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2  0.0001 0.001 0.01 0.1 0.25 0.4 0.6 0.8 1.0 
m2 0.589 0.897 1.067 1.150 1.148 1.148 1.148 1.148 1.144 

2C  0.0122 0.0078 0.0103 0.0168 0.0242 0.0311 0.0409 0.0535 0.0725 
Table 6.6. m2 and 2C values for different  2  for equation (6.6.2). 
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Figure 6.9. Mean dispersivity from the SSTM and experimental dispersivity vs flow length 
(log10 scale). 

We can estimate the approximate dispersivity values either from Figures 6.7 and 6.8, or from 
equations (6.6.1) and (6.6.2). It is quite logical to ask the question whether we can characterise 
the large scale aquifer dispersivities using a single value of 2 ? To answer this question, we 
resort to the published dispersivity values for aquifers. We use the dispersivity data first 
published by Gelhar et al. (1992) and reported to Batu (2006). We extracted the tracer tests data 
related to porous aquifers in 59 different locations characterised by different geologic 
materials. The longest flow length was less than 10000 m. We then plotted the experimental 
data and overlaid the plot with the dispersivity vs L curves from the SSTM for each 2  value. 
Figure 6.9 shows the plots, and 2 =0.1 best fit to the experimental data. In other words, by 
using one value of 2 , we can obtain the dispersivity for any length of the flow by using the 
SSTM. We can also assume that each experimental data point represents the mean dispersivity 
for any length of the flow by using the SSTM. We can also assume that each experimental data 
point represents the mean dispersivity at a particular flow length. If that is the case, Figure 6.9 
can be interpreted as follows: by using the SSTM, we can obtain sufficiently large number of 
realisations for particular values of 2  and the mean flow velocity, and the mean values of 
the dispersivities estimated for those concentration realisations do represent the experimental 
dispersivities. 2  can be hypothesised to indicate the type of media (e.g. fractured, porous 
etc.). These findings support the hypothesis that the dimensionless SSTM is scale-independent, 
i.e., one value of 2 would be sufficient to characterise the dispersivity at different flow 
lengths. It is important to note that the role of the mean velocity in these calculations. We used 
0.5 m/day to represent an indicative value in real aquifers, but the character of solutions do 
not change, if we assume a different value; only the specific values of 2 would be changed to 
represent a given flow situation. 
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The Stochastic Solute Transport  
Model in 2-Dimensions 

 
7.1 Introduction 
In Chapter 6, we developed the generalised Stochastic Solute Transport Model (SSTM) in 1-
dimension and showed that it can model the hydrodynamic dispersion in porous media for 
the flow lengths ranging from 1 to 10000 m. For computational efficiency, we have 
employed one of the fastest converging kernels tested in Chapter 6 for illustrative purposes, 
but, in principle, the SSTM should provide scale independent behaviour for any other 
velocity covariance kernel. If the kernel is developed based on the field data, then the SSTM 
based on that particular kernel should give realistic outputs from the model for that 
particular porous medium. In the development of the SSTM, we assumed that the 
hydrodynamic dispersion is one dimensional but by its very nature, the dispersion lateral to 
the flow direction occurs. We intend to explore this aspect in this chapter. 

First, we solve the integral equation with the covariance kernel in two dimensions, and use 
the eigen values and functions thus obtained in developing the two dimensional stochastic 
solute transport model (SSTM2d). Then we solve the SSTM2d numerically using a finite 
difference scheme. In the last section of the chapter, we illustrate the behaviours of the 
SSTM2d graphically to show the robustness of the solution. 
 

7.2 Solving the Integral Equation 
We consider the flow direction to be x and the coordinate perpendicular to x to be y in the 2 
dimensional flow with in the porous matrix saturated with water. Then the distance 

between the points 1 1( , )x y and 2 2( , )x y , r, is given by 
1/22 2

1 2 1 2( ) ( )x x y y     . We can 

then define a velocity covariance kernel as follows: 

2
2

1 1 2 2( , , , ) exp rq x y x y
b


 

  
 

,                (7.2.1) 

where 2  is a constant. 2  is the variance at a given point, i.e., when 1 2x x  and 

1 2y y . The covariance can be written as, 

2 2
1 2 1 22

1 1 2 2

2 2
2 1 2 1 2

( ) ( )
( , , , ) exp ,

( ) ( )exp exp .

x x y y
q x y x y

b

x x y y
b b





       
  
    

     
   

             (7.2.2) 
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Then the integral equation can be written for 2 dimensions, 

   
2 21 1

2 1 2 1 2
2 2 2 2 1 1

0 0

( ) ( )exp exp , ,x x y y f x y dx dy f x y
b b

 
    
       
   

,       (7.2.3) 

where  ,f x y  and   are eigen functions and corresponding eigen values, respectively. 

The covariance kernel is the multiplication of a function of x and a function of y , and from 
the symmetry of equation (7.2.3), we can assume that the eigen function is the multiplication 
of a function of x and a function of y: 

     , x yf x y f x f y .                      (7.2.4) 

Then the integral equation can be written as, 

   2 2
1 2 1 21 1

2
2 2

0 0

x x y y
b b

x y x yf e dx f e dy f f 
 

   
   

  
  

 
 , and 

   2 2
1 2 1 21 1

2 2 2
0 0

x x y y
b b

x y x yf e dx f e dy f f


 
                       

   .            (7.2.5) 

Therefore, if  

 

 
2

1 21

2 1
0

x x
b

x x xf e dx f x



 , and 

 

 
2

1 21

2 1
0

y y
b

y y yf e dy f y





. 

Then we can see,  , x yf x y f f , and 2
x y    . 

This shows that we can use the eigen functions and eigen values obtained for 1-dimensional 
covariance kernels in Chapter 4 can be used in constructing the eigen functions and eigen 
values for two dimensional covariance kernel given in equation (7.2.2). Once we have 
obtained eigen functions and eigen values as solutions of the integral equation, we can 
derive the two dimensional mass conservation equation for solutes. 
 

7.3 Derivation of Mass Conservation Equation 
Consider the two dimensional infinitesimal volume element depicted in Figure 7.1. We can 
write the mass balance for solutes with in the element as, 

      
    

, , , , , ,

, , , , ,
e x x e

y y e

C x y t n l x y J x y t J x x y t l yn t

J x y t J x y y t l xn t

        

     
 

                                                                        

 

          and      , , y y yx x x
J JC x y t J J

t x y


 
 

  
,                (7.3.1) 

where C(x,y,t) is the solute concentration and J represents the solute flux at the location 
indicated by a subscript. We can expand J using Taylor expansions as follows: 

   
2 3

2 3
2 3

1 1 1
1! 2! 3!

x x x
x x x

J J JJ J x x x
x x x

  
       

  
 higher order terms, and 

   
2 3

2 3
2 3

1 1 1
1! 2! 3!

y y y
y y y

J J J
J J y y y

y y y

  
       

  
 higher order terms. 

Lumping the higher order terms greater than 2, and denoting xR and yR as the remainders of 
the series, 

       
2

2
2

1
2!

x x
x x x x

J JJ J x x R
x x



 
     

 
, and        (7.3.2a) 
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2
2

1
2!

y y
y y y y

J J
J J y y R

y y


 
     

 
.                   (7.3.2b) 

 

 
Figure 7.1. Two dimensional infinitesimal volume element with a depth l and porosity     

en . x  and y are side lengths in x and y directions, respectively. 
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Figure 7.1. Two dimensional infinitesimal volume element with a depth l and porosity     

en . x  and y are side lengths in x and y directions, respectively. 
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Substituting equations (7.3.2a) and (7.3.2b) back to equation (7.3.1) and taking the limit 
0t  , 

   

   

22
'

2 2

22
' '

2 2

, , 1 1
2 2

2 2

y yx x
x

y y yx x x
x y

J JC x y t J J x y R
t x x y y

J h JJ h J R R
x y x y



 

   
       

    

      
                   

,        (7.3.3) 

where xh x  and yh y  . 

    
22

' '
2 22 2

y y yx x x
x y

J h JJ h JdC dt dt R R dt
x x y y

 
    

                . 

Assuming     ' ' 0x yR R dt   , 

 
22

2 2, ,
2 2

y y yx x x
J h JJ h JdC x y t dt dt

x x y y
    

             
.              (7.3.4) 

Now we can express the solute flux in terms of solute concentration and velocity, 

     , , , , , ,x xJ x y t V x y t C x y t , and                    (7.3.5a) 

     , , , , , ,y yJ x y t V x y t C x y t .                        (7.3.5b) 

We can express the velocity in terms of the mean velocity vector and a noise vector, 

     , , , , , ,V x y t V x y t x y t  ,                      (7.3.6) 

where   , ,V x y t ,  , ,V x y t  and  , ,x y t are velocity, mean velocity and noise vectors 
respectively. Instantaneous velocity vector can now be expressed as, 

     , , , , , ,x yV x y t V x y t i V x y t j  ,                   (7.3.7) 

where i  and j  are unit vectors in x and y directions, respectively; and,  , ,xV x y t  and 

 , ,yV x y t  are the magnitudes of the velocities in x and y directions. By substituting the 
vector components in equation (7.3.6) in to equation (7.3.7), we obtain, 

           
      

, , , , , , , , , ,

, , , ,

x x y y

x y x y

V x y t V x y t x y t i V x y t x y t j

V i V j x y t i x y t j

 

 

   

   
,         (7.3.8) 

where x  and y  are the noise components in x and y directions. We can see the noise 

term appearing as,       , , , , , ,x yx y t i x y t j x y t    . 

 

To simplify the notation, 

x x xV V   , and                             (7.3.9)   

y y yV V   .                              (7.3.10) 

By substituting these equations in to equations (7.3.5a) and (7.3.5b), and then substituting 
the resulting equations in to equation (7.3.4), we obtain, 

       x x y y x x x y y ydC S V C dt S V C dt S C dt S C dt     ,            (7.3.11) 

where 
2

22
x

x
hS

x x
  

     
, and 

       
2

22
y

y

h
S

y y
  

   
  

. 

We can now write, 

        x x y y x x x y y ydC S V C S V C dt S C dt S C dt     , and bringing dt in to the parenthesis 

in the third and fourth terms of the right hand side, 

        x x y y x x y ydC S V C S V C dt S C dt S C dt     .             (7.3.12) 

As in the one dimensional case, we can define, 

x xdt   and y y dt  , and these are the components of  a noise vector,  , which 
operates in a Hilbert space having eigen functions as co-ordinates. Equation (7.3.12) can now 
be expressed as, 

        .x x y y x x y ydC S V C S V C dt S Cd S Cd                  (7.3.13) 

The resultant noise term is given by, 

 , , , ,
1

m

x j y j x j y j j
j

d f f db t   


  ,                    (7.3.14) 

where ,x jf   eigen functions in x  direction, and 

      ,y jf   eigen functions in y  direction. 

Now we can express the components in x and y directions, 

cosxd d   , and                          (7.3.15) 

sinyd d   .                            (7.3.16) 
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We make an assumption that q is defined by 

2 22 2
cos ; sin yx

x y x y
  

 
. This is a simplifying approximation which makes 

the modelling more tractable; as the noise term is quite random, this approximation does 
not make significant difference to final results. 

Then 

          , , cos , , sinx x y y x ydC S V C S V C dt S C x y t d S C x y t d       .    (7.3.17) 

Analogous to equation (4.2.4), 
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.             (7.3.18) 

Now we can expand the terms in the brackets in equation (7.3.18), 
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Simplifying, we obtain, 
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We make an assumption that q is defined by 
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the modelling more tractable; as the noise term is quite random, this approximation does 
not make significant difference to final results. 

Then 

          , , cos , , sinx x y y x ydC S V C S V C dt S C x y t d S C x y t d       .    (7.3.17) 

Analogous to equation (4.2.4), 

      , , , ,
1

, , cos , , cos
m

x x x j y j x j y j j
j

S C x y t d S C x y t f f db t     


          
 . 

     

    

, , , ,
1

, , , ,
1

cos cos

cos

m

x x j y j y j x x j j
j

m

x j y j y j x x j j
j

S Cd f S Cf db t

f S Cf db t

     

   





  

 




.             (7.3.18) 

Now we can expand the terms in the brackets in equation (7.3.18), 

   
2

, ,2cos cos
2
x

x x j x j
hS Cf Cf

x x
 

  
     

. 

We see that,  

  ,
, , ,

coscos cos cosx j
x j x j x j

f CCf Cf C f
x x x x

  
  

  
   

, and 

 

 
2 2

,
, , ,2 2

2
, , ,

2

2
,

, ,2

cos cos coscos

coscos cos

coscos cos

x j
x j x j x j

x j x j x j

x j
x j x j

f CCf Cf C f
x x x x x x

f f f CC C
x x x x x

fC C Cf f
x x x x x

  

 

 

     
   

      
    

         
    

   
       

 

 

 

Now, 

 

 

 

,

22
, , , ,

, , 2 2

, , ,
, , ,

cos

cos cos cos cos, , cos cos
2

, , cos coscos cos cos
2

x x j

x j x j x j x jx
x j x j

x j x j x jx
x j x j x j

S Cf

f f f fhC x y t f f
x x x x x x x x

f f fC x y t hf f f
x x x x x x



    

   



        
                  

     
    

      

   
2

,2

, ,
cos

2
x

x j

C x y t h f
x



 
 
  

      

 

Then, 

 

 

 

 

,

22
, , ,

, , 2 2

,
, ,

2

,2

cos

cos cos cos, , cos 2 cos
2

, , coscos 2 2 cos
2

, ,
cos

2

x x j

x j x j x jx
x j x j

x jx
x j x j

x
x j

S Cf

f f fhC x y t f f
x x x x x x

fC x y t hf f
x x x

C x y t h f
x



   

 





                         
        

     
 


. 

 

 

Simplifying, we obtain, 

       

   

   

2
, ,

, 2

,
,

2

,2

cos cos
cos , ,

2

cos, ,
cos

, ,
cos .

2

x j x jx
x x j

x j
x j x

x
x j

f fhS Cf C x y t
x x

fC x y t
f h

x x

C x y t h f
x

 







      
   

     
   

    
  

 

Similarly, 

 

         

   

,

2
, , ,

,2

2

,2

cos

sin sin sin, ,
, , sin

2

, ,
sin .

2

y y j

y j y j y jx
y j y

y
y j

S Cf

f f fC x y thC x y t f h
y y y y

hC x y t
f

y



  




              
         

     
   

 

www.intechopen.com



Computational Modelling of Multi-Scale Non-Fickian Dispersion  
in Porous Media - An Approach Based on Stochastic Calculus202

 

 

     2

, , 0 , , 1 , , 2 , , 2
1

cos

, , , ,
, ,

x

m

x j y j x y j x y j x y j
j

S Cd

C x y t C x y t
P C x y t P P

x x

 

  




              


, 

Where 

   2
, ,

0 , 0 , , , , 2

cos cos
;

2
x j x jx

j x y j y j

f fhP P f
x x

   
   
   

              (7.3.19) 

 ,
1, 1, , , , ,

cos
cos ;x j

j x y j y j x j x

f
P P f f h

x



 
   
  

 and              (7.3.20) 

 2, 2 , , , , , cos .
2

x
j x y j y j x j

hP P f f     
 

                    (7.3.21) 

Similarly, 

       2

, , 0 , 1, 2 , 2
1

, , , ,
sin , ,

m

y x j y j j j j
j

C x y t C x y t
S Cd Q C x y t Q Q

y y
    



       
   

 , 

   2
, ,

0 , , 2

sin sin
;

2
y j y jy

j x j

f fh
Q f

y y
   

  
   

                (7.3.22) 

 ,
1, , ,

sin
sin ;y j

j x j y j y

f
Q f f h

y



 
  
  

 and                (7.3.23)  

 2, , , sin .
2

y
j x j y j

h
Q f f 

 
  

 
                         (7.3.24) 

   

     
2 2

, , 0 0, 1, 1, 2 , 2 ,2 2
1

,

x x y y

m

x j y j j j j j j j j
j

S Cd S Cd

C C C CP Q C x t P Q P Q db t
x y x y

 

  


 

                  
        


 

Therefore, 

 

 

2

0 1 22

2

0 1 22

, ,

, ,

x x x

y y y

C CdC C x y t dI dI dI
x x
C CC x y t dI dI dI
y y

 
   

 
 

  
 

,                  (7.3.25) 

where  
2

0 , , 02
12

m
x x x

x x j y j j j
j

V h VdI dt P db t
x x

  


  
     

 ,           (7.3.26) 

 

       1 , , 1
1

m
x

x x x x j y j j j
j

VdI V h dt P db t
x

  


 
    

 ,              (7.3.27) 

       2 , , 2
12

m
x

x x x j y j j j
j

hdI V dt P db t  


   
 

 ,                   (7.3.28) 

       
2

0 , , 02
12

m
y y y

y x j y j j j
j

V h V
dI dt Q db t

y y
  



  
      

 ,           (7.3.29) 

       1 , , 1
1

m
y

y y y x j y j j j
j

V
dI V h dt Q db t

y
  



 
     

 ,             (7.3.30) 

      and 

       2 , , 2
12

m
y

y y x j y j j j
j

h
dI V dt Q db t  



 
  
 

 .                  (7.3.31) 

Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given 
by equations (7.3.19) to (7.3.24). The SSTM2d has similar Ito diffusions for velocities as in the 
one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
dimensions. It should be noted that the eigen values for both directions are the same for the 
[0,1] domain, further simplifying the equations.  

The development of the SSTM2d is based on the fact that any kernel can be expressed as a 
multiplication of two kernels, for example, as in equation (7.2.2); and we know the 
methodology of obtaining the eigen values and eigen functions for any kernel. Therefore, we 
can solve the SSTM2d for any kernel. However, for the illustrative purposes, we only focus 
on the kernel given in equation (7.2.2) in this chapter. 
 

7.3.1 A Summary of the Finite Difference Scheme 

To understand the behaviour of the SSTM2d, we need to solve the equations numerically by 
using a finite difference scheme developed for the purpose. We only highlight the pertinent 
equations in the algorithm. 

Now let [ , ] [ , ], , , and n

i j

tn
i j n i j x yx i x y j y t n t C C       , Equation (7.3.25) can be redisplayed as , 

2 2
[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] 0 , 1, 2 , [ , ] 0 , 1, 2 ,2 2
n

i j i i i j j j

n n n n
i j i j i j i jt n n n

x y i j i j x x x i j y y y
i i j j

dc d c dc d c
dc dc c dI dI dI c dI dI dI

dx dx dy dy
        . 

We use the forward difference to calculate the first first-order derivatives with respect to 
time (t), the backward difference to calculate the first-order derivative in x and y directions 
and the central difference to calculate the second-order derivatives, i.e.,  

www.intechopen.com



The Stochastic Solute Transport Model in 2-Dimensions 203
 

 

     2

, , 0 , , 1 , , 2 , , 2
1

cos

, , , ,
, ,

x

m

x j y j x y j x y j x y j
j

S Cd

C x y t C x y t
P C x y t P P

x x

 

  




              


, 

Where 

   2
, ,

0 , 0 , , , , 2

cos cos
;

2
x j x jx

j x y j y j

f fhP P f
x x

   
   
   

              (7.3.19) 

 ,
1, 1, , , , ,

cos
cos ;x j

j x y j y j x j x

f
P P f f h

x



 
   
  

 and              (7.3.20) 

 2, 2 , , , , , cos .
2

x
j x y j y j x j

hP P f f     
 

                    (7.3.21) 

Similarly, 

       2

, , 0 , 1, 2 , 2
1

, , , ,
sin , ,

m

y x j y j j j j
j

C x y t C x y t
S Cd Q C x y t Q Q

y y
    



       
   

 , 

   2
, ,

0 , , 2

sin sin
;

2
y j y jy

j x j

f fh
Q f

y y
   

  
   

                (7.3.22) 

 ,
1, , ,

sin
sin ;y j

j x j y j y

f
Q f f h

y



 
  
  

 and                (7.3.23)  

 2, , , sin .
2

y
j x j y j

h
Q f f 

 
  

 
                         (7.3.24) 

   

     
2 2

, , 0 0, 1, 1, 2 , 2 ,2 2
1

,

x x y y

m

x j y j j j j j j j j
j

S Cd S Cd

C C C CP Q C x t P Q P Q db t
x y x y

 

  


 

                  
        


 

Therefore, 

 

 

2

0 1 22

2

0 1 22

, ,

, ,

x x x

y y y

C CdC C x y t dI dI dI
x x
C CC x y t dI dI dI
y y

 
   

 
 

  
 

,                  (7.3.25) 

where  
2

0 , , 02
12

m
x x x

x x j y j j j
j

V h VdI dt P db t
x x

  


  
     

 ,           (7.3.26) 

 

       1 , , 1
1

m
x

x x x x j y j j j
j

VdI V h dt P db t
x

  


 
    

 ,              (7.3.27) 

       2 , , 2
12

m
x

x x x j y j j j
j

hdI V dt P db t  


   
 

 ,                   (7.3.28) 

       
2

0 , , 02
12

m
y y y

y x j y j j j
j

V h V
dI dt Q db t

y y
  



  
      

 ,           (7.3.29) 

       1 , , 1
1

m
y

y y y x j y j j j
j

V
dI V h dt Q db t

y
  



 
     

 ,             (7.3.30) 

      and 

       2 , , 2
12

m
y

y y x j y j j j
j

h
dI V dt Q db t  



 
  
 

 .                  (7.3.31) 

Equations (7.3.25) - (7.3.31) constitute the SSTM2d with the definitions for P s and Q s given 
by equations (7.3.19) to (7.3.24). The SSTM2d has similar Ito diffusions for velocities as in the 
one dimensional case. Equation (7.3.19) shows an elegant extension of SSTM into 2-
dimensions. It should be noted that the eigen values for both directions are the same for the 
[0,1] domain, further simplifying the equations.  

The development of the SSTM2d is based on the fact that any kernel can be expressed as a 
multiplication of two kernels, for example, as in equation (7.2.2); and we know the 
methodology of obtaining the eigen values and eigen functions for any kernel. Therefore, we 
can solve the SSTM2d for any kernel. However, for the illustrative purposes, we only focus 
on the kernel given in equation (7.2.2) in this chapter. 
 

7.3.1 A Summary of the Finite Difference Scheme 

To understand the behaviour of the SSTM2d, we need to solve the equations numerically by 
using a finite difference scheme developed for the purpose. We only highlight the pertinent 
equations in the algorithm. 
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We can develop the finite difference scheme to solve the SSTM2d based on the following 
equation:  
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We illustrate some realisations of the solutions graphically in the next section. 
 

7.3.2 Graphical Depictions of Realisations 
In the following figures, we present a sample of solution realisations of the SSTM2d to 
illustrate the behaviours of the model under different parameter values for the boundary 
condition: C(t, x, y)=1.0 at ( x=0.0 and y=0.0) for any given t. The value of b is kept at 0.1for 
all computations. 

 

Figure 7.2. A realisation of concentration at y=0.5 m when 2 =0.0001. 

 

 

Figure 7.3. A realisation of concentration at y=0.5 m when 2 =0.001. 

 

Figure 7.4. A realisation of concentration at y=0.5 m when 2 =0.01. 
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condition: C(t, x, y)=1.0 at ( x=0.0 and y=0.0) for any given t. The value of b is kept at 0.1for 
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Figure 7.3. A realisation of concentration at y=0.5 m when 2 =0.001. 

 

Figure 7.4. A realisation of concentration at y=0.5 m when 2 =0.01. 
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Figure 7.5. A realisation of concentration at y=0.5 m when 2 =0.1 
 

 

Figure 7.6. A realisation of concentration at t=1 day when 2 =0.0001. 

 

 

 

Figure 7.7. A realisation of concentration at t=1 day when 2 =0.001. 
 

 

Figure 7.8. A realisation of concentration at t=1 day when 2 =0.01. 
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Figure 7.5. A realisation of concentration at y=0.5 m when 2 =0.1 
 

 

Figure 7.6. A realisation of concentration at t=1 day when 2 =0.0001. 

 

 

 

Figure 7.7. A realisation of concentration at t=1 day when 2 =0.001. 
 

 

Figure 7.8. A realisation of concentration at t=1 day when 2 =0.01. 
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Figure 7.9. A realisation of concentration at t=1 day when 2 =0.1. 
 

 

Figure 7.10. A realisation of concentration at t=3 days when 2 =0.0001. 

 

 

 

Figure 7.11. A realisation of concentration at t=3 days when 2 =0.001. 
 

 

Figure 7.12. A realisation of concentration at t=3 days when 2 =0.01. 
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Figure 7.10. A realisation of concentration at t=3 days when 2 =0.0001. 

 

 

 

Figure 7.11. A realisation of concentration at t=3 days when 2 =0.001. 
 

 

Figure 7.12. A realisation of concentration at t=3 days when 2 =0.01. 
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Figure 7.13. A realisation of concentration at t=3 days under 2 =0.1. 

The figures above shows that the numerical scheme is robust to obtain the concentration 
realisations for a range of values of 2 . As 2  increases the stochasticity of the 
realisations increases. 
 

7.4 Longitudinal and Transverse Dispersivity according to SSTM2D 
To estimate the longitudinal and transverse dispersivities, we start with the partial 
differential equation for advection and dispersion, taking x axis to be the direction of the 
flow. 

The two-dimensional advection-dispersion equation can be written as,  

2 2

2 2L T x
C C C CD D v
t x y x

                         
                  (7.4.1) 

where C = solution concentration (mg/l), 

      t = time (day), 

      DL = hydrodynamic dispersion coefficient parallel to the principal direction of flow 
(longitudinal) (m2/day), 

      DT = hydrodynamic dispersion coefficient perpendicular to the principal direction of 
flow (transverse) (m2/day), and 

      xv = average linear velocity (m/day). 

 

 

The randomness of heterogeneous groundwater systems can be accounted for by adding a 
stochastic component to equation (7.4.1), and it can be given by 

2 2

2 2 ( , )L T x
C C C CD D v x t
t x y x


                          

 ,               (7.4.2) 

where ( , )x t is described by a zero-mean stochastic process. 

We multiple equation (7.4.2) by dt  throughout and, formally replace ( , )x t dt  by ζ(t). We 
can now obtain the stochastic partial differential equation as follows, 

2 2

2 2 ( )L T x
C C CdC D D dt v dt t

x y x


                        
.                (7.4.3) 

The two parameters to be estimated are DL and DT (while 0.5xv   in this case). For the two 
parameter case, we can write the right hand side of equation (7.4.3) as follows: 
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If we have values for ( , , )C x y t at M discrete points in (x, y) coordinate space for a period of 
time t (where 0 t T  ), then differentiating equation (7.4.5) with respect to 1  and 2 , 
respectively, we get the following two simultaneous equations: 
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We simplify equation (7.4.6) to 
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 .            (7.4.7) 

Now we substitute 0( , )ia C t , 1( , )a C t , 2( , )a C t , 1  and 2  in equations (7.4.7) to obtain the 
following set of equations: 
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We can rewrite equations (7.4.8) as,  
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The two simultaneous equations in (7.4.9) can be solved to obtain the estimates of the 
unknown parameters, DL and DT, for a two-dimensional groundwater system. The solutions 
of equations (7.4.9) are, 
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We have estimated the longitudinal and lateral dispersion coefficients for 100 realisations 
for each of 2 value chosen, and their mean values are given in Table 7.1 . 

The transverse dispersion coefficient is significantly less than the longitudinal dispersion 
coefficient for the flow length [0,1] when 2  is very small but approaches approximately 
0.5 of longitudinal dispersion coefficient when 2 increases (Figure 7.12). Comparing Table 
7.1 with Table 4.9, we see that the dispersion coefficient, therefore, the dispersivity, is 
smaller in 2 dimensions especially when 2 >0.01 . This needs to be expected as the lateral 
dispersion provides another mechanism of energy dissipation, thwarting the dispersion in 
the longitudinal direction. 
 

2  LD  TD  

0.001 0.0251 0.0003 

0.005 0.0258 0.0012 

0.01 0.0264 0.0017 

0.02 0.0273 0.0027 

0.04 0.0293 0.0053 

0.05 0.0304 0.0072 

0.06 0.0314 0.0089 

0.08 0.0332 0.012 

0.1 0.0354 0.0145 

0.15 0.04 0.0197 

Table 7.1. Estimated mean longitudinal and transverse dispersion coefficients using 100 
concentration realisations from SSTM2d for each of 2 value. 
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Figure 7.14. The ratio of the transverse dispersivity to the longitudinal dispersivity vs 2 . 
 

7.5 Summary 
In this chapter, we developed the 2 dimensional version of SSTM for the flow length of [0,1], 
and estimated the transverse dispersivity using the Stochastic Inverse Method (SIM) 
adopted for the purpose. The SSTM2d has mathematically similar form to SSTM but 
computationally more involved. However, the numerical routines developed are robust. We 
will extend SSTM2d in a dimensionless form to understand multi-scale behaviours of 
SSTM2d in the next chapter.

 

8 
 

Multiscale Dispersion in 2 Dimensions 
 
8.1 Introduction 
In Chapter 7, we have developed the 2 dimensional solute transport model and estimated 
the dispersion coefficients in both longitudinal and transverse directions using the stochastic 
inverse method (SIM), which is based on the maximum likelihood method. We have seen 
that transverse dispersion coefficient relative to longitudinal dispersion coefficient increases 
as 2 increases when the flow length is confined to 1.0. In this chapter, we extend the 
SSTM2d into a partially dimensional form as we did for 1 dimension, so that we can explore 
the larger scale behaviours of the model. However, the experimental data on transverse 
dispersion is scarce in laboratory  and field scales limiting our ability to validate the 
multiscale dispersion model. In this chapter, we briefly outline the dimensionless form of 
SSTM2d and illustrate the numerical solution for a particular value of flow length. We also 
estimate the dispersion coefficients using the SIM for the same flow length. 
 

8.2 Basic Equations 
As in the one dimensional case, we define dimensionless distances to start with: 
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We also define dimensionless concentration with respect to the maximum concentration, 0C : 
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As in Chapter 6, we derive the following partial derivatives: 
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As we have developed the SSTM2d for [0,1] domains in both x and y directions (see Chapter 
6), we define the cosine and sine of the angle as follows, 
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