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1. Introduction

Many phenomena in physics and other fields are often described by nonlinear partial
differential equations (NLPDEs). The investigation of exact and numerical solutions, in
particular, traveling wave solutions, for NLPDEs plays an important role in the study of
nonlinear physical phenomena. These exact solutions when they exist can help one to well
understand the mechanism of the complicated physical phenomena and dynamical processes
modeled by these nonlinear evolution equations (NLEEs). The ion-acoustic solitary wave
is one of the fundamental nonlinear wave phenomena appearing in fluid dynamics [1] and
plasma physics [2, 3]. It has recently became more interesting to obtain exact analytical
solutions to NLPDEs by using appropriate techniques and symbolical computer programs
such as Maple or Mathematica. The capability and power of these software have increased
dramatically over the past decade. Hence, direct search for exact solutions is now much more
viable. Several important direct methods have been developed for obtaining traveling wave
solutions to NLEEs such as the inverse scattering method [3], the tanh-function method [4],
the extended tanh-function method [5] and the homogeneous balance method [6]. We assume

that the exact solution is expressed by a simple expansion u(x, t) = U(ξ) = ∑
N
i=0 AiF

i(ξ)
where Ai are constants to be determined and the function F(ξ) is defined by the solution
of an auxiliary ordinary differential equation (ODE). The tanh-function method is the well
known method as a direct selection of the function F(ξ) = tanh( ξ). Recently, many exact
solutions expressed by various Jacobi elliptic functions (JEFs) of many NLEEs have been
obtained by Jacobi elliptic function expansion method [7-10], mapping method [11, 12],
F-expansion method [13], extended F-expansion method [14], the generalized Jacobi elliptic
function method [15] and other methods [16-20]. Various exact solutions were obtained by
using these methods, including the solitary wave solutions, shock wave solutions and periodic
wave solutions.
The main steps of the F-expansion method [13] are outlined as follows:
Step 1. Use the transformation u(x, t) = u(ξ); ξ = k(x − ωt) + ξ0, ξ0 is an arbitrary constant,
and reduce a given NLPDE, say in two independent variables,

F(u, ut, ux, utt, uxx, ...) = 0, (1.1)
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to the (ODE)

G(u, u′, u′′, ...) = 0, u′ =
du

dξ
. (1.2)

In general, the left hand side of Eq. (1.1) is a polynomial in u and its various derivatives.
Step 2. The F-expansion method gives the solution of (1.1) in the form

u(x, t) = u(ξ) =
N

∑
i=0

aiF
i(ξ), aN �= 0, (1.3)

where ai (i = 0, 1, 2, ..., N) are constants to be determined and F(ξ) satisfies the first order
nonlinear ODE in the form

(F′(ξ))2 = q0 + q2F2(ξ) + q4F4(ξ), (1.4)

where q0, q2 and q4 are constants and N in Eq. (1.3) is a positive integer that can be determined
by balancing the nonlinear term(s) and the highest order derivatives in Eq. (1.1).
Step 3. Substituting the F-expansion (1.3) into (1.2) and using (1.4); setting each coefficient of
the polynomial to zero yields a system of algebraic equations involving a0, a1, ...aN , k and ω.
Step 4. Solving these equations, probably with the aid of Mathematica or Maple, then
a0, a1, ...aN , k and ω can be expressed by q0, q2, q4.
Step 5. Substituting these results into F-expansion (1.3), then a general form of traveling
wave solution of the NLPDE (1.1) can be obtained. Many solutions of equation (1.4) have
been reported in [13, 14]. Substituting the values of q0, q2, q4 and the corresponding JEF
solution F(ξ) into the general form of solution, we may get several classes of exact solutions
of equations (1.1) involving JEFs.
Also, we give a brief description of the mapping method to seek the traveling wave solutions
of (1.1) in the form u(x, t) = u(η), η = kx − ω t + η0, η0 is an arbitrary constant. Thus, Eq.
(1.1) reduces to Eq. (1.2), whose solution can be express in the form

u(η) =
n

∑
i=0

Ai f i(η), (1.5)

where n is a balancing number, Ai are constants to be determined and f (η) satisfies the
nonlinear ODE

f ′2(η) = 2 p f (η) + q f 2(η) +
2

3
r f 3(η). (1.6)

Here p, q and r are constants. After substituting Eq. (1.5) into the ODE (1.2) and using
Eq. (1.6), the constants Ai, k and ω may be determined. By using the solutions of auxiliary
nonlinear equation (1.6), many JEF solutions of NLEEs have been obtained [19, 20].
The JEFs sn(ξ) = sn(ξ, m), cn(ξ) = cn( ξ, m) and dn(ξ) = dn(ξ, m) are double periodic and
have the following properties:

sn2(ξ) + cn2(ξ) = 1, dn2(ξ) + m2 sn2(ξ) = 1.

In the limit m −→ 1, the JEFs degenerate to the hyperbolic functions, i.e.,

sn(ξ, 1) −→ tanh(ξ), cn(ξ, 1) −→ sech(ξ), dn(ξ, 1) −→ sech(ξ).

Detailed explanations about JEFs can be found in [21].
Some of the nonlinear models in fluids, plasma and dust plasma are described by canonical
models and include the Korteweg-de Vries (KdV) and the modified KdV equations [22-25].
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The evolution of small but finite-amplitude solitary waves, studied by means of the
Korteweg-de Vries (KdV) equation, is of considerable interest in plasma dynamics. In the
study of multidimensional version two type of nonlinear waves are well known, the so called
Kadomtsev-Petviashvilli (KP) equation and Zakharov - Kuzentsov (ZK) equation. Employing
the reductive perturbation technique on the system of equations for hydrodynamics and the
dynamics of plasma waves to derive such equation.
We construct several classes of exact JEF solutions of some nonlinear evolution equations of
plasma physics by using the mapping method and the F-expansion method. The rest of this
chapter is organized as follows: in section 2, we present the JEF solutions to the KdV equation,
combined KdV - modified KdV equation. In section 3, we apply the F-expansion method to
the Schamel- KdV equation. Moreover, using the ansatz solution (1.5) and the solutions of
nonlinear ODE (1.6), many exact solutions of Schamel equation, ZK equation and modified
fifth order KdV equation are given in sections 4, 5, 6.

2. The KdV and modified KdV equations

The Korteweg de-Vries (KdV) equation

ut + αuux + uxxx = 0,

models a variety of nonlinear phenomena, including ion acoustic waves in plasmas, dust
acoustic solitary structures in magnetized dusty plasmas, and shallow water waves. On the
other hand, the modified KdV equation (mKdV)

ut + bu2ux + uxxx = 0,

models the dust-ion acoustic waves, electromagnetic waves in size-quantized films, ion
acoustic solitons, traffic flow problems, and in other applications. The KdV equation and
the modified KdV equation are completely integrable equations that have multiple-soliton
solutions and possess infinite conservation quantities. The KdV equation is the earliest soliton
equation that was firstly derived by Korteweg and de Vries to model the evolution of shallow
water wave in 1895. In the study of the KdV equation, traveling wave solution leads to
periodic solution which is called cnoidal wave solution [22, 23]. Exact solutions of KdV
equation have been studied extensively since they were first found. Solitary wave solutions
and periodic wave solutions were obtained for the KdV and modified KdV equations [3, 7,
22]. The JEF solutions to two kinds of KdV equations with variables coefficients have been
constructed by using the method of the auxiliary equation [19]. The reductive perturbation
method [24] has been employed to derive the KdV equation for small but finite amplitude
electrostatic ion-acoustic waves [23, 25, 26]. The basic equations describing the system in
dimensionless variables is studied by El-Labany [26] and the KdV equation for the first-order
perturbed potential has been obtained using the reductive perturbation method.
We consider the combined KdV and mKdV equation [22, 27, 28]

ut + αuux + βu2ux + δuxxx = 0, β �= 0. (2.1)

where α, β and δ are constants. Equation (2.1) is widely used in various fields such as
quantum field theory, dust-acoustic waves, ion acoustic waves in plasmas with a negative
ion, solid-state physics and fluid dynamics.
Let u = u(ξ), equation (2.1) transformed to the reduced equation

− ωu′ + αuu′ + βu2u′ + δk2 u′′′ = 0. (2.2)
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Balancing u′′′ with u2u′ yields N = 1, so the F-expansion method gives

u(x, t) = a0 + a1F(ξ). (2.3)

Substituting (2.3) into (2.2) and equating the coefficients of like powers of F(ξ) to zero, we
obtain a set of algebraic equations. Solving these algebraic equations, we obtain the exact
solutions of (2.1) as follows:
When q0 = 1, q2 = −1 − m2, q4 = m2, solutions of Eq. (1.4) is F(ξ) = snξ , we have

u = − α

2β
± k

√

−6m2δ

β
sn

(

k(x + (
α2 + 4βδk2(m2 + 1)

4β
)t) + ξ0

)

, (2.4)

If q0 = m2 − 1, q2 = 2 − m2, q4 = −1, the solution of Eq (1.4) is F(ξ) = dnξ. Thus, we obtain
the periodic wave solutions of Eq. (2.1)

u = − α

2β
± k

√

6δ

β
dn(k(x +

α2 − 4βδk2(2 − m2)

4β
t) + ξ0), (2.5)

Selecting the values of the q0, q2 and q4 of equation (1.4) and the corresponding function
F, we can construct various JEF solutions of (2.1). Other JEF solutions are omitted here for
simplicity. If we put α = 0 in (2.4), we get the periodic solution of the modified KdV equation
which coincides with that given by Liu et al. [7]. Moreover, the solutions (2.5) to equation (2.1)
given in [28] are recovered. With m −→ 1 in (2.4) , (2.5), the solitary wave solutions to (2.1)
given in [7, 27, 28] are also recovered.
We notice that the solutions of the KdV equation cannot obtain from (2.4) and (2.5) as β = 0.
In this case, the general form of cnoidal wave solutions of the KdV equation are given by

u(x, t) = − 3ωq4

α q2
F2(ξ), ξ =

√

ω

4δq2
(x − ωt) + ξ0. (2.6)

Thus we can obtain abundant cnoidal wave solutions of the KdV equation in terms of JEFs.
Some periodic wave solutions of the KdV equation and modified KdV equation have been
studied in [7,23, 28]. As m −→ 1, these solutions will degenerate into the corresponding
solitary wave solutions.

3. The JEF solutions of Schamel- KdV equation

We consider the Schamel- KdV equation [29, 30]

ut + (αu1/2 + βu)ux + δuxxx = 0, β �= 0 (3.1)

where α, β and δ are constants and u is the wave potential.

In order to find the periodic wave solution of (3.1), we use the transformations u = v2,
v(x, t) = V(ξ); ξ = k(x − ωt) + ξ0, then (2.7) becomes

− ωV V ′ + (αV2 + βV3)V ′ + δk2[VV ′′′ + 3V ′V ′′] = 0. (3.2)

The balancing procedure implies that N = 1. Therefore, the F-expansion method gives the
solution

V(x, t) = V(ξ) = a0 + a1F(ξ), (3.3)
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where a0 and a1 are constants to be determined and F(ξ) is a solution of Eq. (1.4). Substituting
Eq. (3.3) into Eq. (3.2) and equating the coefficients of the like powers of F to zero, yields a set
of algebraic equations for a0, a1, k and ω:

[βa2
1 + 12δk2q4]a1 = 0,

[αa2
1 + 3βa0a2

1 + 6δk2a0q4]a1 = 0,

[−ω + 2αa0 + 3βa2
0 + 4δk2q2]a1 = 0,

[−ω + αa0 + βa2
0 + δk2q2]a0 = 0.

(3.4)

Solving these algebraic equations, we gave a general form of traveling wave solutions of Eq.
(3.1)

u =
4α2

25β2

[

1 ±
√

−2q4

q2
F(ξ)

]2

. (3.5)

Therefore, we obtained in [30] the JEF solutions of Eq. (3.1) as follows:

When q0 = 1, q2 = −1 − m2, q4 = m2, solutions of Eq. (1.4) is F(ξ) = snξ , we have

u1 = 4α2

25β2

[

1 ±
√

2m2

m2+1
sn

(

2α

5
√

−6δβ(m2+1)
(x + 16α2

75β t) + ξ0

)]2

, βδ < 0, (3.6)

If q0 = 1 − m2, q2 = 2m2 − 1, q4 = −m2, F(ξ) = cnξ, thus yields the exact solutions of Eq.
(3.1)

u2 = 4α2

25β2

[

1 ±
√

2m2

2m2−1
cn

(

2α

5
√

6δβ(2m2−1)
(x + 16α2

75β t) + ξ0

)]2

, βδ > 0, (3.7)

If q0 = m2 − 1, q2 = 2 − m2, q4 = −1, the solution of Eq (1.4) is F(ξ) = dnξ. So, we obtained
the exact solutions of Eq. (3.1) in the form

u3 = 4α2

25β2

[

1 ±
√

2
2−m2 dn

(

2α

5
√

6δβ(2−m2)
(x + 16α2

75β t) + ξ0

)]2

, βδ > 0, (3.8)

Many types of JEF solutions of Eq. (3.1) are given [30]. As m −→ 1, Eqs. (3.6)-(3.8) degenerate
to

u4 = 4α2

25β2

[

1 ± tanh

(

α

5
√

−3δβ
(x + 16α2

75β t) + ξ0

)]2

, βδ < 0,

u5 = 4α2

25β2

[

1 ±
√

2 sech

(

2α

5
√

6δβ
(x + 16α2

75β t) + ξ0

)]2

, βδ > 0,

(3.9)

The solitary wave solutions (3.9) in terms of tanh are equivalent to the solutions given in [31].
The JEF solutions of (3.1) may be describe various features of waves and may be helpful in
understanding the problems in ion acoustic waves.
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4. Schamel equation and modified KP equation

The equation describing ion-acoustic waves in a cold-ion plasma where electrons do not
behave isothermally during their passage of the wave is

ut + u1/2 ux + δ uxxx = 0. (4.1)

Schamel [29] derived this equation and a simple solitary wave solution having a sech4 profile
was obtained. Therefore the Schamel equation (4.1) containing a square root nonlinearity is
very attractive model for the study of ion-acoustic waves in plasmas and dusty plasmas.
In order to find the periodic wave solution of (4.1), we use the transformations

u = v2, v(x, t) = V(η); η = kx − ω t + η0,, then (4.1) becomes

− ωV V ′ + k V2V ′ + δk3[VV ′′′ + 3V ′V ′′] = 0. (4.2)

According to the mapping method, we assume that Eq. (4.2) has the following solution:

V(η) = A0 + A1 f (η), (4.3)

where A0 and A1 are constants to be determined and f (η) satisfies Eq. (1.6).
Substitution of Eq. (4.3) into Eq. (4.2) and selecting the values of p, q and r, we have the
solutions of Eq. (4.1) which was given in [20] as follows:

Case 1. p = 2, q = −4 (1 + m2), r = 6 m2. In this case, we have f (η) = sn2η. Thus the
periodic wave solutions of Eq. (4.1) are

u1(x, t) = 100δ2 k4
[

1 + m2 ±
√

1 − m2 + m4 − 3 m2 sn2 η
]2

,

η = kx ∓ 16 δk3
√

1 − m2 + m4 t + η0.

(4.4)

Case 2. p =
−(1−m2)2

2 , q = 2(1 + m2), r = −3
2 . The solutions of Eq. (1.6) are f (η) =

(m cnη ± dnη)2. Thus the exact solutions of Eq. (4.1) are

u2(x, t) = 25δ2 k4

4

[

− 2(1 + m2)±
√

1 + 14m2 + m4 + 3 (m cnη ± dnη)2
]2

,

η = kx ∓ 4 δk3
√

1 + 14m2 + m4 t + η0.

(4.5)

Case 3. p = m2

2 , q = 2(m2 − 2), r = 3 m2

2 . The solutions of Eq. (1.6) are

f (η) =
(

m snη

1±dn η

)2
. So, we obtained the exact solutions of Eq. (4.1)in the form

u3(x, t) = 25δ2 k4

4

[

2(2 − m2)±
√

16 − 16m2 + m4 − 3 m4
(

sn η

1±dn η

)2
]2

,

η = kx ∓ 4 δk3
√

16 − 16m2 + m4 t + η0.

(4.6)

There are several exact solutions for the Eq. (4.1) which are omitted here for simplicity. As
m → 1, these solutions reduce to the solitary wave solutions

u4(x, t) = 900δ2 k4 sech4(kx − 16 δk3 t + η0),

u5(x, t) = 100δ2 k4 [2 − 3 sech2(kx + 16 δk3 t + η0)]
2.

(4.7)
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u6(x, t) = 225δ2 k4

4

[

1 −
(

tanh (kx−4 δk3 t+η0)

1+ sech(kx−4 δk3 t+η0)

)2
]2

. (4.8)

The KdV equation in two dimensions, known as Kadomtsev Petviashivili (KP) equation [32],
was derived for ion-acoustic waves in a non magnetized plasma by Kako and Rowlands [33].
Therefore the modified KP equation containing a square root nonlinearity is very attractive
model for the study of ion-acoustic waves in plasma and dusty plasma [34- 36]. Extensive
work has been devoted to the study of nonlinear waves associated with the dust ion-acoustic
waves, particularly the dust ion-acoustic solitary and shock waves in dusty plasmas in which
dust particles are stationary and provide only the neutrality [37]. The KP equation is derived
[38] for the propagation of nonlinear waves in warm dusty plasmas with variable dust charge,
two-temperature ions and nonthermal electrons by using the reductive perturbation theory.
Consider the modified KP equation

(ut + αu1/2ux + βuxxx)x + δuyy = 0, (4.9)

where α and β are constants. The modified KP equation (4.9) for ion-acoustic waves in a multi
species plasma consisting of non-isothermal electrons have been derived by Chakraborty and
Das [34]. We applied the mapping method with the ansatz solution (4.3) and the solutions of
auxiliary equation (1.6) to find the solutions of equation (4.9) (see [39]).

5. The ZK equation and modified ZK equation

The equation

ut + βu2ux + uxxx + uyyx = 0, (5.1)

is the modified ZK in (2+1) dimensions which is a model for acoustic plasma waves [40, 41].
The ZK equation was first derived for describing weakly nonlinear ion- acoustic waves in a
strongly magnetized lossless plasma in two dimension [41]. The ZK equation and modified
ZK equation possess traveling wave structures [28, 42]. Peng [42] studied the exact solutions
of ZK equation by using extended mapping method. Various types of solutions of Schamel-
KdV equation and modified ZK equation arising in plasma and dust plasma are presented in
[43].
We apply the F-expansion method to the modified ZK equation. Thus, Eq. (5.1) has a solution
in the form

u(ξ) = a0 + a1 F(ξ), ξ = k(x + ly − ω t) + ξ0.

Substituting this equation into Eq. (5.1), we obtain the following classes of exact solutions of
the modified ZK equation:

u = m
√

6ω
(m2+1)β

sn(
√

−ω
(m2+1)(1+l2)

(x + ly − ω t + ξ0)),

u = m
√

6ω
(2−m2)β

dn(
√

ω
(2−m2)(1+l2)

(x + ly − ω t + ξ0)).
(5.2)

In the following we apply the mapping method to the ZK equation

ut + αu ux + uxxx + uyyx = 0. (5.3)

In this case, we have n = 1. Thus Eq. (5.3) has a solution in the form

u(η) = A0 + A1 f (η), η = kx + ly − ω t + η0.
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Substituting this equation into Eq. (5.3) to determine A0, A1, k, ω and using the solutions
of auxiliary equation (1.6), we obtained the following classes of exact solutions of the ZK
equation [39]:

u1(x, y, t) = ω
k α + 4(1+m2)(l2+k2)

α − 12m2(l2+k2)
α sn2( kx + ly − ω t + η0),

u2(x, y, t) = ω
k α +

4(m2−2)(l2+k2)
α +

12(l2+k2)
α dn2( kx + ly − ω t + η0),

(5.4)

u3 = ω
k α − 2(1+m2)(l2+k2)

α + 3(l2+k2)
α [m cn( η)± dn( η)]2, (5.5)

u4(x, y, t) = ω
k α − 2(1+m2)(l2+k2)

α − 3(1−m2)(l2+k2)
α

(

cn( kx+ly−ω t+η0)
1±sn( kx+ly−ω t+η0)

)2
. (5.6)

When m −→ 1, some of these solutions degenerate as solitary wave solutions of ZK equation.
The solutions (5.3) are coincide with the solutions given in [44].
Recently, some properties of the quantum ion-acoustic waves were also investigated in
dense quantum plasmas by studying the quantum hydrodynamical equations in different
conditions, which includes the quantum Zakharov Kuznetsov equation, the extended
quantum Zakharov Kuznetsov equation, and the quantum Zakharov system [45]. The
three-dimensional extended quantum Zakharov Kuznetsov (QZK) equation [46] was
investigated in dense quantum plasmas which arises from the dimensionless hydrodynamics
equations describing the nonlinear propagation of the quantum ion-acoustic waves. The
three-dimensional extended QZK equation was given in [46]

Φt + (AΦ + B Φ2)Φx + C Φzzz + D (Φxxz + Φyyz) = 0, (5.7)

where A, B, C and D are constants. This equation has the following JEF solutions (see [45, 46]):

Φ1 = − A
2B + m k

√

−6E
B sn( k(x + ly + γz − ω t + η0)), ω = − 4BE k2(1+m2)+A2

4 B , BE < 0,

Φ2 = − A
2B + mk

√

6E
B cn( k(x + ly + γz − ω t + η0)), ω = − 4BE k2(1−2m2)+A2

4 B , BE > 0,

(5.8)
with E = Cγ2 + D(1+ l2). Moreover, many types of analytical solutions of the extended QZK
equation are constructed in terms of some powerful ansatze, which include doubly periodic
wave solutions, solitary wave solutions, kink-shaped wave solutions, rational wave solutions
and singular solutions [46].

6. The modified fifth order KdV equation

Higher order KdV equations have many applications in different fields of mathematical
physics. For example the fifth-order KdV equations can be derived in fluid dynamics and
in magneto-acoustic waves in plasma and its exact solutions was given in [47-51]. The
higher-order KdV equation can be derived for magnetized plasmas by using the reductive
perturbation technique. Traveling wave solutions of Kawahara equation and modified
Kawahara equation have been studied [9, 48, 49]. Moreover, the solitary wave solutions of
nonlinear equations with arbitrary odd-order derivatives were studied by many authors [47,
51].
Consider the modified fifth order KdV equation

ut + βu2ux + c3uxxx + c5uxxxxx = 0, (6.1)
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where β, c3 and c5 are constants. Here, we review the exact traveling wave solutions of
equation (6.1) using exact solutions of the auxiliary equation (1.5) and applied the mapping
method. Thus, Eq. (6.1) has the solutions in the form

u(η) = A0 + A1 f (η), η = kx − ω t + η0, (6.2)

Substituting equation (6.2) into (6.1) and equating the coefficients of like powers of f to zero,
yields a system of algebraic equations for A0, A1, k and ω and then solve it. Therefore, the
solutions of the modified fifth order KdV equation (6.1) was given in [39] as follows:

u1 = ± (10 k2c5(1+m2)+c3)√
−10βc5

∓ k2
√

−90 c5
4β

(

m cn η ± dn η
)2

,

η = k
[

x +
(15c2

5k4(m4+14m2+1)+c2
3)

10c5
t
]

+ η0.

(6.3)

If we choose A0 = 0, equation (6.3) takes the form

u2 = ± 3c3

2(1+m2)
√

−10 β c5

(

m cn η ± dn η
)2

,

η = ±
√

−c3

10c5(1+m2)

[

x +
(23m4+82m2+23) c2

3

200c5(1+m2)2 t
]

+ η0.

(6.4)

Moreover, we have obtained the exact solutions

u3 = ± 3m2c3

2(m2−2)
√

−10 β c5

(

m sn η

1±dn η

)2
,

η = ±
√

c3

10c5(2−m2)

[

x +
(23m4−128m2+128) c2

3

200c5(m2−2)2 t
]

+ η0,

(6.5)

u4 = ± 3c3

2(1−2m2)
√

−10 β c5

(

sn η
1±cn η

)2
,

η = ±
√

−c3

10c5(1−2m2)

[

x +
(128m4−128m2+23) c2

3

200c5(1−2m2)2 t
]

+ η0.

(6.6)

There are several other JEFs of Eq. (6.1) which are omitted here for simplicity. When m −→ 1,
then (6.4)-(6.6) become the solitary wave solutions

u5 = ± 3c3
√

−10βc5
sech2(

1

2

√

−c3

5c5
(x +

4 c2
3

25c5
t) + η0), (6.7)

u6 = ∓ 3c3

2
√

−10 β c5

( tanh η

1 ± sech η

)2
, η = ±

√

c3

10c5

[

x +
23 c2

3

200c5
t
]

+ η0. (6.8)

We notice that Eq. (6.7) is the solution given by Example 2 in Ref. [47].
Finally, we can construct various types of exact and explicit solutions of the generalized ZK
equation

ut + (α + β up) upux + uxxx + δuyyx = 0, (6.9)

by using suitable method and using an appropriate transformation. Also, we can study the
exact solution of the generalized KdV equation (δ = 0) which studied by many authors
[22, 23, 31]. The generalized ZK equation was first derived for describing weakly nonlinear
ion-acoustic waves in strongly magnetized lossless plasma in two dimensions and governs
the behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and
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hot isothermal electrons in the presence of a uniform magnetic field. Eq. (6.9) includes
considerable interesting equations, such as KdV equation, mKdV equation, ZK equation
and mZK equation. Exact traveling wave solutions for the generalized ZK equation with
higher-order nonlinear terms have obtained in [52-54]. Moreover, we can use the symbolic
computations and apply the mapping method with the ansatz solution (1.5) to find the several
classes of traveling wave solutions of the fifth order KdV equation

ut + c1u ux + c2 uxxx + δuxxxxx = 0.

This equation appears in the theory of shallow water waves with surface tension and the
theory of magneto-acoustic waves in plasmas [9]. Wazwaz [55] studied soliton solutions of
fifth-order KdV equation. We can use a suitable method to construct the exact solutions of
some special types of nonlinear evolution equations aries in plasma physics such as Liouville,
sine-Gordon and sinh-Poisson equations.
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