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1. Introduction 

Breast cancer is the most commonly diagnosed cancer and one of the leading causes of 
cancer-associated death among women worldwide. Each year, more than one million new 
cases of breast cancer are diagnosed worldwide, and an estimated 370,000 women die from 
breast cancer (1, 2). Ca2+ as an important nutrient from dairy products functions as an 
important signalling messenger from the beginning to the end of our life, and plays a critical 
role in many physiological processes such as gene transcription, cell growth, proliferation, 
migration, differentiation and apoptosis (3-11). Many of these processes are associated with 
tumorigenesis and cancer progression. Dysregulation of calcium homeostasis and signaling 
causes many human diseases, including mammary gland pathophysiology and breast 
cancer (3, 4, 5 and 9).  

2. Ca
2+

 and breast cancer 

Ca2+ is a ubiquitous cellular signal which has been strongly implicated in triggering and 
regulating various cell functions by Ca2+-regulated proteins and their signaling pathways (3-
11). The concentration of free extracellular Ca2+ (Cao2+) in our serum is kept constant by 
processing that constantly feeds Ca2+ into, and withdraws it from the extracellular fluid, 
such as dietary calcium intake and bone calcium turnover (5-7). Decreases in the 
concentration of free Cao2+ in plasma (hypocalcemia) result in increased neuromuscular 
irritability and tetany. Increases in total serum Cao2+ (hypercalcemia) can result in fatigue, 
depression, mental confusion, anorexia, nausea, vomiting, constipation, reversible renal 
tubular defects, increased urination, alteration in the electrocardiogram (a short QT 
interval), and cardiac arrhythmias as well as renal insufficiency and calcification in the 
kidney, skin, vessels, lungs, heart and stomach. There is a ~12,000-fold Ca2+-gradient 
between intracellular (~100 nM) and extracellular (~1.2 mM) free Ca2+ concentrations in 
cells. To maintain this Ca2+ gradient, cells chelate, compartmentalize, or remove Ca2+ from 
the cytoplasm (3). Regulation of cellular processes via Ca2+-signaling such as binding of Ca2+ 
to proteins, change of intracellular Ca2+ (Cai2+) concentrations, and modification of other 

www.intechopen.com



 
Breast Cancer – Carcinogenesis, Cell Growth and Signalling Pathways 

 

668 

protein functions by Ca2+ have been shown to play important roles in cancer initiation, 
tumor formation, tumor progression, metastasis, invasion and angiogenesis (12-14). For 
instance, Ca2+ can activate transcription factors such as nuclear factor of activated T cells 
(NFAT) resulting in modulation of cellular transcription (11), regulate cell proliferation 
promoting cancer cell progression (4, 9, 12), and modulate poly-(ADP-ribose) polymerase-1 
(PARP1), mitochondrial membrane permeabilization and DNA damage leading to apoptosis 
and necrosis (10, 13). By mobilizing the release of Cai2+ from endoplasmic reticulum, 
angiogenic factors such as vascular endothelial growth factor can increase Cai2+ that in turn 
promote angiogenesis (14), Ca2+ signaling also plays an important role in cellular motility 
such as during tumor invasion and metastasis (4, 5, 9, 12). 

2.1 Ca
2+

 intake and breast cancer risk 

Calcium is a threshold nutrient and is the most abundant mineral element in the body. 
Dietary calcium has an important impact on bone metabolism and bone health, and is also 
among a number of nutritional factors suggested to be associated with cancer. Higher 
intakes of Ca2+ are reported to increase the risk of prostate cancer (15, 16) and lung cancer 
(17), and to reduce the risk of ovarian cancer and colorectal cancers (18, 19). Many 
epidemiological studies around the world that evaluated the association between Ca2+ 
intake and the risk of breast cancer have been published (20-32). Table I summaries thirteen 
studies from eight countries during the last five years. Most of these epidemiological studies 
indicate no significant association between Ca2+ intake and the risk of breast cancer, and 
some of these investigations show a negative association (20-32). Epidemiologic studies 
suggest that higher intake of Ca2+ may not be associated with breast tumorigenesis. 
 

Studies Calcium  Breast cancer risk References 

Chinese women Food No association/reduction 20, 21 
Norwegian women Dairy product No significant association 22 
Canadian women Food and supplements No association 23 
German women Food No association 24 
Swedish women Food No association 25 
American women Food and supplements No association/modest reduction 26-30 
Japanese women Food and supplements Reduction 31 
French women Food Negative association 32 

Table 1. Calcium intake and breast cancer risk. 

2.2 Serum Ca
2+

 and breast cancer risk 

As one of many nutrients in dairy products, it is difficult to study the role of calcium intake 
in breast cancer risk. Serum calcium is maintained within a fairly narrow range from 8.5 to 
10 .5 mg/dl (2 .2 to 2 .7 mmol/L). Given the emerging interest in the potential role of Ca2+ in 
the etiology of breast cancer, several investigations focus on analyzing the relationship 
between the levels of serum calcium and the risk of breast cancer. In 2007, the first cohort 
study of 7847 women performed by Almquist et al. (33) evaluated serum calcium in relation 
to breast cancer risk. They found a positive association between total calcium and breast 
cancer risk among overweight postmenopausal women. In follow-up studies in which 462 
women were diagnosed with incident breast cancer, they found that serum calcium levels in 
premenopausal and overweight women were positively associated with increased tumor 
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aggressiveness as determined by a higher risk of nodal metastasis (34, 35). Recently, these 
results were supported by Martin et al. who also found that serum calcium levels among 
postmenopausal women are positively associated with incident breast cancer in white 
women (36), while another study found no association between total serum calcium and 
breast cancer risk among postmenopausal women (37). Although more studies on the 
relationship between serum calcium and breast cancer risk are necessary, hypercalcemia 
defined as an abnormal elevation in serum calcium levels is a frequent complication of 
breast cancer (38-41). This suggests the Cao2+ could play an important role in the regulation 
of breast cancer progression. 

2.3 Bone metastasis of breast cancer cells and Ca
2+

 release 

Hypercalcemia, which has been found in 30-40% of breast cancer patients, is the most 
frequent metabolic complication of breast cancer (38-41). In a significant minority of 
patients, cancer-induced hypercalcemia is caused by systemic secretion of parathyroid 
hormone-related protein (PTHrP) by cancer cells, and PTHrP causes increased bone 
resorption and enhances renal retention of calcium (42, 43). Most commonly, hypercalcemia 
occurs in patients with multiple bone metastases. Breast cancer cell metastases to bone often 
cause bone destruction or osteolysis, and leads to the release of growth factors from the 
bone matrix (e.g., transforming growth factor, insulin-like growth factor, basic fibroblast 
growth factor), and the release of large quantities of Ca2+ into the bone microenvironment 
(44-49). The growth factors can stimulate breast cancer cell proliferation (47), while Ca2+ also 
plays an important role in crosstalk between tumor cells and bone microenvironment to 
promote a vicious cycle of tumor cell growth and bone destruction. 

3. Ca
2+

-sensing receptor and breast cancer 

Recent studies have demonstrated that some G protein coupled receptors (GPCR) such as 
endothelin receptors, chemokine receptors and lysophosphatidic acid receptors play an 
important role in tumorigenesis and metastasis of multiple human cancers (50-52). Some 
other GPCRs, for instance neuropeptide receptors, adenosine A2B receptor, P2Y receptor, 
bradykinin receptor, thrombin receptor, metabotropic glutamate receptors, estrogen 
receptor, and EGF-like module containing mucin-like hormone receptor 2 are also expressed 
at a significantly higher level in cancer tissues and have been implicated in cancer 
progression (53-57). The Ca2+-sensing receptor (CaR) has a characteristic seven 
transmembrane domain GPCR structure and was initially characterized as a sensor for 
modulating parathyroid hormone and calcitonin release in response to change in blood Ca2+ 
levels (58). The metastasis of breast cancer cells to bone result in osteolysis and lead to the 
release of large quantities of Ca2+ into the bone microenvironment (45, 46). This Cao2+ can be 
a primary signaling molecule and act through the CaR that directly regulates multiple 
signaling pathways involved in breast cancer cell growth, proliferation, differentiation, 
apoptosis and migration (58, 59), and through the Ca2+ channels which elevate intracellular 
Ca2+ (Cai2+) levels to modulate Ca2+-dependent proteins (60).  

3.1 CaR expression and breast cancer 
3.1.1 Up-regulation of CaR expression in breast cancer cells and specimens 

The CaR is expressed in the epithelial ducts of the normal human breast, and the level of 
expression is associated with mammary gland development, with lower levels in pregnancy 
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and involution, low levels before pregnancy and higher levels with lactation (61). These 
physiological changes in CaR expression are involved in the control of PTHrP secretion that 
feeds back to regulate Ca2+ influxes to the mammary glands. These influxes regulate the 
proliferation of normal mammary epithelial cells. During lactation, bone loss is rapid and 
completely reversible upon weaning, and large amounts of calcium are transferred into 
milk, placing nursing mothers under calcemic stress. Bone turnover increases and bone 
mass decreases, presumably to free skeletal calcium for milk production (62, 63). It is known 
that the receptor is also expressed in breast carcinomas and breast cancer cell lines (64). 
Using an anti-CaR antibody with peptide blocking to demonstrate specificity, we (65) 
recently reported that the levels of CaR expression are significantly increased in breast 
cancer cell lines compared to nonmalignant breast cell lines (Fig. 1). Mihai et al. analyzed the 
relationship between the levels of CaR expression and bone metastases in 108 breast cancer 
patients, and found that patients with higher CaR expression are more likely to develop 
bone metastases (66). The higher Cao2+ concentration in the erosion sites of breast cancer 
metastasis and up-regulation of CaR expression in breast cancer cells could lead to cell 
signaling abnormalities. This suggests the potential changes in CaR-mediated signaling in 
breast cancer cells.  
 

 

Fig. 1. Expression of CaR, G protein and p115RhoGEF in normal breast cells and breast 

cancer cells. Equal amounts of protein from Hs 578Bst (lane 1), MCF-10A (lane 2), MDA-
MB-231 (lane 3) and MCF-7 cell (lane 4) lysates were processed for immunoblotting using 
antibodies against different proteins as shown on the right. A) Peptide blocking: anti-CaR 
antibody incubated with no peptide (top) immunogenic peptide (middle) or non-specific 

peptide (bottom); B) Gαi (top), Gαq (upper middle) Gα12 (lower middle) and p115RhoGEF 
(p115, bottom).  

3.1.2 Alteration of other CaR-signaling components in breast cancer 

Like other GPCRs, the CaR signaling cascade contains four major components: receptor, G 

protein (heterotrimeric αβγ), regulators of G-protein signaling (RGS) protein, and effectors 

(67). Current evidence shows that the CaR couples to Gs, Gi, Gq, and G12/13 and can be 

regulated by RGS4 and p115-RhoGEF (58, 65, 68, and 69). Kelly et al. (70) recently reported 

that expression of Gα12 is significantly up-regulated in the earliest stages of breast cancer by 

immunohistochemical detection, and that the inhibition of Gα12 signaling reduces the 

metastatic dissemination of breast cancer cells in an animal model. Gα12/13 acts through 

p115RhoGEF, a RGS protein with GAP activity for the Gα12/13 subunits and guanine 
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nucleotide exchange activity for the small G protein Rho (67). To explore the role of CaR-

mediated signaling in breast cancer cells, we compared the levels of G protein (Gαi, Gαq and 

Gα12) and p115RhoGEF expression in two nonmalignant breast cell lines (Hs 578Bst and 

MCF-10A) and two breast cancer cell lines (MDA-MB-231, estrogen receptor/progesterone 

receptor negative and highly invasive, and MCF-7, estrogen receptor/progesterone receptor 

positive and weakly invasive), and found that the levels of Gα12 and p115RhoGEF 

expression are dramatically up-regulated in two breast cancer cell lines (Fig. 1). Up-

regulation of CaR, Gα12 and p115RhoGEF expression in breast cancer cells indicates a 

potential signaling role in breast tumorigenesis and cancer progression. 

3.2 CaR signaling in breast cancer cells 
3.2.1 CaR signaling regulates the activation of choline kinase in breast cancer cells 

Alteration in choline phospholipid metabolism as detected by nuclear magnetic resonance is 

a common feature of breast and many other cancer cells or tumors (71-76). Evidence from 

animal and cell studies as well as preclinical and clinical studies shows significant increases 

in phosphocholine (P-cho) levels in a range of human tumors (breast, colon, prostate, lung, 

neuroblastoma and lymphomas, etc) (77-82). Choline kinase (ChoK), the enzyme expressed 

in various tissues and that catalyzes the phosphorylation of choline to P-cho, is the first 

phosphorylation reaction in the CDP-choline pathway for the biosysthesis of 

phosphatidylcholine (83). Based on increased ChoK expression and activity in cancer cells 

and tumors, and increased ChoK activity in ras transformed cells (77-82, 84), ChoK has been 

proposed to play a role in the onset or progression of human cancer (breast, colon, prostate 

and lung, etc) and to be a target for developing anti-tumor drugs and an avenue for 

pharmaceutical therapy. Earlier studies also showed that various growth factors such as 

epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-

dependent growth factor and vascular endothelial growth factor enhance ChoK activity 

during tumor formation (85-87). 

Because overexpression of the CaR-signaling components (Fig. 1 and refs 65, 66, 70) and 

increases of ChoK activity and P-cho production (72, 77-82) have consistently been observed 

in breast cancer cells and breast tumors, and metastasis of breast cancer cells to bone leads to 

the release of large quantities of Ca2+ (45, 46), it is possible that up-regulation of CaR 

signaling leads to a significantly altered choline phospholipid metabolism which regulates 

breast cancer cell proliferation. To evaluate the roles of Ca2+- and CaR-regulated ChoK in 

breast cancer cells, we (65) recently prelabeled Hs 578Bst cells, MCF-10A cells, MDA-MB-231 

cells and MCF-7 cells with [3H]choline to study Ca2+-induced ChoK activation and P-cho 

production, and found that Ca2+-induced [3H]P-cho production was significantly increased 

in breast cancer cells compared to the nonmalignant breast cells in time- or dose-dependent 

manners. Using an anti-CaR antibody to block Cao2+ binding to the CaR and siRNA to 

silence CaR gene expression, we further demonstrated that [3H]P-cho production in 

response to Cao2+-stimulation was CaR-dependent. By analyzing cellular lipid profiles and 

using siRNA to silence ChoK expression, we defined that the production of [3H]P-cho was 

primarily related to CaR-induced ChoK activation. Treatment of the cells with either 

pertussis toxin or C3 exoenzyme, and co-immunoprecipiation of Gα12 with the CaR, we 

found that the enhancement of ChoK activation and P-cho production in breast cancer cells 

occurs via a CaR-Gα12-Rho signaling pathway. 
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3.2.2 CaR signaling regulates breast cancer cell proliferation 

Because the CaR stimulates ChoK activation in breast cancer cells, understanding ChoK 

activation and P-cho production in the regulation of cell proliferation is very important. 

Glunde et al. (81) recently knocked down ChoK expression by transfecting ChoK-specific 

siRNA and short hairpin RNA into breast cancer cells and found that down-regulation of 

ChoK expression reduced cell proliferation measured by proliferating cell nuclear antigen 

and Ki-67, and induced cell differentiation measured by cytosolic lipid droplet formation and 

expression of galectin-3. Shah et al. (82) showed that overexpression of ChoK in human breast 

cancer cells increases invasiveness and drug resistance. Overexpression of ChoK in HEK 293 

cells leads to up-regulation of cyclin D1 and cyclin D3 expression and down-regulation of 

TGFβ receptor1, cyclin G2, cyclin-dependent kinase inhibitor 1A (p21, Cip1) and 1B (p27, 

Kip1) expression, which is involved in the regulation of TGFβ signaling (88). These data 

suggest that up- or down-regulation of ChoK expression and activity is associated with cell 

proliferation. Furthermore, the increase of cellular P-cho observed in cancer cells and tissues 

(71-79) indicates that P-cho produced by ChoK activation may play an important role in the 

regulation of cell function. Earlier studies in cell models showed direct evidence that 

treatment of fibroblasts with P-cho increases DNA synthesis and the effect is enhanced with 

other agonists such as ATP and insulin (89). Up-regulation of ChoK activation and P-cho 

production in human breast cancer cells and tumors indicates that CaR-ChoK signaling plays 

an important role in promoting breast cancer cell proliferation. 
P-cho could stimulate breast cancer cell proliferation. Many recent studies show that several 
synthetic alkylphosphocholines (edelfosine, miltefosine and perifosine), P-cho analogs, have 
been developed as a new class of anti-cancer agents. These P-cho analogs act on cellular 
membranes rather than the DNA, and disturb signal transduction including the inhibition of 
phosphatidylcholine synthesis, the inhibition of the MAP-kinase/ERK proliferative and 
phosphatidylinositol 3-kinase/ Akt survival pathways, the stimulation of the Stress-
activated protein kinase/JNK cell death pathway, and the inhibition of cell attachment, 
spreading, and migration (90-94). P-cho analogs as a class of anti-tumor drugs have been 
used more and more in clinical studies, but exploring the molecular mechanism of how they 
interact with cancer cells continues. 

The CaR, through the Gα12-p115RhoGEF-ChoK signaling pathway, connects to the synthesis of 

choline-containing phospholipids and the proliferation of breast cancer cells. Recently, studies 

also showed that the CaR plays a role in epidermal growth factor receptor (EGFR) 

transactivation to regulate cell proliferation. Using H-500 rat Leydig cancer cells as a model for 

humoral hypercalcemia of malignancy, Tfelt-Hansen et al. showed that treatment of H-500 

cells with Cao2+ stimulates PTHrP release leading to CaR-induced activation of ERK1/2 and 

stimulation of cellular proliferation through the transactivation of the EGFR (95, 96). El Hiani 

et al. further reported that high Cao2+ induced CaR activation leads to breast cancer cell 

proliferation, and the inhibition of EGFR kinase reduced the activation of ERK1/2, and breast 

cancer cell proliferation (97). This cross-talk between the CaR and the EGFR in the regulation 

of cell proliferation was also found in Rat-1 fibroblasts (98). All these data indicate that the CaR 

can act through EGFR transactivation to regulate breast cancer cell proliferation. 

Bone tissue is the most common organ targeted by breast cancer cells where metastasis can 
directly or indirectly stimulate osteoclast-mediated bone resorption. Tumor-induced 
osteolysis leads to the release of large quantities of calcium. The local Ca2+ level at resorption 
sites has been reported to rise as high as 40 mM (46). Hence, metastatic breast cancer cells 
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could be faced with abnormally high Ca2+ concentrations. One recent report showed that the 
high Ca2+ concentrations through the CaR signaling pathway stimulate PTHrP expression 
and secretion in MCF-7 and MDA-MB-231 breast cancer cells (64). Tumor-cell derived 
PTHrP enhances bone remodeling and release of numerous biological factors, facilitates 
skeletal progression by directly stimulating tumor cell proliferation (99, 100), and promotes 
homotypic aggregation of breast cancer cells in suspension and three-dimensional cultures 
(101-103). This suggests that the Cao2+ and CaR in the bone environment can regulate a 
signaling network through different cell types to promote breast cancer cell proliferation. 

3.2.3 CaR signaling regulates breast cancer cell migration 

Elevated Cao2+ concentrations stimulate PTHrP secretion from various normal and 
malignant cells. PTHrP plays a central role in the development of breast cancer metastases to 
bone, and skeletal metastases of breast cancers express more PTHrP and maintains at the 
levels higher than those in normal breast epithelial cells, primary breast cancers, or 
nonskeletal metastases (42). By transfection of vector, mutated and wild-type PTHrP into 
breast cancer cells (MCF-7), the study showed that wild-type PTHrP-overexpressing cells 
increased cell laminin, adhesion, migration, and Matrigel invasion. Overexpression of wild-

type PTHrP also increased the cell surface expression of the pro-invasive integrins α6 and β4 
(104). Using Boyden Chamber and Scratch Wound migration assays, Saidak et al. (105) 
showed direct evidence that Cao2+ at concentrations of 2.5 mM and 5 mM induces cell 
migration compared to basal levels for several breast cancer cell lines. The highly bone 
metastatic breast cancer cells strongly respond to elevated concentrations of Cao2+ in the 
migration assays. Knockdown of the CaR by siRNA resulted in an inhibition of Cao2+-
induced migration, indicating the involvement of this receptor in the effect. All these data 
indicate that Cao2+ acts through the CaR to promote breast cancer cell migration.  
Cell migration is required for cancer cells to spread, invasion and metastasis, and metastasis 
of cancer cells is significantly associated with increased mortality and reduced treatment 
effectiveness. Cell migration is achieved through dynamic remodeling of filamentous actin 
and of focal adhesion sites. Tu et al. (106) demonstrated the involvement of the CaR in the 
activation of E-cadherin signaling. Using human epidermal keratinocytes as a cell model, 
silencing CaR expression blocks the Cao2+-induced formation of adherens junctions, and the 
association of phosphoinositide 3-kinase (PI3K) with the E-cadherin-catenin complex. Cao2+ 
does not stimulate tyrosine phosphorylation of ┚-, ┛-, and p120-catenin and Fyn in the CaR-
deficient keratinocytes. Further studies find that Rho GTPase is a part of the CaR-mediated 
signaling cascade regulating cell adhesion. Cao2+-induced Rho activation requires a direct 
interaction between CaR and filamin A (107). The CaR regulated E-cadherin cell membrane 

localization and complex formation of E-cadherin and β-catenin was also reported in human 
colon carcinoma cells (108). CaR-specific siRNA and the CaR antagonist (NPS2390) can 
partially inhibit wound repair of human bronchial epithelial cells, and these signaling 
pathway(s) are associated with phospholipase C which can be blocked by U73122 and 
ERK1/2 which can be inhibited by PD 98059 (109). Cao2+ acts through the CaR to stimulate 
migration of osteoclast precursor RAW 264.7cells via the PI3K/Akt pathway but not the 
MAPK (ERK, p38 and JNK) pathways (110). In Boyden Chamber and Scratch Wound 
migration assays, Saidak et al. reported that inhibition of either ERK1/2 by U0126 or 

phospholipase Cβ by U73122 led to an abolition of the Cao2+-induced migration of breast 
cancer cells (105). These data suggest that the CaR can regulate cell migration, however, the 
details of the CaR-induced breast cancer cell migration remain largely unknown. 
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4. Future perspective 

Cloning of the CaR has provided a molecular tool to study the receptor-mediated signaling 
and -associated human diseases including breast cancer. Until now, most of the studies have 
focused on how the CaR is associated with the characteristic abnormalities in the functions of 
the parathyroids and kidneys, and which signaling pathways of the CaR are involved in the 
regulation of cell functions (Fig. 2) by CaR overexpression and RNA interference. Much 
remains to be learned, such as CaR expression in other tissues, including tumor tissues and the 
pathways that are regulated in the tissues by identifying single-nucleotide polymorphisms 
(SNP) in the CaR, determining whether gain or loss of function SNPs in the CaR lead to 
tumorigenesis and cancer progression, and by analyzing the role of CaR-mediated signaling in 
CaR-associated tumorigenesis and progression to develop potent and specific CaR antagonists 
that would be extremely useful in cancer therapy. In addition, the CaR and perhaps other 
sensors for calcium or other agonists for the CaR, and transactivation of other receptors such as 
EGF receptor by the CaR in the cells will likely regulate a wide variety of cellular functions via 
different signaling pathways. Therefore, understanding system biology and signalling 
networks controlled by CaR-signaling is important for the potential cancer therapy. 
 

 

Fig. 2. A schematic diagram of CaR-mediated signaling pathways. Many of these signaling 
pathways were identified in different cell lines and heterologous expression systems, and 
may not all exist in breast cancer cells. CaR, Ca2+-sensing receptor; EGFR, epidermal growth 
factor receptor; AC, adenyl cyclase; ChoK, choline kinase; PLC, phospholipase C; PLA2, 
phospholipase A2; PLD, phospholipase D; PI3K, phosphatidylinositol-3 kinase; PI4K, 
phosphatidylinositol-4-kinase; PKA, protein kinase A; PKB, protein kinase B; PKC, protein 
kinase C; Rho-K, Rho kinases; p38MAPK, p38 mitogen-activated protein kinases; JNK, c-Jun 
N-terminal kinases; ERK, extracellular-signal-regulated kinases. 
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