Miyake, 1977). The 
nucleotide sequence of human EPO gene was determined in 1985 and the cloning and 
expression of the gene led to the production of recombinant human EPO (rhEPO) (Lin, 1985; 
Jacobs, 1985). 
EPO is an endogenous cytokine that is essential in erythropoiesis regulation. This 
glycoprotein has a molecular mass of 30-35 kDa, 165 amino acids and is heavily 
glycosylated, with the carbohydrate moiety comprising approximately 40% of its weight. 
There are three N-terminal glycosylation sites at aspartate residues 24, 38 and 83, and one O-
linked acidic oligonucleotide side-chain at serine 126. Human EPO has two disulphide 
bridges, between cysteines 7 and 161, and between cysteines 29 and 33, which are important 
in maintaining its in vivo bioactivity and the correct shape for binding to the EPO receptor 
(EPOR) (Lai, 1986).  
The regulation of EPO gene expression occurs essentially at the transcriptional level by 
DNA-dependent mRNA synthesis and gene activation. In kidneys, hypoxia gives rise to 
increased EPO expression, stimulated by the DNA binding protein, hypoxia inducible 
factor, which binds to the 3´ flanking region of EPO gene (Wang  Semenza, 1993). EPO is 
secreted into the plasma and, within the bone marrow, binds to EPOR in the surface of 
erythroid progenitor cells. EPOR activation follows a sequential dimerization activation 
mechanism involving the Janus kinase 2 (JAK2), and phosphorylation and nuclear 
translocation of signal transducer and activator of transcription 5 (STAT5) pathways (Fig. 1).  
The first clinical trial using rhEPO in the treatment of the anaemia of end-stage renal failure 
was published in 1987 (Eschbach, 1987), and, nowadays, rhEPO is currently used for the 
treatment of that anaemia in haemodialysis (HD) patients (Kimel, 2008; Obladen, 2000), as 
well as for a variety of other clinical situations associated with anaemia. 
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Fig. 1. Schematic diagram showing signalling pathways activated by EPO receptors 
(adapted from Marsden, 2006). 

Anaemia is a common complication that contributes to the burden of HD patients. It has 
also a negative impact on cardiovascular system, cognitive function, exercise capacity and 
quality of life, resulting in a significant morbidity and mortality in these patients. The 
introduction of rhEPO therapy for treatment of anaemia of HD patients led to a significant 
reduction in anaemia and to an improvement in patients’ quality of life (Locatti, 1998; 
Bárány, 2001; Locatelli, 2004a; Smrzova, 2005). There is, however, a marked variability in the 
sensitivity to rhEPO, with up to 10-fold variability in dose requirements to achieve 
correction of the anaemia. Furthermore, around 5-10% of the patients show a marked 
resistance to rhEPO therapy (Bárány, 2001; Macdougall, 2002a; Schindler, 2002; Smrzova, 
2005). The European Best Practice Guidelines define “resistance to rhEPO therapy” as a 
failure to achieve target haemoglobin levels (between 11 and 12 g/dL) with maintained 
doses of rhEPO higher than 300 IU/Kg/week of epoetin or of higher doses than 1.5 
g/Kg/week of darbopoietin-alfa (Locatelli, 2004b).  
Resistance to rhEPO has been reported as an independent risk factor for mortality in HD 
patients, due to both the inability to achieve the target haemoglobin levels and to the 
administration of high rhEPO doses, which have been associated with increased risk of 
myocardial infarction, congestive heart failure and stroke.  
The reasons for the variability in rhEPO response are unclear (Foley, 1996; Spittle, 2001; 
Drueke, 2002; Cooper, 2003; Himmelfard, 2004; Smrzova, 2005). There are several conditions 
reported as associated with rhEPO resistance, namely, inflammation, oxidative stress and 
iron deficiency, as major causes (Foley, 1996; Gunnell, 1999; Spittle, 2001; Drueke, 2002; 
Cooper, 2003; Himmelfard, 2004; Pupim, 2004; Smrzova, 2005), and blood loss, 
hyperparathyroidism, aluminium toxicity and vitamin B12 or folate deficiencies, as minor 
causes. However, exclusion of these factors does not eliminate the marked variability in 
sensitivity to rhEPO (Macdougall, 2002b). In this chapter, a revision of the mechanisms 
proposed to underlie the resistance to rhEPO therapy will be performed, with particular 
emphasis on the role of inflammatory cytokines, neutrophil activation, iron status, and 
erythrocyte damage. 
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2. Inflammatory cytokines 

Inflammation is the physiological response to a variety of noxious stimuli, such as tissue 
injury caused by infection or physical damage. It is a complex process that involves the 
participation of several cells and molecules, and may present different intensities and 
duration. 
Inflammation usually refers to a localised process. However, if the noxious stimulus is 
severe enough, distant systemic changes may also occur, and these changes are referred as 
“acute phase response”, which is accompanied by signs and symptoms such as fever, 
anorexia, and somnolence. This acute phase response may include neuroendocrine, 
metabolic and haematopoietic changes, as well as changes in non-protein plasma 
constituents (Ceciliani, 2002). The haematopoietic response includes leukocytosis and 
leukocyte activation, thrombocytosis, and anaemia secondary to erythrocyte damage and/or 
decreased erythropoiesis (Trey & Kushner, 1995). 
Inflammatory stimuli induces the release of cytokines, including tumour necrosis factor 

(TNF)-, interleukin (IL) -1, IL-6, and interferon (IFN)-, which may be produced by several 
cells, including leukocytes, fibroblasts and endothelial cells (Kushner, 1999). This release of 
cytokines causes many systemic changes, including increased synthesis and release of 
positive acute-phase proteins, such as C-reactive protein (CRP) and fibrinogen, as well as 
the suppression of negative acute-phase proteins, such as albumin and transferrin 
(Mcdougall, 1995; Cooper, 2003; Smrzova, 2005). 
The causes for the inflammatory response in HD patients are not well clarified. There are 
several potential sources, including bacterial contamination of the dialyser, incompatibility 
with the dialyser membrane and infection of the vascular access. However, the dialysis 
procedure may only be partially responsible for the inflammatory response, because even 
patients with renal insufficiency who are not yet on dialysis present raised inflammatory 
markers, which rise further after starting regular HD treatment, suggesting that the disease 
per se triggers an inflammatory response (Gunnel, 1999; Schindler, 2002; Macdougall, 2002b). 
Τhe exact mechanisms by which the effects of inflammation on erythropoiesis occur are still 
to be determined. However, along an inflammatory response (Fig. 2), the iron from the 
erythropoiesis traffic is mobilised to storage sites within the reticuloendothelial system, 
inhibiting erythroid progenitor proliferation and differentiation, and blunting, therefore, the 
response to EPO (endogenous and/or exogenous). An erythropoiesis-suppressing effect has 
been also attributed to increased activity of pro-inflammatory cytokines reported in 
association with inflammatory conditions, and this relationship has been proposed as a 
potential factor associated to rhEPO therapy resistance (Gunnel, 1999; Schindler, 2002; 
Macdougall, 2002b; cooper, 2003). Actually, some studies have shown that genetic variations 
in some pro-inflammatory cytokines leading to increased levels of the cytokines, may play 
an important role in the pathogenesis of the anaemia (Maury, 2004). Recently, it was 

proposed that the c.511C>T polymorphism in the gene encoding for IL-1, which is 
associated with increased serum levels of IL-1ǃ, is linked to increased needs of rhEPO to 
correct anemia (Jeong, 2008).  

It was reported that pro-inflammatory cytokines, such as IL-1, IL-2, IL-4, IL-6, TNF- and 

INF- diminish BFU-E and CFU-E cells, resulting in suppression of erythropoiesis 

(Macdougall, 2002a). In fact, some of these cytokines, such as IL-1, IL-6, TNF-ǂ, IFN-Ǆ, and 

C-reactive protein (CRP), have been reported to play an important role in rhEPO resistance 

(Panichi, 2000; Pecoits-Filho, 2003; Cooper, 2003).  Moreover, it was reported (Macdougall, 
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2002a) that serum derived from HD patients suppresses erythroid colony-forming response 

to rhEPO, in a manner that can be inhibited by antibodies against TNF- and INF-. These 

data also strongly suggest a key role in the rhEPO response for these inflammatory 

mediators (Waltzer, 1984; Foley, 1996; Meier, 2002; Cooper, 2003).  
 

 

Fig. 2. Inflammatory stimulus is associated to a decrease in erythropoiesis.  Interleukin-6  
(IL-6) and hepcidin have a critical role in the association between inflammation and 
erythropoiesis.  

Recently, our group demonstrated that non-responders patients, as compared to responders, 
presented higher CRP and neutrophil/lymphocyte ratio, and lower albumin serum levels 
(Costa, 2008a), suggesting a relationship between resistance to rhEPO therapy and the 
inflammatory response. Moreover, we observed a CD4+ lymphopenia associated with 
increased IL-7 serum levels (Costa, 2008b), an activation stage of T-cells and an enhanced 
ability of these cells to produce Th1 related cytokines (IL-2, INF- and TNF-) after short 
term in vitro stimulation. This increased capacity of T-cells to produce Th1 cytokines could 
justify, at least in part, the anaemia found in HD patients.  
These results, published by our group and by others, show that raised inflammatory 
cytokines are a consistent finding associated with resistance to rhEPO therapy, by acting 
directly in erythropoiesis and/or indirectly, by decreasing iron availability for 
erythropoiesis. 

3. Neutrophil activation 

Leukocytosis and recruitment of circulating leukocytes into the affected areas are hallmarks 
of inflammation. Leukocytes are chimio-attracted to inflammatory regions and their 
transmigration from blood to the injured tissue is primarily mediated by the expression of 
cell-adhesion molecules in the endothelium, which interact with surface receptors on 
leukocytes (Muller, 1999; Sullivan, 2000). This leukocyte-endothelial interaction is regulated 
by a cascade of molecular steps that correspond to the morphological changes that 
accompany adhesion. At the inflammatory site, leukocytes release their granular content 
and may exert their phagocytic capacities. 
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In acute inflammation, the leukocyte infiltration is predominantly of neutrophils, whereas in 
chronic inflammation a mononuclear cell infiltration (predominantly macrophages and 
lymphocytes) is observed. Although leukocyte-endothelial cell interaction is important for 
leukocyte extravasation and trafficking in physiological situations, there is increasing 
evidence that altered leukocyte-endothelial interactions are implicated in the pathogenesis 
of diseases associated with inflammation, possibly by damaging the endothelium or altering 
endothelial function (Harlan, 1985; Ley, 2007). 
Leukocytosis is essential as the primary host defence, and neutrophils, the major leukocyte 
population of blood in adults, play a primordial role. It is well known that neutrophils have 
mechanisms that are used to destroy invading microorganisms. These cells use an 
extraordinary array of oxygen-dependent and oxygen-independent microbicidal weapons to 
destroy and remove infectious agents (Witko-Sarsat, 2000). Oxygen-dependent mechanisms 
involve the production of reactive oxygen species (ROS), which can be microbicidal (Roos, 
2003), and lead to the development of oxidative stress. Oxygen-independent mechanisms 
include chemotaxis, phagocytosis and degranulation. The generation of microbicidal 
oxidants by neutrophils results from the activation of a multiprotein enzyme complex 
known as the reduced nicotinamide adenine dinucleotide phosphate oxidase, which 
catalyzes the formation of superoxide anion (O2·–). Activated neutrophils also undergo 
degranulation, with the release of several components, namely, proteases (such as elastase) 
and cationic proteins (such as lactoferrin).  
Elastase is a member of the chymotrypsin superfamily of serine proteinases, expressed in 

monocytes and mast cells, but mainly expressed by neutrophils, where it is 

compartmentalized in the primary azurophil granules. The intracellular function of this 

enzyme is the degradation of foreign microorganisms that are phagocytosed by the 

neutrophil (Brinkmann, 2004). Elastase can also degrade local extracellular matrix proteins 

(such as elastin), remodel damaged tissue, and facilitate neutrophil migration into or 

through tissues. Moreover, elastase also modulates cytokine expression at epithelial and 

endothelial surfaces, up-regulating the production of cytokines, such as IL-6, IL-8, 

transforming growth factor ǃ (TGF-ǃ) and granulocyte-macrophage colony-stimulating 

factor (GM-CSF); it also promotes the degradation of cytokines, such as IL-1, TNF-ǂ and IL-

2. There is evidence in literature that high levels of elastase are one of the major pathological 

factors in the development of several chronic inflammatory lung conditions (Fitch, 2006).  

Few data exists in literature about a possible correlation between leukocyte activation, 

particularly with neutrophil activation, and resistance to rhEPO therapy. In a recent study, 

we found that patients under HD, particularly those who were non-responders to rh-EPO 

therapy, presented a decreased expression of the CXCR1 neutrophil surface markers 

(Pereira, 2010) and higher elastase plasma levels (tables 1 and 2).  

 

 
Controls 

(n=18) 
Responders 

(n=26) 
Non-Responders 

(n=8) 

CXCR1 (MFI) 308.40 ± 76.3 261.30 ± 45.74* 222.85 ± 29.01*§ 

CD11b (MFI) 236.3±81.9 223.33 ± 73.99 207.96 ± 86.50 

Table 1. Neutrophil activation markers for controls and for responders and non-responders 
HD patients.*p<0.05 vs controls; § p<0.05 vs Responders. MFI: mean fluorescence intensity. * 
Data are presented as the mean fluorescence intensity of each cell marker (MFI) ± two 
standard deviations. Adapted from Pereira, 2010. 
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 Controls 
(n=26) 

Responders 
(n=32) 

Non-responders 
(n=31) 

Hb (g/dL) 13.90 (13.2-15.00) 11.70 (10.83-12.68)* 10.4 (9.00-11.30) *§ 

White cell counts (x 109/L) 5.78 ± 1.59 6.42 ± 1.96 6.04 ± 2.26 

Lymphocytes (x 109/L)  2.35 ± 0.75 1.58 ± 0.49* 1.36 ± 0.69 *§ 

Monocytes (x 109/L)  0.25 ± 0.08 0.40 ± 0.13* 0.35 ± 0.17* 

Neutrophils (x 109/L)  3.03 ± 1.02 4.17 ± 1.87* 4.11 ± 1.73* 

Albumin (g/dL) ND 4.0  0.4 3.7  0.4§ 

CRP (mg/dL) 1.75 (0.76-4.70) 3.20 (1.73-7.23)* 10.14 (3.82-38.99)*§ 

Elastase (μg/L) 28.29 (26.03-34.74) 34.13 (28.76-39.16)* 39.75 (31.15-64.84)*§ 

Elastase/Neutrophil ratio 10.86 (7.44-12.12) 8.70 (7.32-11.42) 10.25 (7.56-17.41) 

Table 2. Haematological data and neutrophil activation markers, for controls and for 
responders and non-responders HD patients.* p<0.05, vs controls; § p<0.05, vs responders. 
NM: not done. Results are presented as mean ± standard deviation and as median 
(interquartile ranges). Hb: Haemoglobin; CRP: C-reactive protein. Adapted from Costa, 
2008c. 

CXCR1 is a receptor that recognizes CXC chemokines, particularly the pro-inflammatory IL-
8 (Pay, 2006; Sherry, 2008).  The decreased expression of this receptor in neutrophil surface 
is associated to the release of components of neutrophil granules and reflects the need for 
inotropic support. Recently, it was shown that the levels of the neutrophil chemoattractant 
receptor, CXCR1, are mildly diminished in pediatric patients, as a consequence of end stage 
renal disease itself, and that recurrent serial bacterial infection markedly exacerbated the 
loss of CXCR1 by neutrophils (Sherry, 2008). This loss of CXCR1 on neutrophils can be due 
to the uremic state, to changes in leukocyte adhesion molecule expression or membrane 
microvilli and/or to cross-desensitization of this receptor, due to prior exposure to several 
unrelated chemoattractants, including N-formylated peptides and the complement cleavage 
product C5a. Chronic exposure of circulating inflammatory cells to these mediators may 
lead also to loss of this chemokine receptor expression and/or function via cross-
desensitization.  
The HD procedure, itself, seems to lead to neutrophil activation found in HD patients 
(Costa, 2008c). However, the rise in neutrophil activation products observed after the HD 
procedure does not explain the higher neutrophil activation found in non-responders 
patients. Actually, a significant positive correlation between elastase levels and CRP, 
suggests that the rise in neutrophil activation is part of the inflammatory process found in 
HD patients, which is particularly enhanced in non-responders. The statistically significant 
correlation that we found between elastase levels and the weekly rhEPO doses also 
strengthens this hypothesis; in fact, non-responders to rhEPO therapy patients, requiring 
higher weekly rhEPO doses to achieve target hemoglobin levels, present an increased 
inflammatory process (Costa, 2008c). 

4. Iron status 

Iron is an essential trace element that is required for growth and development of living 
organisms, but excess of free iron is toxic for the cell (Arth, 1999; Atanasio, 2006). Mammals 
lack a regulatory pathway for iron excretion, and iron balance is maintained by the tight 
regulation of iron absorption from the intestine (Park, 2001; Atanasio, 2006). The intestinal 
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iron absorption is regulated by the level of body iron stores and by the amount of iron 
needed for erythropoiesis (Arth, 1999; Park, 2001; Atanasio, 2006; Nemeth, 2003).  
In HD patients, iron absorption is similar to that found in healthy individuals; however, 

when under rhEPO therapy, the absorption of iron increases as much as 5 times (Skikne, 

1992). This increased iron absorption is not sufficient to compensate for the iron lost during 

the HD procedure, and with the frequent blood draws performed on these patients. For this 

reason, and because the association of rhEPO with iron therapy achieves a better 

erythropoietic response, intravenous iron administration has become a standard therapy for 

most patients receiving rhEPO. To avoid iron overload, with potentially harmful 

consequences, there is a need to monitor iron therapy by performing regular blood tests 

reflecting body’s iron stores. However, analytical and intra-individual variability of classical 

iron markers, limits its value. For instance, in case of inflammation, several parameters 

(transferrin and ferritin) used to study iron status, are misleading. This, triggered the search 

for more useful new markers to monitor patients with disturbances in iron status. One of 

these new markers is the soluble transferrin receptor (sTfR), which reflects the iron needs of 

the erythroid cells and is independent of an on-going inflammatory process. More recently, 

a complex regulatory network that governs iron traffic emerged, and points to hepcidin as a 

major evolutionary conserved regulator of iron distribution (Nicolas, 2002; Kemma, 2005; 

Nemeth, 2006). This small hormone produced by the mammalian liver has been proposed as 

a central mediator of dietary iron absorption, due to its inhibitory effect in iron uptake from 

the small intestine, and in iron release from macrophages and hepatocytes, leading to 

decreased iron availability for erythropoiesis; a decreased placental iron transport was also 

observed (Kulaksiz, 2004). The synthesis of hepcidin is regulated by anemia/hypoxia, 

inflammation and iron overload.  

The in vitro stimulation of fresh human hepatocytes by pro-inflammatory IL-6 showed a 

strong induction of hepcidin mRNA, indicating that this cytokine is an important mediator 

of hepcidin induction, in inflammation (Fleming, 2001; Dallilio, 2003; Hsu, 2006; Domenico, 

2007). Moreover, it was shown that hepcidin expression is also regulated by other hepatic 

proteins, including the hereditary hemacromatosis protein (HFE), transferrin receptor 2, 

hemojuvelin, bone morphogenic proteins, transferrin and EPO (Fig. 3).   

Hepcidin is synthesized as preprohepcidin, a protein with 84 amino acids. This peptide is 
cleaved, leading to prohepcidin with 60 aminoacids, which is further processed, giving rise 
to the 25 aminoacids protein, hepcidin (Dallilio, 2003; Hsu, 2006). Hepcidin was reported to 
bind to the transmembrane iron exporter ferroportin, which is present on macrophages, on 
the basolateral site of enterocytes, and also on hepatocytes. In vitro studies showed that 
hepcidin induces the internalization and degradation of ferroportin, crucial for cellular iron 
export (Domenico, 2007). By diminishing the effective number of iron exporters on the 
membrane of the enterocytes and of the macrophages, hepcidin inhibits iron uptake and 
release, respectively. This is the phenotype of ferroportin disease, in which the deficiency in 
ferroportin leads to iron accumulation, mainly in macrophages, and, usually, to anaemia 
(Njajou, 2002). 
Increased hepcidin expression along an inflammatory process, explains sequestration of iron 
in the macrophages and inhibition of intestinal iron absorption, the two hallmarks of the 
anaemia of inflammation, which is normocytic or microcytic iron-refractory (Nicolas, 2002; 
Kulaksiz, 2004; Hsu, 2006).  This decreased availability in iron may be a host defence 
mechanism against invading microorganisms.  
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Fig. 3. Schematic pathways involved in hepcidin gene expression. Interleukin (IL)- 6 
stimulates hepcidin synthesis via STAT activation; bone morphogenic proteins (BMP) 
stimulate hepcidin gene expression in a pathway dependent on hemojuvelin (HJV), BMP 
receptors (BMPR1 and BMPR2), and SMAD activation; transferrin also stimulates hepcidin 
gene expression in a pathway dependent on transferrin receptor 2 (TfR2), HFE protein, and 
SMAD activation. Erythropoietin (EPO) has an inhibitory effect in hepcidin expression in a 
pathway dependent on EPO receptor (EPOR), and STAT and SMAD inhibition. For 
simplicity, only some factors associated with hepcidin expression are shown. 

The resistance to rhEPO therapy has been associated with disturbances in iron metabolism. 

Actually, the main cause for rhEPO resistance described in literature in HD patients, is iron 

deficiency, which persists in some patients, even after iron supplementation (Drueke, 2001). 

This iron deficiency can be absolute, with serum ferritin concentration less than 100 mg/dL, 

or functional.  
We recently reported that HD patient’s non-responders to rhEPO therapy present a mild to 
moderate anaemia, even with the administration of higher rhEPO doses (Costa, 2008d). This 
anaemia is hypochromic (decreased mean cell haemoglobin and mean cell haemoglobin 
concentration), and presents with a more accentuated anisocytosis than in HD patients that 
are good responders to rhEPO therapy. The haematological changes in non-responders seem 
to reflect a “functional” iron deficiency, as they presented adequate iron stores, as defined 
by conventional criteria, and an apparent inability to mobilize the iron needed to adequately 
support erythropoiesis. Actually, no statistically significant differences were found in serum 
iron status markers between responders and non-responders HD patients, except for the 
soluble transferrin receptor (s-TfR), which was significantly higher in non-responders (Table 
3). The levels of this soluble receptor may be increased in two clinical settings, in case of 
increased erythropoietic activity and of iron deficiency (Atanasio, 2006; Deicher, 2006). We 
observed in our HD patients a positive and significant correlation between s-TfR and the 
weekly rhEPO/Kg doses, suggesting that s-TfR was an indicator of the erythropoietic 
stimuli of the administrated rhEPO, and not an indicator of iron body deficiency. Moreover, 

www.intechopen.com



 
Resistance to Recombinant Human Erythropoietin Therapy in Haemodialysis Patients 43 

no differences were found for transferrin saturation, between responders and non-
responders HD patients, excluding, therefore, iron deficiency as the principal cause of the 
elevated s-TfR found in HD patients non-responders to rhEPO therapy.  
 

 Controls 
(n=25) 

Responders 
(n=25) 

Non-responders 
(n=25) 

Iron (g/dL) 73.42  25.24 60.24  22.97 50.40  29.27* 

Ferritin (ng/mL) 
85.10 (37.88-123.95) 

380.30 (252.30-
543.75)* 

452.00 (163.00-
674.50)* 

Transferrin 
(mg/dL) 

231.50 (205.00-
268.00) 

173.00 (152.50-
186.00)* 

161.00 (139.00-
211.00)* 

TS (%) 21.83  7.97 25.05  9.69 20.73  12.09 

s-TfR (nmol/L) 20.85  8.56 19.56  6.83 34.13  11.4§ 

Prohepcidin 
(ng/mL) 

92.11  18.28 165.72  36.69* 137.77  46.03*§ 

CRP (mg/dL) 1.75 (0.76-4.70) 3.20 (1.73-7.23)* 10.14 (3.82-38.99)*§ 

s-IL2R (nmol/L) 758.83  234.95 4005.71  1835.70* 4394.17  1701.80* 

IL-6 (pg/mL) 1.90 (0-3.75) 5.75 (3.83-13.95)* 8.80 (4.55 – 21.30)* 

Table 3. Serum markers of iron status and of inflammation, for controls, responders and 
non-responders HD patients.* p<0.05, vs controls; § p<0.05, vs responders. Results are 
presented as mean ± standard deviation and as median (interquartile ranges). TS: 
Transferrin saturation; CRP: C-reactive protein; s-IL2R: Soluble interleukin-2 receptor; IL-6: 
Interleukin-6. Adapted from Costa, 2008d. 

Inverse correlations between CRP and mean cell volume, mean cell haemoglobin, serum 

iron and transferrin saturation were also found in non-responders patients, suggesting that 

the “functional” iron deficiency may be related with the enhanced chronic inflammation 

found in these patients. Actually, as previously referred hepcidin may have an import key 

role in “anaemia of inflammation” by limiting iron availability for erythropoiesis and, in 

that way provides a direct link between inflammation and iron metabolism.  

In literature there is evidence that HD patients present increased serum levels of 

prohepcidin and hepcidin (Costa, 2008d; Costa, 2009). As non-responders patients present 

high inflammatory markers, it would be expected that prohepcidin and hepcidin serum 

levels were increased in non-responders patients. However, in our studies, we found that 

non-responders patients present lower prohepcidin, and a trend to lower hepcidin serum 

levels, when compared with responder’s patients (Fig. 4). These findings might result from 

the downregulation of liver hepcidin expression induced by high doses of rhEPO, acting, 

therefore, as a hepcidin inhibitory hormone. Since non-responders were treated with much 

higher doses of rhEPO, as compared with responders, the lower prohepcidin and hepcidin 

levels among non-responders could be explained by this inhibitory effect of rhEPO.  

Our data suggest that hepcidin serum levels are dependent on the degree of the 
inflammatory stimuli and of the therapeutic doses of rhEPO. In addition, the use of high 
doses of rhEPO, may induce increased iron utilization by the bone marrow, that may lead to 
depletion of iron stores and to a decrease in iron availability for erythroid cells, which will 
trigger a decrease in prohepcidin and hepcidin levels, in order to favour iron absorption 
(Costa, 2008d; Costa, 2009).  
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Fig. 4. Serum hepcidin levels for controls and for HD patients, responders and non-
responders to rhEPO therapy. Boxplot shows median value (horizontal line in box) and first 
and third quartiles (inferior and superior line of the box, respectively). Adapted from Costa, 
2009.  

There is evidence in literature of a close interaction between inflammation, iron status and 

hepcidin serum levels, which, ultimately, regulates intracellular iron absorption and 

availability. It is also accepted that hepcidin plays a significant role in anaemia of HD 

patients; however, we wonder it is useful as a marker of resistance to rhEPO therapy, 

considering the overlap of the hepcidin levels between responders and non-responders HD 

patients, and the several influences and interrelations with other substances.  

Clearly, more work is required for a better understanding about the role of iron metabolism 
in the development of resistance to rhEPO therapy and to provide useful therapeutic 
biomarkers of resistance. 

5. Erythrocyte damage 

The erythrocyte membrane is a complex structure comprising a lipidic bilayer, integral 
proteins and the skeleton. Spectrin is the major protein of the cytoskeleton, and, therefore, 
the major responsible for erythrocyte shape, integrity and deformability. It links the 
cytoskeleton to the lipid bilayer, by vertical protein interactions with the transmembrane 
proteins, band 3 and glicophorin A (Lucchi, 2000). In the vertical protein interaction of 
spectrin with band 3 are also involved ankyrin (known as band 2.1) and protein 4.2. A 
normal linkage of spectrin with the other proteins of the cytoskeleton assures normal 
horizontal protein interactions.  
In HD patients, the erythrocytes are physically stressed during the HD procedure, 
metabolically stressed by the unfavourable plasmatic environment, due to metabolite 
accumulation, and by the high rate of haemoglobin autoxidation, due to the increase in 
haemoglobin turnover, a physiologic compensation mechanism triggered in case of anaemia 
(Lucchi, 2000; Stoya, 2002). The erythrocytes are, therefore, continuously challenged to 
sustain haemoglobin in its reduced functional form, as well as to maintain the integrity and 
deformability of the membrane. 
When haemoglobin is denatured, it links to the cytoplasmic pole of band 3, triggering its 
aggregation and leading to the formation of strictly lipidic portions of the membrane, poorly 
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linked to the cytoskeleton. These cells are, probably, more prone to undergo vesiculation 
(loss of poorly linked membrane portions) whenever they have to circulate through the HD 
membranes or the microvasculature. Vesiculation may, therefore, lead to modifications in 
the erythrocyte membrane of HD patients (Reliene, 2002; Rocha, 2005).  
Erythrocytes that develop intracellular defects earlier during their life span are removed 
prematurely from circulation (Santos-Silva, 1998; Rocha-Pereira, 2004). The removal of 
senescent or damaged erythrocytes seems to involve the development of a senescent 
neoantigen on the membrane surface, marking the cell for death. This neoantigen is 
immunologically related to band 3 (Kay, 1994). The deterioration of the erythrocyte 
metabolism and/or of its antioxidant defences may lead to the development of oxidative 
stress within the cell, allowing oxidation and linkage of denatured haemoglobin to the 
cytoplasmatic domain of band 3, promoting its aggregation, the binding of natural antiband 
3 autoantibodies and complement activation, marking the erythrocyte for death. The band 3 
profile [high molecular weight aggregates (HMWAg), band 3 monomer and proteolytic 
fragments (Pfrag)], differs between younger, damaged and/or senescent erythrocytes. Older 
and damaged erythrocytes present with higher HMWAg and lower Pfrag. Younger 
erythrocytes show reduced HMWAg and higher Pfrag (Santos-Silva, 1998). Several diseases, 
known as inflammatory conditions, present an abnormal band 3 profile, suggestive of 
oxidative stress development (Santos-Silva, 1998; Belo, 2002; Rocha-Pereira, 2004).   
Leukocyte activation is part of an inflammatory response, and is an important source of ROS 
and proteases, both of which may impose oxidative and proteolytic damages to erythrocyte 
and plasma constituents. Actually, oxidative stress has been reported to occur in HD 
patients and has been proposed as a significant factor in HD-related shortened erythrocyte 
survival.  
Erythrocyte membrane protein studies performed in HD patients, using cuprophane and 
polyacrylonitrile dialysis membranes, showed a reduction in spectrin and band 3, and an 
isolated reduction in band 3, respectively (Delmas-Beauvieux, 1995).  
As referred, we hypothesized that non-responders patients to rhEPO therapy could have an 
enhanced erythrocyte damage and/or senescence;  we, actually, found an altered 
erythrocyte membrane band 3 profile in HD patients, with a decrease in HMWAg, Pfrag and 
in Pfrag/band 3 monomer and HMWAg/band 3 monomer ratios, as compared to control. 
This profile presents changes reflecting the co-existance of an increased number of younger 
and damaged erythrocytes. Non-responders patients also showed a decrease in Pfrag and in 
Pfrag/band 3 monomer ratio (Fig. 5), suggesting that they present a higher number of 
damaged erythrocytes that may result from an even more adverse plasmatic 
microenvironment (Costa, 2008e). 
We also found some changes in erythrocyte membrane protein composition of HD patients 
using high-flux polysulfone FX-class dialysers of Fresenius, being the decrease in spectrin 
the most significant change. This reduction in spectrin may account for a poor linkage of the 
cytoskeleton to the membrane, favoring membrane vesiculation, and, probably, a reduction 
in the erythrocyte lifespan of these patients (Reliene, 2002).  Significant increases in protein 
bands 6 and 7 were also observed, which may further reflect an altered membrane protein 
interaction and destabilization of membrane structure. This membrane destabilization was 
further strengthened by the significant changes observed for spectrin/band 3 ratio (table 4). 
In non-responders HD patients these changes were more accentuated than in responders, 
presenting a trend to lower values for spectrin (table 4) and significantly lower value for 
ankyrin/band 3 and spectrin/ankyrin ratios (Costa, 2008f; Costa, 2008g). These enhanced 
alterations may be due to a higher erythrocyte metabolic stress and/or to changes resulting 
from the HD procedure per se. 
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Fig. 5. Examples of densitometer tracing of immunoblots for band 3 profile. A- Control; B- 
Responder HD patient; C- Non-responder HD patient. 

 

 Controls 
(n=26) 

Responders 
(n=32) 

Non-responders 
(n=31) 

Spectrin (%) 27.63 (26.41-28.79) 24.75 (22.38-26.63)* 22.35 (18.95-25.92)* 

Ankyrin (%) 6.971.62 6.092.07 6.971.60§) 

Band 3 (%) 38.57  3.99 39.924.03 38.653.70 

Protein 4.1 (%) 7.561.45 7.181.33 7.31 1.63 

Protein 4.2 (%) 5.510.72 5.541.57 5.351.29 

Band 5 (%) 6.820.86 6.701.02 7.041.00 

Band 6 (%) 5.191.04 6.611.30* 7.371.32* 

Band 7 (%) 2.200.65 3.160.98* 3.491.43* 

Protein 4.1/Spectrin  0.276 ± 0.624 0.310 ± 0.105 0.340 ± 0.130* 

Protein 4.1/Band 3 0.192 (0.154–0.227) 0.183 (0.154-0.208) 0.183 (0.159-0.205) 

Protein 4.2/Band 3 0.149 (0.125-0.162) 0.135 (0.110-0.169) 0.142 (0.110-0.161) 

Spectrin/Band 3 0.707 (0.649-0.822) 0.572 (0.541-0.685)* 0.544 (0.486 -0.687)* 

Ankyrin/Band 3 0.185 ± 0.585 0.155 ± 0.060 0.183 ± 0.052§ 

Spectrin/Ankirin 4.18 ± 1.07 4.44 ± 2.25 3.10 ± 0.94*§ 

Table 4. Erythrocyte membrane protein profile for controls, responders and non-responders 
HD patients.* p<0.05, vs controls; § p<0.05, vs responders. Results are presented as mean ± 
standard deviation and as median (interquartile ranges). Adapted from Costa, 2008f. 

Although HD procedure seems to have an important role in these alterations in erythrocyte 
membrane protein composition, their exact origin(s) are not fully understood. We 
hypothesized that the increased plasma levels of elastase found in HD patients could induce 
alterations in erythrocyte membrane proteins, leading to a decrease in erythrocyte lifespan 
in HD patients, particularly enhanced in non-responders, and, consequently, to an increase 
in the degree of the anaemia, in these patients (Fig. 6). 
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To establish the value of elastase in the erythrocyte membrane changes observed in HD 
patients, we performed in a more recent study (unpublished data), some in vitro assays 
using erythrocytes from 18 HD patients (10 responders and 8 non-responders) and from 8 
healthy controls; erythrocyte suspensions in phosphate buffered saline, pH 7.4, were 
incubated at 37º C, under gentle rotation, in the presence of 0.03, 0.1 and 0.5 μg/mL of 
neutrophil elastase. These assays used erythrocytes collected before and immediately after 
HD procedure. Before the HD procedure, the erythrocytes from responders and non-
responders HD patients are more susceptible to the proteolytic action of elastase than the 
erythrocytes from the controls, and this susceptibility is more pronounced for the 
erythrocytes from non-responders. As after the HD procedure the composition of the 
erythrocyte membrane from both responders and non-responders did not change, it seems 
that the more susceptible erythrocytes are removed during the HD procedure. 
 

 

Fig. 6. In HD patients, the increased plasma levels of elastase can induce changes in 
erythrocyte membrane proteins, leading to a decrease in the erythrocyte lifespan and, 
consequently, to increase the degree of anaemia in these patients. Moreover, the increased 
levels of elastase might exacerbate the inflammatory process that has an inhibitory effect on 
erythropoiesis. The release of lactoferrin during the HD procedure may contribute to 
decrease iron availability for erythropoisis. These changes are enhanced in non-responders 
HD patients. 
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5. Conclusions 

Although the etiology of resistance to rhEPO therapy is still unknown, inflammation seems 
to have an important role in its pathophysiology. Resistance to rhEPO therapy is also 
associated with “functional” iron deficiency, neutrophil activation, and with changes in 
erythrocyte membrane protein structure. 
The exact origins of the inflammatory process remain unclear. We wonder if the release of 
elastase during the HD procedure could amplify the inflammatory process in HD patients, 
particularly in non-responders, and if this elastase release has a role in the alterations 
observed in the erythrocyte membrane protein structure, further contributing to worsening 
of anaemia (Fig 6). The inflammatory process, the rhEPO doses administrated, and the 
lactoferrin release during the haemodialysis procedure, seem to play an important role in 
iron uptake from the small intestine, in the release of iron from macrophages and, finally, in 
the availability of iron for erythropoiesis. 
Further studies are needed to better understand the rise in inflammation and the associated 
need for higher doses of rhEPO and reduced iron availability. It is also important to clarify 
the effect of higher levels of elastase in the inflammatory process, and in the alterations in 
the erythrocyte membrane protein composition and in the band 3 profile.  
New therapeutic options, in order to decrease rhEPO doses, are currently under 
investigation, namely the protein product of the growth arrest-specific gene 6, the mixture 
of herbal extracts - jusen-taiho-to, the growth hormone, the insulin-like growth factors-1, 
and the development of an inhibitor of hepcidin.  
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