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1. Introduction 

1.1 Shear mode bulk acoustic wave devices and sensors 

Acoustic microsensor technique, well known as QCM (Quartz crystal microbalance) or TSM 
(Thickness shear mode) sensor, is an effective method to detect small mass loading on the 
sensor surface. This sensor can be operated even in liquid by using shear mode resonance. 
Therefore, shear mode piezoelectric film resonators are attractive for liquid microsensor 
technique such as biosensors and immunosensors. 
Shear wave has some unique features compared with the longitudinal wave, for example, it 
has extremely low velocity in the liquid. Longitudinal wave velocity in the water is 1492.6 
m/s, whereas, shear wave velocity in the water is 20-60 m/s at 20-200 MHz (Matsumoto et 
al., 2000). Therefore, shear mode vibrating solid maintains its vibration even in the liquid, 
because the difference of acoustic impedance which determines the refection coefficient of 
solid / liquid interface is very large in the case of shear wave. 
The complex refection coefficient Γ of the interface is given as 

 l s

l s

Z Z

Z Z

−
Γ =

+
 (1) 

where Zs and Zl are the complex acoustic impedance of solid and liquid. 
Complex acoustic impedance can be written as 

 ( )( ) 1 2Z R jX c jρ ωη= + = +  (2) 

R and X represent the real part and imaginary part of the acoustic impedance and ρ, c and η 
represent mass density, stiffness constant and viscosity in the medium, respectively. 
Acoustic wave equation gives dispersion relation of  
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where v is velocity and α is attenuation factor (B. A. Auld, 1973).  
According to (2) and (3), acoustic impedance gives 
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Longitudinal and shear wave velocities of water were reported as 1492.6 m/s (Kushibiki et 
al., 1995) and 35 m/s (Matsumoto et al., 2000), respectively, at 100 MHz. Attenuations of 
longitudinal and shear wave in the water were also measured to be α/f 2 = 2.26×10-14 
neper·s2/m (Kushibiki et al, 1995) and α/f 2 = 2.12×10-9 neper·s2/m, (Matsumoto et al., 2000) 
respectively. By substituting these values into Eq. (4), the complex longitudinal wave and 
shear wave acoustic impedance of the water can be estimated to be 1489000+j800 N·s/m3 
and 14510+j17340 N·s/m3 at 100 MHz, respectively.  
From these values and Eq. (1), when quartz resonator is immersed in water, the reflection 
coefficient of acoustic energy 

2
Γ  in an X-cut quartz vibrating in thickness extensional mode 

(Zs= 15.23×10-6 N·s/m3) is estimated to be only 68 % whereas that in an AT-cut quartz 
vibrating in thickness shear mode (Zs= 8.795×10-6 N·s/m3) is 98 %. This is because an AT-cut 
quartz has been used as a QCM or TSM sensor operating in liquid. Sensitivity of the QCM 
mass sensor is determined by the ratio of the mass and the entire mass of the vibrating part 
in the sensor, at constant sensor active area (Sauerbrey, 1959). Therefore, it is important to 
decrease thickness of the vibrating part of sensor. Shear mode thin film is promising for high 
sensitivity mass sensor. 

1.2 Piezoelectric thin film for shear mode excitation 

Piezoelectric thin film, which excites shear wave, is expected to provide higher sensitivity 
and IC compatibility, but it is not straightforward. To excite shear wave by standard 
sandwiched electrode configuration, polarization axis in the film must be tilted or parallel 
to the film plane. Although perovskite ferroelectric films have large piezoelectricity, their 
polarization axis is generally normal to the film surface due to the nature of crystal 
growth, difficultly of in-plane polarization treatment and domain control. Trigonal 
piezoelectric material such as LiNbO3, LiTaO3 and quartz are difficult to crystallize (tend 
to form amorphous structure) or to obtain a strong preferred orientation in polycrystalline 
film. 
6mm wurtzite AlN and ZnO film can be easily crystallized, but they tend to develop their 
polarization axis (c-axis) perpendicular to the substrate plane. This c-axis oriented film 
cannot excite shear wave in the case of standard sandwiched electrode structure.  
Crystalline orientation control for both in-plane and out-of-plane direction is necessary to 
excite shear wave. One solution is to use an epitaxial growth technique. However, the 
combinations of the shear mode piezoelectric film and substrate are limited due to the lattice 
mismatch. a-plane ZnO or AlN/r-plane sapphire (Mitsuyu et al., 1980; Wittstruck et al., 
2003), a-plane ZnO/42º Y-X LiTaO3 (Nakamura et al., 2000) where c-axis in the film is 
parallel to the substrate plane have been reported.  
Ion beam orientation control technique (Yanagitani & Kiuchi, 2007c), which enables in-plane 
and out-of-plane orientation without use of epitaxial growth, is introduced in the third 
section. This technique is a good candidate for obtaining c-axis parallel films which excites 
pure shear wave without any excitation of longitudinal wave. 

2. Electromechanical coupling properties of wurtzite crystal 

Elastic and piezoelectric properties of wurtzite crystals vary with direction due to the crystal 
anisotropy. Electromechanical coupling changes as a function of the angle between the c-
axis and the applied electric field direction (Foster et al., 1968; Auld, 1973). 
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The analytical model of a thin film resonator is shown in Fig. 1. The electric field is applied 
in the x3 direction. The c-axis is assumed to lie in the x1-x3 plane and be inclined at an angle β 
with respect to the x3 direction. 
 

x1

x3

c-axis

u3

u1

u (S)

u (L)

δL

β

Substrate

Wurtzite piezoelectric film

x3

Acoustic wave

Electrode

 
Fig. 1. Analytical model of a thin film resonator 

The physical constants of the crystal in each direction are determined by the transformed 
coordinate of each constant tensor. Bond’s method (Bond, 1943) for transforming the elastic 
and piezoelectric constant tensor is introduced below, which can be applied to the constant 
tensor with abbreviated subscript notation. For example, the transformation matrix [a] of a 
clockwise rotation through an angle β about the x2-axis is described by: 

 [ ]
cos 0 sin

0 1 0

sin 0 cos

a

β β

β β

− 
 =  
  

 (5) 

The dielectric constant ε ′  transforms as 

 [ ] [ ] [ ] [ ] .
T

a aε ε′ =  (6) 

The 6×6 transformation matrix of coefficients M is defined as 
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 + 
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 (7) 

Finally, using the above transformation matrix, transformed elastic constant and 
piezoelectric constant tensors c′  and e′  are obtained: 
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 [ ] [ ] [ ] [ ]
T

c M c M′ = , [ ] [ ] [ ] [ ]
T

e M e M′ =  (8) 

In the x2 axis rotation of a hexagonal (6mm) crystal, the transformed stiffness and 
piezoelectric constant tensors c′  and e′  are given by 
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 (9) 

In case, wave propagation toward x3 direction is only focused, the term of 1x∂ ∂ and 

2x∂ ∂ can be ignored. Thus, the wave motion equation for the x3 direction is given by 
mechanical displacement component u1, u2 and u3: 
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where 
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As div D = 0, the electrostatic equation is given by  

 
2 2 2

3 1 3
35 33 332 2 2

3 3 3 3

0SD u u
e e

x x x x

ε
ε

∂ ∂ ∂ ∂
′ ′ ′= + − =

∂ ∂ ∂ ∂
 (12) 

In Eqs. (10)-(12), T31 and T33 are stress components, D3 is the electric displacement, c33E, c35E 
and c55E are the stiffness constants with constant electric field, e33 and e35 are piezoelectric 
constants, ε33S and ε35S are dielectric constants with constant strain, and ϕ is the electric 
potential.  
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Equation (10c) describes a pure shear wave with a u2 displacement component in the x2 
direction and propagates along the x3 direction with a phase velocity of 44c ρ . Eqs. (10a) 
and (10b) represent a quasi-longitudinal wave and quasi-shear wave. These waves 
incorporate u1, u3, and ϕ, which are coupled with each other. It is well known that Eqs (10a), 
and (10b) have plane-wave solutions: 

 
1

3
3 exp

u A
x

u B j t
v

C

ω

ϕ

   
     

= −           
   

 (13) 

Substituting Eq. (13) into Eqs. (11) and (12), the simultaneous equations are obtained 
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where 

( )
2

33 33 33 33 ,D E Sc c e ε′ ′ ′= +  

 ( )35 35 33 35 33 ,D E Sc c e e ε′ ′ ′ ′= +  (15) 

( )
2

55 55 35 33 .D E Sc c e ε′ ′ ′= +  

A, B and C are all nonzero when the coefficient matrix in Eq. (14) is zero. From this condition, 
we obtain the phase velocity v (L, S) of a quasi-longitudinal wave and quasi-shear wave: 

 ( )

1
22 2

, 33 55 33 55 35

2 2

D D D D D
L S c c c c c

v
ρ ρ ρ

    + − = ± +        

 (16) 

Figure 2 shows the calculated results of phase velocity of a quasi-longitudinal wave and 
quasi-shear wave for a ZnO crystal as function of the angle β  between the c-axis and x3 
direction. Physical constants in a ZnO single crystal reported by Smith were used in the 
calculation (Smith, 1969). 
The general solutions for u1, u3 and ϕ are given by 

 
1 1 2

3 3
3 1 2( ) ( )

1 2

exp exp

u A A
x x

u B j t B j t
V V

C C

ω ω

ϕ
+ −

     
           

= − + −                      
     

 (17) 

and 

 1 2

1 2

B A

A B
= −  (18) 
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Fig. 2. Phase velocity of quasi-longitudinal wave and quasi-shear wave for a ZnO crystal as 
function of the angle β between the c-axis and x3 direction 

is derived from Eqs. (14) and (16). It can be seen that the displacement components of the 
quasi-longitudinal wave and quasi-shear wave are perpendicular to each other. From Eqs. 
(14) and (16), the angle δL between the quasi-longitudinal wave displacement u3 and the x3 
direction and the angle δS between the quasi-shear wave displacement u1 and the x1 
direction are given by 

 1 1

1

tanL

A

B
δ −  

=  
 

, 1 2

2

tanS

B

A
δ −  

=  
 

 (19) 

The extensional and shear effective piezoelectric constants e (L)eff and e (S)eff are defined as 

 
( )

35 33sin cos
L

eff L Le e eδ δ′ ′= + , 
( )

35 33cos sin
S

eff S Se e eδ δ′ ′= −  (20) 

Thus, the quasi-longitudinal and quasi-shear-mode electromechanical coupling coefficients 
k(L) (transformed k33) and k(S) (transformed k15) are 

 ( ) ( ) ( )
2 2 2( ) ( ) ( )

33
S Sk e e Vρ −′= , ( )( ) ( )( ) ( )

2 2 2( )
33

L Lk e e Vρ +′=  (21). 

Finally, Figs. 3 (a) and (b) show the calculated angle δ and the electromechanical coupling 
coefficients (k values) of the quasi-longitudinal and quasi-shear waves for the ZnO crystal as 
function of the angle β (Foster et al., 1968) 
From these figures, we can see a relatively large shear-mode electromechanical coupling k15 

= 0.39 at c-axis tilt angle of β = 28º. Several author reported FBAR (film bulk acoustic 
resonator)-type viscosity sensor and biosensor, consisting of c-axis tilted wurtzite films 
(Weber et al., 2006; Link et al., 2007; Wingqvist et al., 2007, 2009, 2010; Yanagitani, 2010, 
2011a). However, the thickness extensional mode (longitudinal wave mode) also has the 
coupling of k33 = 0.155 and the displacement inclination angle of δS = 4.1º at angle of β = 28º. 
This indicates that the resonator excites both thickness extensional and shear mode 
(longitudinal and shear wave modes), and the shear displacement direction is not 
perpendicular to the propagation direction. Larger δS values may result in energy leakage  
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Fig. 3. (a) Angle δ between the wave displacement u and the x direction and  
(b) electromechanical coupling coefficient of the quasi-longitudinal and quasi-shear waves 
for the ZnO crystal as function of the angle β between the c-axis and x3 direction 

due to mode conversion in the reflection plane. This induces the decrease of Q value. Both of 
the no extensional mode coupling and small δS values of 0.38º can be obtained at β = 43º, 
however, it is difficult to adjust such as large c-axis tilt angle in a large area deposition. One 
option is to use a pure-shear-mode (β = 90º) resonator to satisfy both the conditions of no 
extensional coupling and δS = 0º. Pure shear mode excitation can be achieved by two electric 
field-orientation combination. One is to apply the cross-electric field to c-axis parallel film 
by sandwiched electrode (Yanagitani et al., 2007d), and the other is to apply the in-plane 
electric field to c-axis normal film by IDT electrode (Corso et al., 2007; Milyutin et al., 2008, 
2010). Of course, the latter is the easiest way to obtain pure shear mode because deposition 
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technique of c-axis normal film has been well established, but effective electrometrical 
coupling is weak (keff=0.04-0.06) (Corso et al., 2007; Milyutin et al., 2008). The former has 
large electrometrical coupling (k15=0.24) (Yanagitani et al., 2007a), and recently the c-axis 
parallel oriented film can be easily obtained by using ion beam orientation control technique 
(presented in next section), even in a large area (Kawamoto et al., 2010). 

3. Ion beam orientation control technique for shear mode piezoelectric films 

3.1 Ion beam orientation control of wurtzite thin film by ion beam irradiation 

Polycrystalline films tend to grow in their most densely packed plane parallel to the 
substrate plane. Bravais proposed the empirical rule that the growth rate of the crystal plane 
is proportional to the surface atomic density. Namely, the lattice plane with higher surface 
atomic density grows more rapidly. Curie argued that the growth rate perpendicular to a 
plane is proportional to the surface free energy (Curie, 1885). 
Ion bombardment during film deposition can modify this preferred orientation of the films. 
This is usually explained by a change in anisotropy of the growing rate of the crystal plane 
in the grain, which is reflected by the difference in the degree of the ion channeling effect or 
ion-induced damage in the crystal plane (Bradley et al., 1986; Ensinger, 1995; Ressler et al., 
1997; Dong & Srolovitz, 1999). For example, during ion beam irradiation, the commonly 
observed <111> preferred orientation in a face-centered cubic film changes to a <110> 
preferred orientation, which corresponds to the easiest channeling direction (Van Wyk & 
Smith, 1980; Dobrev, 1982). In-plane texture controls have also been achieved by optimizing 
the incident angle of the ion beam (Yu et al., 1985; Iijima et al., 1992; Harper et al., 1997; 
Kaufman et al., 1999; Dong et al., 2001; Park et al., 2005).  
In wurtzite films, for example, the surface energy densities of the (0001), (11 2 0) and (10 1 0) 
planes of the ZnO crystal are estimated to be 9.9, 12.3, 20.9 eV/nm2, respectively (Fujimura 
et al., 1993). The (0001) plane has the lowest surface density. Thus, the ZnO film tends to 
grow along the [0001] direction. When wurtzite crystal is irradiated with ion beam, the most 
densely packed (0001) plane should incur more damage than the (10 1 0) and (11 2 0) planes, 
which correspond to channeling directions toward the ion beam irradiation. We can 
therefore expect that the thermodynamically preferred (0001) oriented grain growth will be 
disturbed by ion damage so that the damage-tolerant (10 1 0) or (11 2 0) orientated grains (c-
axis parallel oriented grain) will preferentially develop instead. 
On this basis, in-plane and out-of-plane orientation control of AlN and ZnO films by means 
of ion beam-assisted deposition technique, such as evaporation (Yanagitani & Kiuchi, 2007c) 
and sputtering (Yanagitani & Kiuchi, 2007e, 2011b) was achieved. c-axis parallel oriented 
can be obtained even in a conventional magnetron sputtering technique using a low 
pressure discharge ( <0.1 Pa) (Yanagitani et al., 2005) or RF substrate bias (Takayanagi, 
2011), which leads ion bombardment on the substrate. Figure 4 shows the XRD patterns of 
the ZnO films deposited with various ion energy and amount of flux in ion beam assisted 
evaporation (Yanagitani & Kiuchi, 2007c). Table 1 shows the ion current densities in the case 
of “Large ion flux” and “Small ion flux” in Fig 4. The tendency of the (10 1 0) orientation is 
enhanced with increasing ion energy and amount of ion irradiation, demonstrating that the 
ion bombardment induced the (0001) orientation to change into a (10 1 0) orientation, which 
corresponds to the ion channeling direction.  
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Ion energy A: Large ion flux B: Small ion flux
0.05 keV
0.25 keV
0.5   keV 190 µ A/cm2 140 µ A/cm2

0.75 keV 220 µ A/cm2 130 µ A/cm2

1.0   keV 240 µ A/cm2 120 µ A/cm2

0-5 µ A/cm2

30-50 µ A/cm2

 
Table 1. Ion current densities in “Large ion flux” and “Small ion flux”  
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Fig. 4. 2θ–ω scan XRD patterns of the ZnO films deposited without ion irradiation, and with 
ion irradiation of 0-1 keV with “Large ion flux” and “Small ion flux” (Yanagitani & Kiuchi, 
2007c) 

Figure 5 shows the XRD patterns of the samples deposited under the conditions that various 
RF and DC bias are applied to the substrate. Although any dramatic change in usual (0001) 
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preferred orientation is not occurred in the case of positive or negative DC bias, (0001) 
orientation changed to (11 2 0) and (10 1 0) orientation with the increase of RF bias power 
which induces the bombardment of positive ion on substrate. Interestingly, the order of the 
appearance of the (0001) to (11 2 0) and (10 1 0) corresponds to the order of increasing 
surface atomic density, which may be the order of damage tolerance against ion 
bombardment. 
In order to excite shear wave in the c-axis parallel film, c-axis is required to orient not only 
in out-of-plane direction but also in in-plane direction. The ion beam orientation control 
technique allows us to control even in in-plane c-axis direction and polarization by the 
direction of beam incident direction (Yanagitani et al., 2007d).  
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Fig. 5. 2θ-ω scan XRD patterns of the samples deposited without bias, with 80 MHz RF bias 
of 50 to 250 W, or with -200 to 100 DC bias. All samples were measured at the center of the 
bias electrode (Takayanagi et al., 2011) 

4. Method for determining k values in piezoelectric thin films 

4.1 k value determination using as-deposited structure (HBAR structure) 

A method for determining piezoelectric property in thin films is described in this section. In 
general, electromechanical coupling coefficient (k value) in thin film can be easily 
determined by series and parallel resonant frequency of a FBAR consisting of top electrode 
layer/piezoelectric layer/bottom electrode layer or SMR (Solidly mounted resonator) 
consisting of top electrode layer/piezoelectric layer/bottom electrode layer/Bragg reflector. 
In case thickness of electrode film is negligible small compared with that of piezoelectric 
film. k of the piezoelectric film can be written as follows (Meeker, 1996): 
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 2 tan
2 2

p ss

p p

f ff
k

f f

π π −
=   

 
 (22) 

where fp and fs are the parallel resonant frequency and series resonant frequency, 
respectively. 
However, it takes considerable time and effort to fabricate FBAR structure which have self-
standing piezoelectric layer. It is convenient if k value can be determined from as deposited 
structure, namely so-called an HBAR (high-overtone bulk acoustic resonator) or composite 
resonator structure consisting of top electrode layer/piezoelectric layer/bottom electrode 
layer/thick substrate. Methods for determining the k value of the films from HBAR 
structure are more complex than that for the self-supported single piezoelectric film 
structure (FBAR structure). Several groups have investigated methods for the determination 
of kt value from the HBAR structure (Hickernell, 1996; Naik, et al., 1998; Zhang et al., 2003). 
One of the easiest ways of k determination is to use a conversion loss characteristic of the 
HBAR structure. When the thickness of electrode layers is negligible small compared with 
that of piezoelectric layer, capacitive impedance of resonator is equal to the electrical source 
impedance, and k value of the piezoelectric layer is smaller than 0.3, conversion loss CL is 
approximately represented by k value at parallel resonant frequency (Foster et al., 1968): 

 10 210log
8

s

p

Z
CL

k Z

π
≈ ⋅  (23) 

where, Zs and Zp is acoustic impedance of the substrate and piezoelectric layer, respectively. 
However, various inhomogeneities sometimes exist in the film resonator, such as non-
negligible thick and heavy electrode layers, thickness taper, or the piezoelectrically inactive 
layer composed of randomly oriented gains growing in the initial stages of the deposition. 
In this case, the k values of the film can be determined so as to match the experimentally 
measured conversion losses (CL) of the resonators with theoretical minimum CL by taking k 
value as adjustable parameter. The theoretical CL in this case can be calculated by Mason’s 
equivalent circuit model including electrode layer, film thickness taper and piezoelectrically 
inactive layer. This method allows various inhomogeneous effect of film to be taken into 
account (Yanagitani et al., 2007b, 2007c).  

4.2 Experimental method to estimate conversion loss of HBAR structure 

The experimental CL of HBAR can be determined from reflection coefficients (S11) of the 
resonators, which can be obtained using a network analyzer with a microwave probe. The 
inverse Fourier transform of S11 frequency response of the resonator gives the impulse 
response of the resonator in the time domain. In the HBAR structure, the impulse response 
is expected to include echo pulse trains reflected from the bottom surface of the substrate, 
and the insertion loss of resonator can be obtained from the Fourier transform of the first 
echo in this impulse response. This experimental insertion loss ILexperiment includes doubled 
CL in the piezoelectric film and round-trip diffraction loss DL and round-trip propagation 
loss PL in the silica glass substrate. Therefore, CL can be expressed as 

 ( )exp

1
,

2 erimentCL IL DL PL= − −  (24) 
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where diffraction loss DL can be calculated according to the method reported by Ogi et al. 
(Ogi et al., 1995). This method is based on integration of the velocity potential field in the 
divided small transducer elements, which allows calculation of the DL with electrode areas 
of various shapes. The round-trip propagation loss PL is given as 

 22 ,s
sPL d

f

α
=  (25) 

where ds is the thickness of the substrate, αs represents the shear wave attenuation in the 
substrate, for example, αs / f 2 = 19.9×10-16 (dB·s2/m) in silica glass substrate (Fraser, 1967). 

4.3 Conversion loss simulation in HBAR by Mason’s equivalent circuit model 

Electromechanical coupling coefficient k can be estimated by comparing an experimental CL 
with a theoretical CL of the HBAR. One-dimensional Mason’s equivalent circuit model is 
convenient tool for simulating theoretical CL of the resonator. Generally, in case non-
piezoelectric elastic solid vibrates in thickness mode, its can be described as T-type 
equivalent circuit (Fig. 6 (a)) where F1 and F2 are force and v1 and v2 are particle velocity 
acting on each surface of elastic solid. Piezoelectric elastic solid can be represented as the 
Mason’s three ports equivalent circuit which includes additional electric terminal 
concerning electric voltage V and current I (Fig. 6 (b)) (Mason, 1964). Here, γ is 
propagation constant, Z is acoustic impedance and dp is thickness of elastic solid. To take 
account of attenuation of vibration, mechanical quality factor Qm is defined as Qm= cr/ci 
where cr and ci are real part and imaginary part of elastic constant, respectively. Using 
mechanical quality factor Qm, propagation constant γ and acoustic impedance Z are given 
as: 

 
( ){ }1 1r m

j
c j Q

ρ
γ ω=

+
, ( ){ }1 1r mZ S c j Qρ= +  (26) 

where ρ is density of the elastic solid and S is electrode area of the resonator.  
Static capacitance C0 and ratio of transformer φ0 in the circuit are given as: 

 0 11
S

p

S
C

d
ε= , 

1
2 2

0 15
0 2

15

,
1

p p

p

C v Z k

d k
φ

  
=   

−   
 (27), 

where d is the thickness of the layers, 11
Sε is permittivity, and v is the velocity of the shear 

wave. Subscript p, e1, e2 and s respectively represent piezoelectric layer, top electrode layer, 
bottom electrode layer and substrate. k value affects the equivalent circuit through the ratio 
of transformer φ0. 
Equivalent circuit for the over-moded resonator structure is given in Fig. 7 by cascade 
arranging non-piezoelectric and piezoelectric part as described in Figs. 6 (a) and (b). 
Substrate thickness is assumed infinite to ignore reflection waves from bottom surface of the 
substrate in this case. When the surface of the top electrode is stress-free, the acoustic input 
port is shorted. As top electrode part circuit can be simplified, three-port circuit in Fig. 7 is 
transformed to the two-ports circuit shown in Fig. 8 (Rosenbaum, 1988). 
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Fig. 6. Equivalent circuit model of (a) non-piezoelectric (b) piezoelectric elastic solid 
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Fig. 7. Equivalent circuit model of the over-moded resonator structure 

It is convenient to derive whole impedance of the circuit by using ABCD-parameters (Paco 
et al., 2008) As shown in Eqs. (28)-(32), ABCD-parameters of whole circuit is derived 
multiplying each circuit element. 

 0

0

1 / 0

0TransformerF
φ

φ

 
=  
 

, 0

0

1 0 1 1 /
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j C
F

j C

ω

ω
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= ⋅   
   

,
1

0 1
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=  
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Fig. 8. Simplification of equivalent circuit model for over-moded resonator structure 

Insertion loss IL is expressed as the ratio of the signal power delivered from a source into 
load resistance to the power delivered from a source into the inserted network. IL of the 
resonators can be calculated with the following equation using conductance of the electrical 
source GS (0.02 S), input conductance Gf, and susceptance Bf of the circuit model, which can 
be derived from ABCD-parameter to Y-parameter conversion of eq. (32): 

 

( )
( )

2

2 2

1020log .
4

S
f f

S f f

S

G
e G jB

G G B
IL

G

 
 

ℜ + 
+ +  =  (33) 
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Hence the CL is 

 
( )10 2 2

4
10log .

2
S f

S f f

G GIL
CL

G G B
= =

+ +
 (34) 

4.4 k value determination from conversion loss curves 

Figure 9 (a) shows the pure shear mode theoretical and experimental CL curves of the c-axis 
parallel film HBAR as an example. By comparing experimental curve with theoretical curves  
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Fig. 9. Frequency response of the experimental shear mode CL (open circles). (a) The simulated 
shear mode CL curves (solid line) in various k15 values and (b) the curve simulated by the model 
including various thickness of piezoelectrically inactive layer (Yanagitani & Kiuchi, 2007c) 
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at minimum CL point (near the parallel resonant frequency), we can determine the k15 value 
of the film. As shown in Fig. 9 (b), effective thickness of the piezoelectrically inactive layer dn 
in the initial stages of the deposition also can be estimated from comparison of the curves. 
Figure 10 shows the correlation between k15 value and crystalline orientation of the film. 
FWHM values of ψ-scan and φ-scan curve of the XRD (X-ray diffraction) pole figure show 
the degree of crystalline orientation in out-of plane and in-plane, respectively. Thicker films 
tend to have large k15 values even though they have same degree of crystalline orientation as 
thinner one. This kind of correlations and inhomogeneities characterization in wafer can be 
easily obtained from as-deposited film structure, by using present k value determination 
method. 

4.5 Conclusion 

In this chapter, shear mode piezoelectric thin film resonators, which is promising for  
the acoustic microsensors operating in liquid, were introduced. Theoretical predictions of 
electromechanical coupling and tilt of wave displacement as functions of c-axis tilt angle  
showed that pure shear mode excitation by using c-axis parallel oriented wurtzite 
piezoelectric films expected to achieve high-Q and high-coupling sensor. Fabrication of  
c-axis parallel oriented films by ion beam orientation control technique and 
characterization of the film by a conversion loss of the as-deposited resonator structure 
were discussed. 
 

0.30

0.20

0.10

0.00

k 15
 

7006005004003002001000

ψ -FWHM × φ -FWHM (deg.
2
 )

Single crystal (k15=0.26)

12108642

Film thickness (µm)  
Fig. 10. k15 values of the ZnO piezoelectric layers as a function of multiplication of ψ-scan 
and φ-scan profile curve FWHM values extracted from XRD pole figure (indicating the 
degree of crystalline orientation in out-of-plane and in-plane) (Yanagitani et al., 2007b) 
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