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1. Introduction 

Application of the high-frequency acoustic emission (AE) technique in condition monitoring 

of rotating machinery has been growing over recent years. This is particularly true for 

bearing defect diagnosis and seal rubbing (Mba et al., 1999, 2003, 2005; Kim et al., 2007; 

Siores & Negro, 1997). The main drawback with the application of the AE technique is the 

attenuation of the signal and as such the AE sensor has to be close to its source. However, it 

is often practical to place the AE sensor on the non-rotating member of the machine, such as 

the bearing or gear casing. Therefore, the AE signal originating from the defective 

component will suffer severe attenuation before reaching the sensor. Typical frequencies 

associated with AE activity range from 20 kHz to 1 MHz. 

While vibration analysis on gear fault diagnosis is well established, the application of AE to 

this field is still in its infancy. In addition, there are limited publications on application of 

AE to gear fault diagnosis. Siores explored several AE analysis techniques in an attempt to 

correlate all possible failure modes of a gearbox during its useful life. Failures such as 

excessive backlash, shaft misalignment, tooth breakage, scuffing, and a worn tooth were 

seeded during tests. Siores correlated the various seeded failure modes of the gearbox with 

the AE amplitude, root mean square, standard deviation and duration. It was concluded 

that the AE results could be correlated to various defect conditions (Siores et al., 1997). 

Sentoku correlated tooth surface damage such as pitting to AE activity. An AE sensor was 

mounted on the gear wheel and the AE signature was transmitted from the sensor to data 

acquisition card across a mercury slip ring. It was concluded that AE amplitude and energy 

increased with increased pitting (Sentoku, 1998). In a separated study, Singh studied the 

feasibility of AE for gear fault diagnosis. In one test, a simulated pit was introduced on the 

pitch line of a gear tooth using an electrical discharge machining (EDM) process. An AE 

sensor and an accelerometer for comparative purposes were employed in both test cases. It 

was important to note that both the accelerometer and AE sensor were placed on the 

gearbox casing, it was observed that the AE amplitude increased with increased rotational 

speed and increased AE activity was observed with increased pitting. In a second test, 

periodically occurring peaks were observed when natural pitting started to appear after half 

an hour of operation. These AE activities increased as the pitting spread over more teeth. 

Singh concluded that AE could provide earlier detection over vibration monitoring for 

pitting of gears, but noted it could not be applicable to extremely high speeds or for 
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unloaded gear conditions. (Singh et al., 1996) Tan offered that AE RMS (Root Mean Square) 

levels from the pinion were linearly correlated to pitting rates; AE showed better sensitivity 

than vibration at higher toque level (220Nm) due to fatigue gear testing using spur gears. 

He made sure that the linear relationship between AE, gearbox running time and pit 

progression implied that the AE technique offers good potential in prognostic capabilities 

for monitoring the health of rotating machines. (Tan et al., 2005, 2007)  

On the other hand, the signal processing method for AE signal was studied using bearing 

and gearbox. In the results of the research (Sheen, 2008, 2010; Yang et al., 2007), the envelope 

analysis was found to be useful to detect fault in rolling element bearing. The fault detection 

frequency of bearing can be presented in the power spectrum. Wavelet transform was used 

for the signal processing method for the gearboxes (Wu et al., 2006, 2009), but wavelet 

transforms can give the different results with the envelope analysis. It can be shown the 

defect frequency, but the efficiency is lower than that of envelope analysis. Thus, the signal 

processing method for AE signal has not been completed until now, and it must be 

developed in the future.  

Therefore, in this paper, a signal processing method for AE signal by envelope analysis with 

discrete wavelet transforms is proposed. For the detection of faults generated by gear 

systems and a cracked rotor using the suggested signal processing, these were installed in 

each test rig system. In gearbox, misalignment was created by a twisted case caused by arc-

welding to fix the base and bearing inner race fault was generated by severe misalignment. 

Through the 15 days test using AE sensor, misalignment was observed and bearing faults 

were also detected in the early fault stage. To identify the sensing ability of the AE, vibration 

signal was acquired through an accelerometer and compared with the AE signal. Also, to 

find the advantage of the proposed signal processing method, it was compared to 

traditional envelope analysis. The detection results of the test were shown by the power 

spectrum and comparison of the harmonics level of the rotating speed. Modal test and 

zooming by a microscope were performed to prove the reason of the other faults. And the 

crack was seeded by wire cutting with 0.5 mm depth. The shaft was coupled with motor 

and non-drive-end was left 6.5 mm by lifting tool. During rotating the shaft, AE signals 

were acquired by AE sensor with 5MHz sampling frequency and 0.5 seconds storing time. 

The AE signals were transformed by FFT to create the power spectrums, and in the 

spectrums several peaks were occurred by the crack growth. Along the growth of the 

crack, the characteristic of the power spectrum was changed and displayed different 

frequencies. 

2. Signal processing method 

Envelope analysis typically refers to the following sequence of procedure: (1) band-pass 

filtering (BPF), (2) wave rectification, (3) Hilbert transform or low-pass filtering (LPF) and 

(4) power spectrum. The purpose of the band-pass filtering is to reject the low-frequency 

high-amplitude signals associated with the ith mechanical vibration components and to 

eliminate random noise outside the pass-band. Theoretically, in HFRT (High Frequency 

Resonance Technique) analysis, the best band-pass range includes the resonance of the 

bearing components. This frequency can be found through impact tests or theoretical 

calculations involving the dimensions and material properties of the bearing. However, it is 

very difficult to predict or specify which resonant modes of neighboring structures will be 
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excited. It will be costly and unrealistic in practice to find the resonant modes through 

experiments on rotating machinery that may also alter under the different operational 

conditions. In addition, it is also difficult to estimate how these resonant modes are affected 

in the assembly of a complete bearing and mounting in a specific housing, even if the 

resonant frequencies of individual bearing elements can be tested or calculated theoretically 

(Misiti et al., 2009). Therefore, most researchers decide on the band-pass range as on option. 

To recover the disadvantage of this option, wavelet analysis is included in the process of 

traditional envelope analysis in this paper. 

Wavelet theory (Burrus et al., 1997) is introduced that is a tool for the analysis of transient, 

non-stationary, or time-varying phenomena. Wavelet analysis is also called wavelet 

transform. There are two kinds of wavelet transform: continuous wavelet transform (CWT) 

and discrete wavelet transform (DWT). CWT is defined as the sum over all time of the signal 

multiplied by scaled, shifted versions of the wavelet function. To use CWT, one signal can 

be decomposed into a series of “small”  waves belonging to a wavelet family. The wavelet 

family is composed of scaling functions, ϕ(t) deduced by father wavelet and wavelet 

functions, ψ(t) deduced by mother wavelet. The scaling function can be represented by the 

following mathematical expression: 

( )/ 2

, ( ) 2 2j j
j k k t kφ φ= −  

where j represents the scale coefficient and k represents shift coefficient. Scaling a wavelet 

simply means stretching (or compressing) it. Shifting a wavelet simply means delaying (or 

hastening) its onset. Mathematically, delaying a function f(t) by k is represented by f(t + k). 

Similarly, the associated wavelet function can be generated using the same coefficients as 

the scaling function. 

( ) ( )/ 2

,  2  2j j
j k t t kψ ψ= −  

The scaling functions are orthogonal to each other as well as the wavelet functions as shown 

in the following equations: 
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Using an iterative method, the scaling function and associated wavelet function can be 

computed if the coefficients j and k are known. 

For many signals, the low-frequency content is the most important part. It is what gives the 

signal its identity. The high-frequency content, on the other hand, imparts flavour or nuance 

that is often useful for singular signal detection. In wavelet analysis, we often speak of 

approximations and details. The approximations are the high-scale, low frequency 

components of the signal. The details are the low-scale, high-frequency components. A 

signal can be decomposed into approximate coefficients aj,k, through the inner product of the 

original signal at scale j and the scaling function. 

( ) ( ), ,j k j j kf t t dtα φ
∞

−∞
= ⋅  
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Similarly the detail coefficients dj,k can be obtained through the inner product of the signal 

and the complex conjugate of the wavelet function. 

( ) ( ), ,j k j j kd f t t dtψ
∞

−∞
= ⋅  

However, CWT takes a long time due to calculating the wavelet coefficient at all scales and 

it produces a lot of data. To overcome such a disadvantage, we can choose scales and 

positions based on powers of two – the so-called dyadic scales and positions – then wavelet 

analysis will be much more efficient and just as accurate. Such an analysis is obtained from 

the discrete wavelet transform (DWT). The approximate coefficients and detail coefficients 

decomposed from a discredited signal can be expressed as 

( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) [ ]
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j k j k j kj k j kk k
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α α φ φ α

α α φ ψ α
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+ +=
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The decomposition coefficients can therefore be determined through convolution and 

implemented by using a filter. The filter, g[k], is a low-pass filter and h[k] is a high-pass filter. 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree as shown in Fig. 1. 

 

 

Fig. 1. Wavelet decomposition tree 

DWT has a de-noise function and a filter effect focused on impact signal. To make up the 

weak point of BPF of the envelope analysis, DWT was intercalated on typical envelope 

analysis, between BPF and wave rectification exactly. The signal by DWT will be 

separated to different band widths by decomposition level and adapted to the signal with 

impact. 

For more complicated signals which are expressible as a sum of many sinusoids, a filter can 

be constructed which shifts each sinusoidal component by a quarter cycle. This is called a 

Hilbert transform filter. Let Ht{x} denotes the output at time t of the Hilbert-transform filter 

applied to the signal x. Ideally, this filter has magnitude 1 at all frequencies and introduces a 

phase shift of -π/2 at each positive frequency and +π/2 at each negative frequency. When a 
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real signal x(t) and its Hilbert transform y(t) = Ht{t} are used to form a new complex signal 

z(t)= x(t)+jy(t), the signal z(t) is the (complex) analytic signal corresponding to the real signal 

x(t). In other words, for any real signal x(t), the corresponding analytic signal z(t) = 

x(t)+jHt{x} has the property that all ‘negative frequencies’ of x(t) have been ‘filtered out’ 

(Douglas & Pillay, 2005). Hence, the coefficients of complex term in the corresponding 

analytic signal were used for FFT.  

Fig. 2 shows an analytic signal of the Hilbert transform for envelope analysis. The solid line 

is a time signal and the dash is its envelope curve. A high frequency signal modified by 

wavelet transform is modulated to a low frequency signal with no loss of the fault 

information due to envelope effect. According to that, the fault signals in the low frequency 

region can be detected using the analytic signal. That is an important fact for the proposed 

signal processing method. Therefore, the proposed signal processing method in this paper is 

an envelope analysis with DWT and using the coefficients of the complex term in Hilbert 

transform. 

 

 

Fig. 2. Analytic signal (dash) of the envelope effect 

Furthermore, to reduce the noise level in the power spectrum, the spectrum values were 

presented as the mean value of each day. Fig. 3 shows the power spectrums of the two 

different signal processing method. Fig. 3(a) is from envelope analysis, and Fig. 3(b) shows 

the envelope analysis intercalated DWT using Daubechies mother function between BPF 

and wave rectification. In Fig. 3, the DWT has an effect the amplifying sidebands peaks, 

especially about gear mesh frequencies, so the peaks of the harmonics of the rotating speed 

(fr) and gear mesh frequencies (fm) are bigger than another, and we can check up them easily. 

Therefore, in the following result, the power spectrum through envelope analysis with DWT 

will be shown. 
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Fig. 3. The comparison of Power spectrums in Envelope analysis with/ without DWT 

3. Gearbox 

3.1 Test-rig 
The test-rig employed for this investigation consists of one identical oil-bath lubricated 

gearbox, 3 HP-motor, rigid coupling, tapper-roller bearing, pinion, gear, control panel and 

break system, as seen Fig. 4. The pinion was made from steel with heat treatment, the 

number of teeth is 70, and diameter is 140 mm. The gear was made from steel, but it was 

produced without any heat treatment process during manufacturing. The number of gear 

teeth is 50 and diameter is 100 mm, and module is 2 mm for the gear and pinion, 

respectively. 

 

 

Fig. 4. Test-rig 

(a) Envelope analysis

(b) Envelope analysis with DWT
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A simple mechanism that permitted a break of disk-pad type to be rotated relative to each 

other was employed to apply torque to the gear. Contact ratio (Pinion/ Gear) of the gears 

was 1.4. The motor used to drive the gearbox was a 3-phase induction motor with a 

maximum running speed of 1800 rpm respectively and was operated for 15 days with 

1500rpm. The torque on the output shaft was 1.2 kNsm while the motor was in operation, 

and other specifications of the gearbox are given as in Table 1. 

 

 Gear Pinion 

No. of teeth 50 70 

Speed of 

shaft 
25.01 rev/ s 

Meshing 

frequency 
1250 Hz 1750 Hz 

Bearing (NSK HR 32206J) 

No. of 

rolling 

element 

17 Type 
Defect Freq. 

(fd) 

Fault Freq. 

(fd X fr) 

Diameter of 

outer race 
62 mm 

BPFO 

BPFI 

FTF 

BSF 

8.76 Hz 

11.24 Hz 

3.84 Hz 

0.44 Hz 

219.3 Hz 

281.38 Hz 

96.13 Hz 

11.01 Hz 
Diameter of 

inner race 
30 mm 

BPFO : ball pass frequency of outer race 

BPFI : ball pass frequency of inner race 

FTF : fundamental train frequency 

BSF : ball spin frequency 

Table 1. Specification of gearbox and bearing 

3.2 Acquisition system and test procedures 
AE sensors used in this paper are a broadband type with a relative flat response in the range 

frequency from 10 kHz to 1 MHz. They are placed on the right side of the gearbox cases near 

the coupling in the horizontal direction at the same height with the shaft center (Fig. 4).  

AE signals are pre-amplified by 60 dB and the output from the amplifier is collected by a 

commercial data acquisition card with 10 MHz sampling rate during the test. Prior to the 

analog-to-digital converter (ADC), anti-aliasing filter is employed that can be controlled 

DAQ software. And Table 2 is shown the detail specifications of the data acquisition system. 

Before the test, attenuation test on the gearbox components was taken in order to 

understand the characteristics of the test-rig. The gearbox was run for 30 minutes prior to 

acquiring AE data for the unload condition. Based on the sampling rate of 10 MHz, the 

available recording acquisition time was 2 sec. 
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2 Channel 

AE 

system on 

PCI-Board 

18-bit A/ D conversion 

10M samples/ s rate 

(on one channel, 5M samples/ s on 2 AE channels) 

AE Sensor 

(Wideband 

type) 

Peak sensitivity [V/ µbar] : -62 dB 

Operating frequency range : 100-1,000 kHz 

Resonant freq. [V/  µbar] : 650 kHz 

Directionality : ±1.5 dB 

Preamplifier 

Gain 

Wide dynamic range < 90 dB 

Single power/ signal BNC or optional separate power/ signal BNC 

20/ 40/ 60 dB selectable gain 

Table 2. Specifications of data acquisition system 

3.3 Experiment result and discussion 
In general, the misaligned gear which almost always excites higher order fm harmonics is 

shown as in Fig. 5. Often, only small amplitudes will be at the fundamental fm, but much 

higher levels will be at 2 fm and/ or 3 fm. The sideband spacing about fm might be 2 fr or even 

3 fr when gear misalignment problems are involved. When significant tooth wear occurs, not 

only will sidebands appear about fm, but also about the gear natural frequencies. In the case 

of those around fm, the amplitude of the sidebands themselves is a better indicator for wear 

than the amplitude of fm.  
 

 

Fig. 5. Spectrum indicating misalignment of gear 

As for significant gear eccentricity and/ or backlash, these problems display the following 

characteristics:  

- Both eccentricity and backlash excite the gear natural frequencies as well as fm. They 

also may generate a number of sidebands about both the natural and gear mesh 

frequencies.  

- If a gear is eccentric; it will modulate the natural frequency and gear mesh frequencies, 

both of which will be sidebanded around the fr of the eccentric gear. An eccentric gear 

can generate significant forces, stresses and vibration if it is forced to bottom out with 

the meshing gears. (James & Bery, 1994)  

In the results of the envelop analysis with DWT, the high harmonics of fm occurred by strong 

wearing phenomena caused by misaligned teeth. In the power spectrum (Fig. 6), 25Hz (fr) 

and its harmonics are generated and 11.32Hz was the ball pass frequency of inner race (BPFI 

[fd]). In Fig. 6(c) and (d), the center dash line is shown for fm and 2 fm, and their side lines are 

the sidebands with difference 25Hz (fr). 
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Fig. 6. Power spectrum of the second day 

 

 

Fig. 7. Peak level trend among days 

 

 

Fig. 8. Gear tooth weaned by misalignment 

(a) Harmonics of fr (b) Harmonics of fm 
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Fig. 9. Modal test result 

In condition monitoring for general rotating machinery, the harmonics (2 fr, 3 fr, 4 fr …) of fr are 

occurred higher than fr when the misalignment was happened. According to the phenomena 

of misalignment as shown in Fig.5, high level harmonics of fr were generated such as in Fig. 

6(b), and 2 fr was always bigger than fr as shown in Fig. 7(a). The level of 2 fm from second to 

thirteenth day was higher than or similar to fr as shown in Fig. 7(b). Thus, it is easily catching 

up to the misalignment that occurred in this test rig. However, it might be that faults of this 

system are not only misalignment but also resonance trouble, looseness, bearing fault, etc.  

Wearing effect by misalignment pollutes the lubrication oil. In Fig. 8, it could be found by 

the worn teeth and the spots near the pieces of gear teeth. The dripped pieces from the 

unloading surface raised the wearing effect on the loading surface, and then the gap 

between gear and pinion was increased. In addition, we could know that the impact marks 

on the unloading surface (Fig. 8(b)) were generated by misalignment; the impacting force 

was strong in the initial condition. In this way, the gear teeth were seriously damaged as in 

Fi g. 8. In Fig. 6(c) and (d), the sidebands are created on wide-spread frequency range near fm 

and 2 fm. That is similar to a state excited by impact force. To confirm the natural frequencies 

of the test-rig, modal test was fulfilled. The result of the modal test as in Fig. 9 show that fm 

and 2fm exist on the exiting frequency range. On the other hand, partial frequency bands 

close to fm and 2 fm were excited by the impact force, but it is not an exact natural frequency 

because the phase did not shift enough. Therefore, the peaks near fm and 2 fm were amplified 

and have many sidebands of fr and 11.32Hz (BPFI [fd]). Therefore, it is considered that 

excessive backlash occurred. Moreover, Fig. 10(a) shows the zooming power spectrum of 

Fig. 6(a) focused on fr harmonics. We could clearly know that if the sidebands were caused 

by BPFI [fd], then the inner race had some kind of fault. To find out the fault, the surface of 

the bearing inner race was carried out and viewed by a microscope with 100X zoom as 

shown in Fig. 11. Small spots were found on the surface, and small cracks were found out on 

(a) Phase 

(b) Frequency response function 
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the spots. However, this trouble was not seeded and existed from the initial condition. Thus, 

it is as assumed that the problem happened in assembly and/ or was caused by 

misalignment.  

 

(a) Power spectrum of the AE signal using envelope analysis with DWT(suggested) 

(b) Power spectrum of the AE signal using traditional envelope analysis 

(c) Power spectrum of the signal from accelerometer 

 

 

Fig. 10. Sidebands BPFI in the first day power spectrum 

To identify the sensing ability of the AE, vibration signal was acquired through 

accelerometer and compared with the AE signal. Also, to find the advantage of the proposed 

signal processing method, it was compared to traditional envelope analysis.  

The power spectrum of the AE signal using traditional envelope analysis is shown in Fig. 

10(b), and the power spectrum using the vibration signal by accelerometer is displayed on 

Fig. 10(c). The vibration signal was treated by the same method with AE signal. The 

harmonics of fr are generated, and 2 fr for detecting the misalignment is created and can be 

found in all spectrums (Fig. 10) but the power spectrum of the AE signal, Fig. 10(a) and (b), 

can explicitly display the defect frequencies as compared to the accelerometer signal (Fig. 

10(c)). For example, in Fig. 10(c), the sidebands of BPFI are not easily found because of the 

higher level of noise in the low frequency range below fr than in the AE signal with or 

without DWT. 
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Fig. 11. Zooming of the inner race surface of the fault bearing 

 

Frequency [Hz] Traditional Method Proposed method 

13.709 1X-BPFI 0.2146 0.2459 

25.034 1X 0.8727 0.9525 

36.360 1X+BPFI 0.1936 0.3196 

38.750 2X- BPFI 0.0952 0.1435 

50.070 2X 1.0000 1.0000 

61.393 2X+ BPFI 0.1277 0.2470 

63.181 3X- BPFI 0.0970 0.1560 

75.102 3X 0.3044 0.5465 

86.427 3X+ BPFI 0.1699 0.2352 

99.540 4X 0.4269 0.4616 

110.866 4X+ BPFI 0.1062 0.1675 

124.574 5X 0.2312 0.3253 

135.899 5X+ BPFI 0.0714 0.1443 

Table 3. Ratio of peaks versus the maximum peak in respective spectrum 

According to the above results, we can understand that the AE signal can detect the fault 

more easily than accelerometers and can be used in the condition monitoring system for 

early detection fault. Moreover, as shown in Table 3 which is the ratio of peaks versus the 

maximum peak in the respective spectrum, the peak levels of the harmonics of fr and 

sidebands caused by BPFI are highly generated in the proposed signal processing method 

(Fig. 10(a)) than the traditional method. This can lead good feature values to evaluate the 

condition of the machinery. Therefore, the power spectrum of the proposed envelope 

analysis using AE signal can be shown the clean result with harmonics and sidebands and is 

a better technique for condition monitoring system. 

4. Cracked rotor 

4.1 Experiment system 
Test rig consisted of a motor, a flexible coupling, rolling element bearings (NSK6200), three 

steel bearing housings, a lifting tool and a cracked shaft. The transverse crack was seeded by 
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wire-cutting with 0.5 mm depth on the shaft made from SM45C. As shown in Fig. 12, the 

crack was positioned at 5mm near to the second drive-end bearing, and the non-driven end 

of the shaft was left 6.5 mm with bearing housing by the lifting tool. 

AE signal was acquired by an AE sensor and transferred to amplifier, analog-filter, DAQ 

board and HDD of a desktop. AE sensor is a wideband type with a relative flat response 

in the range frequency range from 100 kHz to 1 MHz. AE signals were pre-amplified with 

60 dB and the output from the amplifier was collected by a commercial data acquisition 

card with 5 MHz sampling rate during the test. The signals were stored 0.5sec by every 

30sec until the shaft was fractured, and the rotating speed of the motor was 600rpm 

(10Hz).  
 

 

Fig. 12. Experiment system 

4.2 Test result and discussion 
The operating speed was 600rpm, and the initial radial load for 160N was employed. The 

radial load was a variable parameter because it was applied by keeping the lifting distance 

with 6.5mm of the non-drive end of the shaft, and the test terminated on a fracture of the 

shaft. Fig. 13 shows the observations of continuous feature values as mean value, RMS, peak 

value and entropy estimation. In information theory, uncertainty can be measured by 

entropy. The entropy of a distribution is the amount of a randomness of that distribution. 

Entropy estimation is two stage processes; first a histogram is estimated and thereafter the 

entropy is calculated. Here, we estimate the entropy of AE signal with using unbiased 

estimated approach. Fig. 13(a), relatively high level of AE activity was noted from 18 

minutes, and it was increased until 60 minutes. But in RMS, Peak and Entropy estimation, 

the levels were kept to 18minutes beside a peak in around 9 minutes, since that these were 

continuously decreased to 70 minutes and were increased with hunting with several minute 

intervals until the fracture. 

Interestingly observations of the AE waveform, sampled at 5 MHz showed changing 

characteristics as a function of time. Fig. 14 shows a contour map of the peaks level of each 

frequency with time. Rotating speed (9.5Hz) and 3rd harmonic of rotating speed (28.6Hz, 

3X) dominated while the test as shown in Fig. 14(b). It is normally known that 3X is caused 

by misalignment of the bearings created by the loading system for this test (Hatch & Bently, 
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2002). However, the harmonic component (3X) was kept the level in the wavelet level 6(Fig. 

14(b)), but it was increased from 30 minutes in the wavelet level 4(Fig. 14(a)). Additionally, 

1X started increasing earlier than 3X as shown in Fig. 14(a).  
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(a) Mean value [μVŠ10-4]                 (b) RMS value [μV] 
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 (c) Peak value [μV]    (d) Entropy estimation value 

Fig. 13. Shaft test results; run-to-failure 

31Hz and 62Hz that were the harmonics of the fundamental train frequency (FTF or cage 

noise) of the bearing were continuously occurred. Cage noise can be generated in any type 

of bearing and the magnitude of it is usually not very high. Characteristics of this noise 

include: (1) it occurs with pressed steel cages, machined cages and plastic cages. (2) It occurs 

with grease and oil lubrication. (3) It tends to occur if a moment load is applied to the outer 

ring of a bearing. (4) It tends to occur more often with greater radial clearance. In Fig. 14, 

62Hz was continuously detected; 31Hz was detected with 3X. In a general bearing system, 

the amplitude of the bearing fault frequency is depended on the load grade and is increased 

along the growing load grade. However, 31Hz of the case noise of this test was not followed 

the load scale because loading force for this test was decreased with the crack growth. So, it 

was shown that 31Hz was related with the crack growth. 

According to this result, we could know that the reason of 3X (28.6Hz) was the moment load 

by the loading system; 31Hz was connected with the crack growth. Therefore, the peak 

levels around 3X and 31Hz was excited by the two frequencies and was increased with the 

crack growth. 

To clear more the characteristic of the crack growth, in addition, PAC energy value was 

observed. In acoustic emission technology, PAC-Energy is a 2-byte parameter derived from 

the integral of the rectified voltage signal over the duration of the AE hit (or waveform), 
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hence the voltage-time units (μV2∙sec). So, PAC energy value was determined by an 

integral of the square sum total of the transferred time signal in each wavelet level. Fig. 15 

shown the energy level of every wavelet levels along time, and its value was transferred to 

logarithmic value because of too low resolution in linear scale.  

Fig. 15 shows the energy trend of wavelet level 1 to 8. Many peaks were created while the 

test in wavelet level 1(Fig. 15(a)), a high peak was created around 9 minutes existed in 

wavelet level 1 to 4. Wavelet level 2, 4, 5 and 6 shows a similar trend after 10minutes. The 

energy level was slowly increased with time until about 30 minutes, and then it was 

increased fast until 35 minutes (additionally, it was considered that this increasing was 

related with the growth of the 3X and 31Hz in Fig. 14(a)), after that it was decreased a little for 

10 minutes. And it was hunted with every several minutes about 4 minutes until close fracture. 

In this trend, we had considered of two phenomena, the high peak and the period hunting. 

We could mind that the high peak was related with initial crack growth. Because it was 

shown as follows,  

- The increasing ratio of the energy was changed after it was happened. 

- The mean value was began fast change (Fig. 13(a)). 

- Generated in high frequency range (Fig. 15(a) ~ (d)). 

The period hunting was clearly occurred and displayed in wavelet level 2, 4 ~ 8. It was 

considered that it could indicate a state of the final stage of the fracture in the rotating shaft 

because of follows, 

- It had a period about 4 minutes. 

- It was displayed in lower frequency range than the high peak (Fig. 15(e) ~ (h)). 

- Its level was increased along near to the fracture. 
 

 
(a) Wavelet level 4 

 
(b) Wavelet level 6 

Fig. 14. Peak level trend by frequency 
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(a) Level 1                                                              (b) Level 2 

 

0 20 40 60 80
0

0.5

1

1.5
x 10

-5

Time [min]

E
n
e
rg

y
 [

m
V

2
*s

e
c
]

Energy Trend Curve, Level = 3

0 20 40 60 80
0

0.5

1
x 10

-4

Time [min]

E
n
e
rg

y
 [

m
V

2
*s

e
c
]

Energy Trend Curve, Level = 4

 
(c) Level 3                                                              (d) Level 4 
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(e) Level 5                                                           (f) Level 6 

 

0 20 40 60 80
0

2

4

6

8
x 10

-4

Time [min]

E
n
e
rg

y
 [

m
V

2
*s

e
c
]

Energy Trend Curve, Level = 7

0 20 40 60 80
0

0.5

1

1.5

2
x 10

-3

Time [min]

E
n
e
rg

y
 [

m
V

2
*s

e
c
]

Energy Trend Curve, Level = 8

 
(g) Level 7                                                           (h) Level 8 

 

Fig. 15. PAC energy trend of each wavelet level 
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Fig. 16. PAC-Energy level of total wavelet level 

To compare absolutely the energy of each wavelet level, all of PAC energy was displayed on 

a 3D graph with time and wavelet levels as shown in Fig. 16. In wavelet level 5, after 

approximately 30 minutes, a large transient rise in PAC energy level was observed and this 

AE activity gradually observed frequently after 60 minutes until the shaft was fractured. In 

addition, a peak created at 9 minutes was indicated. In here, we could consider that the 

frequency range of wavelet level 5 could be shown a good relationship between the PAC 

energy and the crack growth of the middle and final stage. Even so, the trend of the wavelet 

level 7 and 8 was not clearly connected with the others because the frequency range of 

wavelet level 7 and 8 was lower than the useful frequency range (100kHz to 1MHz) of AE 

sensor for this research.  

Therefore, the AE signal caused by the crack growth was generated on the whole ultra-

sound frequency range; the initial crack could be detected using the PAC energy on wavelet 

level 1 to 4. In addition, it could be presented on wavelet level 5 until the fracture of the 

shaft. In the frequency domain, it was shown that the harmonic components of the rotating 

speed and bearing cage frequency were excited by the crack growth, especially on the 3X 

(28.6Hz) and 31Hz. 

5. Conclusion 

In this paper, a signal processing method for AE signal by envelope analysis with discrete 

wavelet transforms is proposed. For the detection of faults generated from a gear system 
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using the suggested signal processing, a gearbox was installed in the test rig system. 

Misalignment was created by twisted case caused by arc-welding to fix the base and bearing 

inner race fault is generated by severe misalignment. To identify the sensing ability of the 

AE, vibration signal was acquired through accelerometer and compared to the AE signal. 

Also, to find the advantage of the proposed signal processing method, it was compared with 

traditional envelope analysis. 

According to the experiment result, AE sensor can detect the fault earlier than an 

accelerometer because of high sensitivity and in the power spectrum, the harmonics of the 

rotating speed and the gear mesh frequency clearly occurred. Misalignment was observed 

and bearing faults were also detected in the early fault stage. The proposed envelope 

analysis is worked to evaluate the faults and indicated the faults frequencies, rotating speed, 

sideband of BPFI, gear mesh frequency and harmonics, explicitly. 

For the detection of the crack growth on the shaft, a cracked shaft was installed on the test 

rig, and the crack was seeded by wire-cutting with 0.5 mm depth. The cracked shaft was 

lifted 6.5 mm by the lifting tool. The AE signals were transformed by FFT to create the 

power spectrums, and in the spectrums several peaks were occurred by the crack growth. 

Along the growth of the crack, the characteristic of the power spectrum was changed and 

displayed different frequencies. 

In the power spectrum, it was shown that the harmonic components of the rotating speed 

and bearing cage frequency were excited by the crack growth as shown in the Fig. 6, 

especially on the 3X (28.6Hz) and 31Hz. And the AE signal caused by the crack growth is 

generated on the whole ultrasonic frequency range; the initial crack could be detected using 

the PAC-Energy on wavelet level 1 to 4, and after that, it could be presented on wavelet 

level 5 until the fracture of the shaft. Therefore, in this paper, it could be shown that the 

crack growth in rotating machinery is able to be considered and to be detected; in addition, 

PAE-Energy can be used to detect the early detection of the crack. 

Therefore, the proposed signal processing method that is the envelope analysis intercalated 

DWT using Daubechies mother function between BPF and wave rectification can be shown 

to provide better result than traditional envelope analysis. 
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