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Range 
of α 

Range of 
β 

γ Pα Pβ Pγ 2R ( ) AAPE 
( ) 

2R (  ) AAPE 
(  ) 

[1,2] [0.2,0.4] 0.35 0.47 0.53 0.39 0.2932 13.91 0.3891 12.98 

[1,2] [1,2] 2 0.11 0.89 0.40 0.0006 18 0.6833 9.92 

[0.8,1.6] [0.02,0.04] 0.15 0.89 0.11 0.42 0.7735 8.46 0.0108 17.94 

Table 2.4. Network performance for different parameters in the nonlinear SDE 

To investigate the reason for largest differences in R2 values for α and β, we change the 
magnitudes of   term and   term in SDEs by altering parameters   and   values 
while keeping diffusion level an approximate constant. Table 2.4 shows that the bigger the 
contribution of a term containing a particular parameter (Pα or Pβ), the smaller the error 
(AAPE) and better the prediction (R2) for that parameter. Therefore, we conclude that the 
accuracy of a parameter in a nonlinear SDE is dependent on its term that contributes pro rata 
to the drift term. 

In the data preparation stage, we use different time steps to solve SDEs and found 50 data 
points are sufficient to represent the realisation of SDEs. In addition, we emphasise the effect 
of the number of Wiener processes used to create training data sets. Increasing the number 
of Wiener processes boosts the performance of networks considerably and eliminates the 
over fitting problem. When over fitting occurs, the resulting network is accurate on the 
training set but perform poorly on the test set. When the number of Wiener processes used 
to generate training data sets is increased, the learning procedure finds common features 
amongst the training sets that enable the network to correctly estimate the parameter(s) in 
test data sets. 

In the ANN training procedure, we use early stopping to obtain the optimum test results. 
We also employ different MLP architectures, transfer functions, learning rates and 
momentums. However we find that these factors do not increase the performance of ANNs 
significantly. 

The diffusion level in a SDE has a significant impact on the network performance. In the 
linear SDE, when the ratio of diffusion term and drift term is below 0.40, the network can 
estimate the parameter accurately ( 2R >0.93). When the ratio reaches 0.67, the network 
estimates the parameter accurately only when Wiener processes in test sets and in training 
sets are similar. If the diffusion term is larger than the drift term, the network cannot predict 
the parameter(s) and only tends to give an average value of the parameters used for training 
datasets. For nonlinear SDEs, the estimation ability of a network is generally poorer than 
that for the linear SDEs. Furthermore, the accuracy of a parameter in a nonlinear SDE is 
dependent on its term that contributes pro rata to the drift term.  

We can conclude that the classical neural networks method (MLP with backpropagation 
algorithm) provides a simple but robust parameter estimation approach for the SDEs that 
are under certain noisy conditions, but this estimation capability is limited for the SDEs 
having a high diffusion level. When the diffusion level is high (>10%-20%), the statistical 
methods also fail to estimate parameters accurately. 
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A Stochastic Model for  
Hydrodynamic Dispersion 

 
3.1 Introduction 
We have seen in chapter 1 that, in the derivation of advection–dispersion equation, also 
known as continuum transport model ( Rashidi et al. ,1999), the velocity fluctuations around 
the mean velocity enter into the calculation of solute flux at a given point through averaging 
theorems. The mean advective flux and the mean dispersive flux are then related to the 
concentration gradients through Fickian–type assumptions. These assumptions are 
instrumental in defining dispersivity as a measure of solute dispersion. Dispersivity is 
proven to be scale dependant. 

To address the issue of scale dependence of dispersive fundamentally, it has been argued 
that a more realistic mathematical framework for modelling is to use stochastic calculus 
(Holden et al., 1996; Kulasiri and Verwoerd, 1999, 2002). Stochastic calculus deals with the 
uncertainty in the natural and other phenomena using nondifferentiable functions for which 
ordinary differentials do not exist (Klebaner, 1998). Stochastic calculus is based on the 
premise that the differentials of nondifferential functions can have meaning only through 
certain types of integrals such as Ito integrals which are rigorously developed in the 
literature. In addition, mathematically well-defined processes such as the Weiner process 
aid in formulating mathematical models of complex systems. Mathematical theories aside, 
one needs to question the validity of using stochastic calculus in each instance. In modelling 
the solute transport in porous media, we consider that the fluid velocity is fundamentally a 
random variable with respect to space and time and continuous but irregular, i.e., 
nondifferentiable. In many natural porous formations, geometrical structures are irregular 
and therefore, as fluid particles encounter porous structures, velocity changes are more 
likely to be irregular than regular. In many situations, we hardly have accurate information 
about the porous structure, which contributes to greater uncertainties. Hence, stochastic 
calculus provides a more sophisticated mathematical framework to model the advection-
dispersion in porous media found in practical situations, especially involving natural 
porous formations. By using stochastic partial differential equations, for example, we could 
incorporate the uncertainty of the dispersion coefficient and hydraulic conductivity that are 
present in porous structures such as underground aquifers. The incorporation of the 
dispersivity as a random, irregular coefficient makes the solution of resulting partial 
differential equations an interesting area of study. However, the scale dependency of the 
dispersivity can not be addressed in this manner because the dispersivity itself is not a 
material property but a constant that depends on the scale of the experiment. 

In this chapter we develop one dimensional model without resorting to Fickian assumptions 
and discuss the methods of estimating the parameters. As of many contracted description of 
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a natural phenomena the model presented in this chapter has its weaknesses. But we model 
the fluctuation of the solute velocity due to porous structure and incorporate the fluctuation 
in the mass conservation of solute. Then we need to characterise the fluctuations so that we 
can relate them to the porous structure 
 

3.2 The Model Development 
The basic assumption on the formulation of this model is that the velocity of solute particles 
is fundamentally a stochastic variable with irregular but continuous realisations.

Let us consider an infinite cylindrical volume having a cross sectional area, A, within a one-
dimensional porous medium with the solute concentration of C(x, t) (Figure 3.1). Within the 
context of solute transport in heterogeneous groundwater systems, the velocity, V(x, t), the 
contaminant flux, J(x, t), and C(x,t) are stochastic functions of space and time, having 
irregular (may be highly irregular) and continuous realisations. Therefore, when 
formulating the mass conservation model for the solute transport, it is important to use 
higher order terms in the Taylor expansion. 

 
Figure 3.1. An infinitesimal cylindrical volume within a one-dimensional porous medium. 

The mass balance for change of solute of the infinitesimal cylindrical volume for a small 
time interval, t , could be written as, 

( , ) ( ( , ) ( , )e x x eC x t n A x J x t J x x t n A t       , 

,

( ( , ) ( , )) ,x x

x t

J x t J x x tC
t x

       
                      (3.2.1) 

where en  is the effective porosity of the material, ( , )C x t  and t  are infinitesimal 
changes of solute concentration, C(x,t), and time, respectively. 

For the convenience, let us indicate ( , )xJ x t  as xJ  and ( , )xJ x x t   as x xJ  . 

The Taylor series expansion can be shown as 
2 3

2 3
2 3

1 1 1( ) ( ) ( )
1! 2! 3!

x x x
x x

J J JJ J x x x Rx x x x


  
       

  
, 

where ( )R   is the remainder of the series. 

 

Let us assume that the terms up to second order would be sufficient to adequately represent 
the irregular behaviour of the flow, thus, the higher order derivatives of the flux greater 
than three of the flux are negligible. Therefore, equation (3.2.1) can be written as,  

2

2

1 ( , ),
2

x x
c

C J J dx R x t
t x x

  
  

  
                     (3.2.2) 

where
3 4

2 3
3 4

1 1( , ) ( ) ( ) ( )
6 24

x x
c

J JR x t dx dx R
x x

 
  

 
.  

Substituting xdx h , we can write equation (3.2.2), 

       

2

2 .( , )
2

x x x
c

C J h J R x t
t x x

  
  

  
               (3.2.3) 

Multiplying the both sides of equation (3.2.3) by dt, we obtain,  

2

2 ( , ) .
2

x x x
c

J h JdC dt R x t dt
x x

  
     

                    (3.2.4) 

Equation (3.2.4) represents the mass conversation of the solute within the infinitesimal 
cylindrical volume shown in Figure 3.1. ( , )C x t  describes the average solute concentration 
over the cylindrical volume and the smallest possible x  would increase the accuracy of 
the stochastic model. However, if x  is in the same order of magnitude of a typical grain 
size of the porous media, ( , )C x t  would lose its meaning. Therefore, it is important to use a 
realistic x  value for the scale under consideration for the computational solutions.  

Compared to the first term on the right hand side of equation (3.2.4), it is assumed that 
( , ) 0.cR x t dt  (However, this assumption needs to be tested for any given situation, 

especially when porous media is extremely heterogeneous.) Under this assumption, 

2

2 .
2

x x xJ h JdC dt
x x

  
    

                     (3.2.5) 

The contaminant flux can be expressed in terms of the velocity in the x direction and the 
concentration of the contaminant is expressed as, 

( , ) ( , ) ( , ).J x t V x t C x t                          (3.2.6) 
The velocity is modelled as, 

( , ) ( , ) ( , ),V x t V x t x t                            (3.2.7) 

where ( , )V x t  is the mean velocity of the flow that may be described by Darcy's law, 

( )( , )
( )e

pK xV x t
n x x





, 

  ( )K x  = an average value of the hydraulic conductivity of the region, 
  ( )en x  = porosity of the material, 
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a natural phenomena the model presented in this chapter has its weaknesses. But we model 
the fluctuation of the solute velocity due to porous structure and incorporate the fluctuation 
in the mass conservation of solute. Then we need to characterise the fluctuations so that we 
can relate them to the porous structure 
 

3.2 The Model Development 
The basic assumption on the formulation of this model is that the velocity of solute particles 
is fundamentally a stochastic variable with irregular but continuous realisations.

Let us consider an infinite cylindrical volume having a cross sectional area, A, within a one-
dimensional porous medium with the solute concentration of C(x, t) (Figure 3.1). Within the 
context of solute transport in heterogeneous groundwater systems, the velocity, V(x, t), the 
contaminant flux, J(x, t), and C(x,t) are stochastic functions of space and time, having 
irregular (may be highly irregular) and continuous realisations. Therefore, when 
formulating the mass conservation model for the solute transport, it is important to use 
higher order terms in the Taylor expansion. 

 
Figure 3.1. An infinitesimal cylindrical volume within a one-dimensional porous medium. 

The mass balance for change of solute of the infinitesimal cylindrical volume for a small 
time interval, t , could be written as, 

( , ) ( ( , ) ( , )e x x eC x t n A x J x t J x x t n A t       , 

,

( ( , ) ( , )) ,x x

x t

J x t J x x tC
t x

       
                      (3.2.1) 

where en  is the effective porosity of the material, ( , )C x t  and t  are infinitesimal 
changes of solute concentration, C(x,t), and time, respectively. 

For the convenience, let us indicate ( , )xJ x t  as xJ  and ( , )xJ x x t   as x xJ  . 

The Taylor series expansion can be shown as 
2 3

2 3
2 3

1 1 1( ) ( ) ( )
1! 2! 3!

x x x
x x

J J JJ J x x x Rx x x x


  
       

  
, 

where ( )R   is the remainder of the series. 

 

Let us assume that the terms up to second order would be sufficient to adequately represent 
the irregular behaviour of the flow, thus, the higher order derivatives of the flux greater 
than three of the flux are negligible. Therefore, equation (3.2.1) can be written as,  

2

2

1 ( , ),
2

x x
c

C J J dx R x t
t x x

  
  
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                     (3.2.2) 

where
3 4

2 3
3 4

1 1( , ) ( ) ( ) ( )
6 24

x x
c

J JR x t dx dx R
x x

 
  

 
.  

Substituting xdx h , we can write equation (3.2.2), 

       

2

2 .( , )
2

x x x
c

C J h J R x t
t x x

  
  
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               (3.2.3) 

Multiplying the both sides of equation (3.2.3) by dt, we obtain,  

2

2 ( , ) .
2

x x x
c

J h JdC dt R x t dt
x x

  
     

                    (3.2.4) 

Equation (3.2.4) represents the mass conversation of the solute within the infinitesimal 
cylindrical volume shown in Figure 3.1. ( , )C x t  describes the average solute concentration 
over the cylindrical volume and the smallest possible x  would increase the accuracy of 
the stochastic model. However, if x  is in the same order of magnitude of a typical grain 
size of the porous media, ( , )C x t  would lose its meaning. Therefore, it is important to use a 
realistic x  value for the scale under consideration for the computational solutions.  

Compared to the first term on the right hand side of equation (3.2.4), it is assumed that 
( , ) 0.cR x t dt  (However, this assumption needs to be tested for any given situation, 

especially when porous media is extremely heterogeneous.) Under this assumption, 

2

2 .
2

x x xJ h JdC dt
x x

  
    

                     (3.2.5) 

The contaminant flux can be expressed in terms of the velocity in the x direction and the 
concentration of the contaminant is expressed as, 

( , ) ( , ) ( , ).J x t V x t C x t                          (3.2.6) 
The velocity is modelled as, 

( , ) ( , ) ( , ),V x t V x t x t                            (3.2.7) 

where ( , )V x t  is the mean velocity of the flow that may be described by Darcy's law, 

( )( , )
( )e

pK xV x t
n x x





, 

  ( )K x  = an average value of the hydraulic conductivity of the region, 
  ( )en x  = porosity of the material, 
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  p   = pressure head, and 
( , )x t = stochastic perturbation of the fluid velocity described by noise correlated in 

space and  - correlated in time such that, 

 ( , ) 0,E x t                               (3.2.8) 
 

   
 1 1 2 2 1 2 1 2( , ) ( , ) ( , ) ( ),E x t x t q x x t t                       (3.2.9) 

where 1 2( , )q x x  is the velocity covariance kernel in space, and 1 2( )t t   is the Dirac's delta 
function. 

Since, 2 1 ,t t t    we can rewrite equation (3.2.9) as, 

 1 1 2 1 1 2( , ) ( , ) ( , ) ( )E x t x t t q x x t      .                (3.2.10) 

In equation (3.2.6) the velocity, ( , )V x t , is modelled as a stochastic process with the 
fluctuating component ( ( , )x t ) superimposed on the expectation of velocity (mean 

velocity). The expected value of the velocity ( , )V x t  can be obtained from other 
considerations without involving Darcy’s law. The use of Darcy’s law is only one way of 
prescribing ( , )V x t  within a given region of the porous medium. The fluctuating velocity 
( ( , )x t ) is assumed to be a zero-mean stochastic process as given by equation (3.2.7), and 
the two-time correlation function is expressed as a product of a function of space ( 1 2( , )q x x ) 
and a function of time ( 1 2( )t t  ) in equation (3.2.9) and  (3.2.10). (As ( , )x t   is a zero-
mean process, the two-time correlation function and the covariance are the same). The 
spatial function, 1 2( , )q x x , reflects the contribution of the porous structure to the 
fluctuations and helps characterise the structural influence on the flow. The Dirac’s delta 
function makes the stochastic process behave as a white noise process along the time line. 
For low velocity situations, such as in aquifers, this is not an unreasonable assumption, but 
the alternative approach of assembling a time correlation function along the time line would 
complicate the mathematics a fair deal, and unless the flow is turbulent, there is no 
justification to take that approach. 

Substituting equations (3.2.5) and (3.2.6) into equation (3.2.4), we can obtain, 
2

2

2

2 .

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,
2

( , ) ( , ) ( , ) ( , )
2

x

x

hdC V x t C x t C x t x t dt V x t C x t C x t x t dt
x x

h V x t C x t C x t x t dt
x x

 



           
           

 

(3.2.11) 

An operator in space can be defined such that, 

2

22
xhS

x x
  

    
                            (3.2.12) 

for a given .xh  

 

Therefore, we can write equation (3.2.11) as, 

   ( , ) ( , ) ( , ) ( , ) .dC S V x t C x t dt S C x t x t dt                   (3.2.13) 

Equation (3.2.13) is a stochastic (partial) differential equation and both terms on the right 
hand side need to be integrated as Ito integrals to obtain the concentration. ( , )x t dt can be 
transformed by ( )d t which is a Wiener process increments in Hilbert space for a given x. 
The explanation on the transformation of ( , )x t dt  to ( )d t  can be found in Jazwinski 
(1970). 

The transformation of ( , )x t dt  to ( )d t  can be understood if we interpret ( , )x t dt  to be 
fluctuating component of the travel length of a solute particle during of time interval dt . 
As we see later this fluctuating travel length component can be expressed as a random 
vector field ( ( )d t ) in an orthonormal set of co-ordinate space (Hilber space). The co-
ordinates depend on the covariance kernel 1 2( , )q x x , and these are called basis functions in 
Hilbert space (Hernandez, 1995).  

Equation (3.2.13) can be written as,  

       
   ( , ) ( , ) ( , ) ( ) ,dC S V x t C x t dt S C x t d t                  (3.2.14) 

And 

   
0 0

( , ) ( , ) ( , ) ( , ) ( ) .
t t

C x t S V x t C x t dt S C x t d t                 (3.2.15) 

We call equation (3.2.15) a stochastic solute transport model (SSTM) in which C(x,t)  is 
stochastic solute concentration at a given point in space and time; ( , )V x t  is the expected 
value of  stochastic velocity; hx approximates the spatial discretization interval, dx; and 

( )d t can be considered as a “noise” term which models the velocity fluctuations. 

In this model, instead of the Fickian assumption (equation (1.2.3)), a covariance kernel for 
the velocity fluctuations 1 2( , )q x x  is assumed. The emphasis on modelling of the velocity 
fluctuation as a random field of second order has its own strengths and weaknesses. The 
expectation is that by directly incorporating the velocity fluctuation in the solute mass 
conservation, we expect to reduce the scale dependency because the assumed covariance 
kernel is a function of the pore structure. The major weakness is that we usually do not have 
velocity data to construct the kernel for velocity fluctuations. On the other hand, different 
velocity kernels can be assumed based on plausible reasoning. In this chapter, for the 
illustration purposes, we assume that the covariance kernel to be exponentially decaying 

function, 
1 2

2
x x

be
 

, where 2  is the variance and b is the correlation length.  

In SSTM, the first term on the right hand side of equation (3.2.15) can be considered as the 
drift term of the stochastic partial differential equations (SPDE). The velocity, ( , )V x t ,  can 
be considered as the mean velocity of a local region but for the simplicity, we can assume 
that ( , )V x t   is a constant in this chapter. This assumption is reasonable in practice as we 
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  p   = pressure head, and 
( , )x t = stochastic perturbation of the fluid velocity described by noise correlated in 

space and  - correlated in time such that, 

 ( , ) 0,E x t                               (3.2.8) 
 

   
 1 1 2 2 1 2 1 2( , ) ( , ) ( , ) ( ),E x t x t q x x t t                       (3.2.9) 

where 1 2( , )q x x  is the velocity covariance kernel in space, and 1 2( )t t   is the Dirac's delta 
function. 

Since, 2 1 ,t t t    we can rewrite equation (3.2.9) as, 

 1 1 2 1 1 2( , ) ( , ) ( , ) ( )E x t x t t q x x t      .                (3.2.10) 

In equation (3.2.6) the velocity, ( , )V x t , is modelled as a stochastic process with the 
fluctuating component ( ( , )x t ) superimposed on the expectation of velocity (mean 

velocity). The expected value of the velocity ( , )V x t  can be obtained from other 
considerations without involving Darcy’s law. The use of Darcy’s law is only one way of 
prescribing ( , )V x t  within a given region of the porous medium. The fluctuating velocity 
( ( , )x t ) is assumed to be a zero-mean stochastic process as given by equation (3.2.7), and 
the two-time correlation function is expressed as a product of a function of space ( 1 2( , )q x x ) 
and a function of time ( 1 2( )t t  ) in equation (3.2.9) and  (3.2.10). (As ( , )x t   is a zero-
mean process, the two-time correlation function and the covariance are the same). The 
spatial function, 1 2( , )q x x , reflects the contribution of the porous structure to the 
fluctuations and helps characterise the structural influence on the flow. The Dirac’s delta 
function makes the stochastic process behave as a white noise process along the time line. 
For low velocity situations, such as in aquifers, this is not an unreasonable assumption, but 
the alternative approach of assembling a time correlation function along the time line would 
complicate the mathematics a fair deal, and unless the flow is turbulent, there is no 
justification to take that approach. 

Substituting equations (3.2.5) and (3.2.6) into equation (3.2.4), we can obtain, 
2

2

2

2 .

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,
2

( , ) ( , ) ( , ) ( , )
2

x

x

hdC V x t C x t C x t x t dt V x t C x t C x t x t dt
x x

h V x t C x t C x t x t dt
x x

 



           
           

 

(3.2.11) 

An operator in space can be defined such that, 

2

22
xhS

x x
  

    
                            (3.2.12) 

for a given .xh  

 

Therefore, we can write equation (3.2.11) as, 

   ( , ) ( , ) ( , ) ( , ) .dC S V x t C x t dt S C x t x t dt                   (3.2.13) 

Equation (3.2.13) is a stochastic (partial) differential equation and both terms on the right 
hand side need to be integrated as Ito integrals to obtain the concentration. ( , )x t dt can be 
transformed by ( )d t which is a Wiener process increments in Hilbert space for a given x. 
The explanation on the transformation of ( , )x t dt  to ( )d t  can be found in Jazwinski 
(1970). 

The transformation of ( , )x t dt  to ( )d t  can be understood if we interpret ( , )x t dt  to be 
fluctuating component of the travel length of a solute particle during of time interval dt . 
As we see later this fluctuating travel length component can be expressed as a random 
vector field ( ( )d t ) in an orthonormal set of co-ordinate space (Hilber space). The co-
ordinates depend on the covariance kernel 1 2( , )q x x , and these are called basis functions in 
Hilbert space (Hernandez, 1995).  

Equation (3.2.13) can be written as,  

       
   ( , ) ( , ) ( , ) ( ) ,dC S V x t C x t dt S C x t d t                  (3.2.14) 

And 

   
0 0

( , ) ( , ) ( , ) ( , ) ( ) .
t t

C x t S V x t C x t dt S C x t d t                 (3.2.15) 

We call equation (3.2.15) a stochastic solute transport model (SSTM) in which C(x,t)  is 
stochastic solute concentration at a given point in space and time; ( , )V x t  is the expected 
value of  stochastic velocity; hx approximates the spatial discretization interval, dx; and 

( )d t can be considered as a “noise” term which models the velocity fluctuations. 

In this model, instead of the Fickian assumption (equation (1.2.3)), a covariance kernel for 
the velocity fluctuations 1 2( , )q x x  is assumed. The emphasis on modelling of the velocity 
fluctuation as a random field of second order has its own strengths and weaknesses. The 
expectation is that by directly incorporating the velocity fluctuation in the solute mass 
conservation, we expect to reduce the scale dependency because the assumed covariance 
kernel is a function of the pore structure. The major weakness is that we usually do not have 
velocity data to construct the kernel for velocity fluctuations. On the other hand, different 
velocity kernels can be assumed based on plausible reasoning. In this chapter, for the 
illustration purposes, we assume that the covariance kernel to be exponentially decaying 

function, 
1 2

2
x x

be
 

, where 2  is the variance and b is the correlation length.  

In SSTM, the first term on the right hand side of equation (3.2.15) can be considered as the 
drift term of the stochastic partial differential equations (SPDE). The velocity, ( , )V x t ,  can 
be considered as the mean velocity of a local region but for the simplicity, we can assume 
that ( , )V x t   is a constant in this chapter. This assumption is reasonable in practice as we 
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often calculate the Darcian velocity over a region. As C(x,t) is a stochastic variable, at a given 
point in space, the integral can be evaluated as an Ito integral to simplify the numerical 
solution. This argument can also be applied to the dispersion term, the second integral of the 
right hand side of equation (3.2.15), but ( )d t   term has to be evaluated. (We use the term 
“dispersion” instead of “diffusion” to denote the second integral of the right hand side of 
equation (3.2.15) to allude to the physical nature that is being represented by the term. But in 
the mathematical literature, the term “diffusion” is used to denote the stochastic (Ito or 
Stratonovich) integral of analogous stochastic differential equations because it is a diffusion 
process in mathematical sense.)  It should also be noted that ( , )V x t  could also vary from 
location to location at a higher scale, and we can assume that we can identify regions of 
sufficiently large magnitudes within which ( , )V x t  can be treated as a smoothly varying 
function if not a constant. However, this assumption is not necessary if we know the mean 
velocity profiles based on more aggregate properties. ( , )x t , on the other hand, relaxes the 
assumption expressed by equation (1.2.3) and allows us to include a much more realistic 
assumption as to how the noise behaves. There is some experimental evidence to suggest 
that the normalised longitudinal velocity covariances for different flow rates had similar 
exponential behaviour with respect to time in a homogenous porous media (Moroni and 
Cushman, 2001). However, there is no experimental evidence to date as to how the 
covariance of velocity fluctuation around the mean velocity, ( , )x t , behaves with respect to 
space, but the exponential decay in this situation is quite plausible. 
 

3.3 Construction of ( )d t  Random Fields Using Spectral Expansion 
We summarise the pertinent theoretical background here to explain the assumptions in our 
model of velocity fluctuations. Let K be a compact set in Rd, over which we define a second 
order random field, having a covariance function,  q(x,y) which is assumed to be square 
integrable over K × K  (see Hernandez,1995): 

2( , )
K K

q x y dxdy


  . 

Let A: L2(K)→L2(K)  be the integral operator 

        
( ) ( , ) ( )KA x q x y y dy                          (3.3.1) 

with the set of eigen values {λi : i= 1, 2, 3.....} and the set of  orthonormal eigenfunctions {ψi : 
i= 1, 2, 3 ...}. This means  

        
, 1,2,3...i i iA i   ,                          (3.3.2) 

and , , 1,2,3.....i j ij i j      ,                  (3.3.3) 

where , ( ) ( )i j i j
K

x x dx     .                  (3.3.4) 

If q(x,y) is continuous then , 0i iA    for 2 ( )i L K  . 

 

Now we can make use of Mercer’s theorem (Hernandez, 1995) to express q(x,y) in terms of  
eigenfunctions (ψi ) and the corresponding eigenvalues (λi) , 

1
( , ) ( ) ( )k k k

k
q x y x y  




  ,                          (3.3.5) 

and convergence is uniform and absolute over K × K. Now let us define a set of (complex) 
random variables {Zi : i=1, 2, 3...} with the following moments: 

, 1, 2,...0nEZ n   , and 

, 1, 2,.....n m n nmEZ Z n   . 

Then the Karhunen-Loeve theorem states that random field ( )x can be expressed as a 
series expansion of Zi s, 

1
( ): ( )n n

n
x x Z 




  ,                     (3.3.6) 

which converges in quadratic mean for any x in K. In addition, the following conditions 
hold, 

( ) ( ), 1,2,.....n n nE x Z x n     and, 

0

20lim ( ) ( ) 0
x x

E x x 


     for any  x0 in K. 

What Karhunen-Loeve (KL) expansion does is to model a random field by using two 
separate mathematical objects: continuous functions, which stem as the solutions of an 
integral equation (equation (3.3.1)) and random variables. If we assume the random 
variables ( iZ ) to be standard Gaussian (N(0,1)), then Karhunen-Loeve expansion takes the 
following form,  

1

( ): ( )n n n
n

x x Z  




 .                           (3.3.7) 

KL expansion provides a way of modelling a random field of  a single variable, which is 
considered to be the space variable, in terms of  a set of orthonormal basis functions of  a 
Hilbert space and a discrete set of standard Gaussian variables. We extend this development 
to model the velocity fluctuation of equation (3.2.6), ( , )x t , which is spatially and 
temporally correlated in such a way that 0

2( , ) ( ) [0, ]x t H L R T     where 0H  is a 
separable Hilbert space in which we assume ( , )x t  to be spatially correlated through a 
symmetric and positive definite covariance function 1 2( , )q x x , and δ-correlated in time (or 
white in time). As mentioned before this means that velocity changes in a porous medium 
are influenced by the porous matrix but behaves like white noise with respect to time, i.e., 
correlation in time is a Dirac delta function. Suppose that the mean velocity ( , )V x t  of a 
region is 1 m per day, then within a second a solute particle travels 0.01 mm on the average, 
and within 0.001 days it travels 1 mm, which increases the probability of solute particle 
changing its course. We can assume that in slow moving fluids, the velocity fluctuation at 
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often calculate the Darcian velocity over a region. As C(x,t) is a stochastic variable, at a given 
point in space, the integral can be evaluated as an Ito integral to simplify the numerical 
solution. This argument can also be applied to the dispersion term, the second integral of the 
right hand side of equation (3.2.15), but ( )d t   term has to be evaluated. (We use the term 
“dispersion” instead of “diffusion” to denote the second integral of the right hand side of 
equation (3.2.15) to allude to the physical nature that is being represented by the term. But in 
the mathematical literature, the term “diffusion” is used to denote the stochastic (Ito or 
Stratonovich) integral of analogous stochastic differential equations because it is a diffusion 
process in mathematical sense.)  It should also be noted that ( , )V x t  could also vary from 
location to location at a higher scale, and we can assume that we can identify regions of 
sufficiently large magnitudes within which ( , )V x t  can be treated as a smoothly varying 
function if not a constant. However, this assumption is not necessary if we know the mean 
velocity profiles based on more aggregate properties. ( , )x t , on the other hand, relaxes the 
assumption expressed by equation (1.2.3) and allows us to include a much more realistic 
assumption as to how the noise behaves. There is some experimental evidence to suggest 
that the normalised longitudinal velocity covariances for different flow rates had similar 
exponential behaviour with respect to time in a homogenous porous media (Moroni and 
Cushman, 2001). However, there is no experimental evidence to date as to how the 
covariance of velocity fluctuation around the mean velocity, ( , )x t , behaves with respect to 
space, but the exponential decay in this situation is quite plausible. 
 

3.3 Construction of ( )d t  Random Fields Using Spectral Expansion 
We summarise the pertinent theoretical background here to explain the assumptions in our 
model of velocity fluctuations. Let K be a compact set in Rd, over which we define a second 
order random field, having a covariance function,  q(x,y) which is assumed to be square 
integrable over K × K  (see Hernandez,1995): 

2( , )
K K

q x y dxdy


  . 

Let A: L2(K)→L2(K)  be the integral operator 

        
( ) ( , ) ( )KA x q x y y dy                          (3.3.1) 

with the set of eigen values {λi : i= 1, 2, 3.....} and the set of  orthonormal eigenfunctions {ψi : 
i= 1, 2, 3 ...}. This means  

        
, 1,2,3...i i iA i   ,                          (3.3.2) 

and , , 1,2,3.....i j ij i j      ,                  (3.3.3) 

where , ( ) ( )i j i j
K

x x dx     .                  (3.3.4) 

If q(x,y) is continuous then , 0i iA    for 2 ( )i L K  . 

 

Now we can make use of Mercer’s theorem (Hernandez, 1995) to express q(x,y) in terms of  
eigenfunctions (ψi ) and the corresponding eigenvalues (λi) , 

1
( , ) ( ) ( )k k k

k
q x y x y  




  ,                          (3.3.5) 

and convergence is uniform and absolute over K × K. Now let us define a set of (complex) 
random variables {Zi : i=1, 2, 3...} with the following moments: 

, 1, 2,...0nEZ n   , and 

, 1, 2,.....n m n nmEZ Z n   . 

Then the Karhunen-Loeve theorem states that random field ( )x can be expressed as a 
series expansion of Zi s, 

1
( ): ( )n n

n
x x Z 




  ,                     (3.3.6) 

which converges in quadratic mean for any x in K. In addition, the following conditions 
hold, 

( ) ( ), 1,2,.....n n nE x Z x n     and, 

0

20lim ( ) ( ) 0
x x

E x x 


     for any  x0 in K. 

What Karhunen-Loeve (KL) expansion does is to model a random field by using two 
separate mathematical objects: continuous functions, which stem as the solutions of an 
integral equation (equation (3.3.1)) and random variables. If we assume the random 
variables ( iZ ) to be standard Gaussian (N(0,1)), then Karhunen-Loeve expansion takes the 
following form,  

1

( ): ( )n n n
n

x x Z  




 .                           (3.3.7) 

KL expansion provides a way of modelling a random field of  a single variable, which is 
considered to be the space variable, in terms of  a set of orthonormal basis functions of  a 
Hilbert space and a discrete set of standard Gaussian variables. We extend this development 
to model the velocity fluctuation of equation (3.2.6), ( , )x t , which is spatially and 
temporally correlated in such a way that 0

2( , ) ( ) [0, ]x t H L R T     where 0H  is a 
separable Hilbert space in which we assume ( , )x t  to be spatially correlated through a 
symmetric and positive definite covariance function 1 2( , )q x x , and δ-correlated in time (or 
white in time). As mentioned before this means that velocity changes in a porous medium 
are influenced by the porous matrix but behaves like white noise with respect to time, i.e., 
correlation in time is a Dirac delta function. Suppose that the mean velocity ( , )V x t  of a 
region is 1 m per day, then within a second a solute particle travels 0.01 mm on the average, 
and within 0.001 days it travels 1 mm, which increases the probability of solute particle 
changing its course. We can assume that in slow moving fluids, the velocity fluctuation at 
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one small interval in time is independent of that of within another interval in time. By 
incorporating appropriate discretisation time and space intervals in the solution process, the 
white-in-time assumption leads to a simpler but physically plausible model of velocity 
fluctuation. Therefore, we can express ( , )x t  as a second-order random field with the 
moments as given in equation (3.2.9). 

Based on stochastic calculus considerations (Unny, 1985),  ( , )x t dt can be considered as a 
Wiener process increment ( )d t  in Hilbert space 0H  for a given x; and to obtain strong 
solutions to the stochastic partial differential equation (3.2.14) numerically, this 
representation is particularly useful. The orthonormal functions,  {ψi : i=1, 2, 3... }, provide a 
basis for 0H , and then we can use the standard Wiener increments (dbi(t)) to replace 
random variables in KL expansion (equation (3.3.7)) to construct the random field dβ(t):  

1
( ): ( ) ( ) ( , )n n n

n
d t x db t x t dt   




  .                   (3.3.8) 

Intrinsic in this model is the fact that for any given element 0e H , the inner product 
( ),t e   is a real Wiener process having the correlation, 

 1 2 1 2 1 2 2 1 1 2( ), ( ), ( , ) ( ) ( )
K K

E t e t e q x x e x e x dx dx 


     .            (3.3.9) 

An approximation for equation (3.3.8) can be constructed by considering the first m terms in 
the expansion which converges to a desired accuracy. As the increments in standard Wiener 
process have zero means and dt variances, care must be given to the choice of the time 
increments within the context of the problem. Smaller the time increments, higher the 
accuracy of KL expansion as in the case of solving stochastic differntial equations 
numerically (Kloeden and Platen, 1992). 

Equation (3.3.8) gives a series expansion for the stochastic process ( )d t  but eigen 
functions and eigenvalues must be found for a given kernel. This task is not straight forward 
and often involves solving the Fredholm integral equations. Let us assume, based on 
previous discussion, an exponentially decaying kernel in the x-direction in this chapter, 

1 2
2

1 2( , ) .
x x

bq x x e
 

                           (3.3.10) 

where x1 and  x2 are two neighbouring points on x. The correlation length b signifies the 
extent to which the correlation of the stochastic process is decayed along the x-axis. σ2 is the 
variance  which acts as an amplitude factor. To obtain the orthornormal functions for the 
kernel in equation (3.3.10), the following integral equation must be solved within the 
domain [0, a], where a is the length (scale) of the experiment, 

1 2 2 2 10 ( , ) ( ) ( )a
i i iq x x f x dx f x .                  (3.3.11) 

Equation (3.3.11) can be written as,  

1 2
2

1 2 20
1( ) ( )

x x
a b

i i
i

f x e f x dx


 

  .                    (3.3.12) 

 

As the upper limit of integration is a constant, equation (3.3.10) is a homogenous Fredholm 
integral equation of the second kind. 

We now discuss the general solution of the integral equation generated by equation (3.3.10) 
considering the solutions of a general Fredholm integral equation of the form (Polyanin et 
al., 1998), 

( ) 1 ( ) ( )b x t
ay x A e y t dt f x   ,                      (3.3.13) 

where A1 and θ are constants. 

Then the function y = y(x) obeys the following second order linear non-homogeneous 
differential equation with constant coefficients, 

2(2 1 ) ( ) ( )xx xxy A y f x f x       .                   (3.3.14) 

The boundary conditions for this ordinary differential equation (ODE) have the form, 

( ) ( ) ( ) ( )x xy a y a f a f a     ,and                       (3.3.15) 

( ) ( ) ( ) ( )x xy b y b f b f b     .                   (3.3.16) 

Polyanin et al. (1998) explain why the given ODE (equation (3.3.16)) under these boundary 
conditions determines the solutions of the original integral equation (3.3.12). 

Case 1. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by, 

1 2 0
2 1( ) ( ) ( ) ( ) [ ( )] ( )xAy x C Cosh k x C Sinh kx f x Sinh k x t f t dt

k


     ,       (3.3.17) 

where ( 2 1)k A   , and 1C  and 2C  are arbitrary constants. 

Case 2. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by 

1 2 0

2 1( ) ( ) ( ) ( ) [ ( )] ( )
xAy x C Cos k x C Sin kx f x Sin k x t f t dt

k


     ,        (3.3.18) 

where (2 1 )k A   . 

Case 3. For 2 1A  , the general solution of equation (3.3.13) is given by, 

2
1 2( ) ( ) 4 1 ( ) ( )x

ay x C C x f x A x t f t dt     .                (3.3.19) 

The constants 1C  and 2C  are determined by the boundary conditions.  

These results (Cases 1, 2, and 3) can be applied to the integral equation (3.3.11) by changing 
notation, and observing that 

21 2 1(2 1 ) 0A
b b




       
  

.                      (3.3.20) 
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one small interval in time is independent of that of within another interval in time. By 
incorporating appropriate discretisation time and space intervals in the solution process, the 
white-in-time assumption leads to a simpler but physically plausible model of velocity 
fluctuation. Therefore, we can express ( , )x t  as a second-order random field with the 
moments as given in equation (3.2.9). 

Based on stochastic calculus considerations (Unny, 1985),  ( , )x t dt can be considered as a 
Wiener process increment ( )d t  in Hilbert space 0H  for a given x; and to obtain strong 
solutions to the stochastic partial differential equation (3.2.14) numerically, this 
representation is particularly useful. The orthonormal functions,  {ψi : i=1, 2, 3... }, provide a 
basis for 0H , and then we can use the standard Wiener increments (dbi(t)) to replace 
random variables in KL expansion (equation (3.3.7)) to construct the random field dβ(t):  

1
( ): ( ) ( ) ( , )n n n

n
d t x db t x t dt   




  .                   (3.3.8) 

Intrinsic in this model is the fact that for any given element 0e H , the inner product 
( ),t e   is a real Wiener process having the correlation, 

 1 2 1 2 1 2 2 1 1 2( ), ( ), ( , ) ( ) ( )
K K

E t e t e q x x e x e x dx dx 


     .            (3.3.9) 

An approximation for equation (3.3.8) can be constructed by considering the first m terms in 
the expansion which converges to a desired accuracy. As the increments in standard Wiener 
process have zero means and dt variances, care must be given to the choice of the time 
increments within the context of the problem. Smaller the time increments, higher the 
accuracy of KL expansion as in the case of solving stochastic differntial equations 
numerically (Kloeden and Platen, 1992). 

Equation (3.3.8) gives a series expansion for the stochastic process ( )d t  but eigen 
functions and eigenvalues must be found for a given kernel. This task is not straight forward 
and often involves solving the Fredholm integral equations. Let us assume, based on 
previous discussion, an exponentially decaying kernel in the x-direction in this chapter, 

1 2
2

1 2( , ) .
x x

bq x x e
 

                           (3.3.10) 

where x1 and  x2 are two neighbouring points on x. The correlation length b signifies the 
extent to which the correlation of the stochastic process is decayed along the x-axis. σ2 is the 
variance  which acts as an amplitude factor. To obtain the orthornormal functions for the 
kernel in equation (3.3.10), the following integral equation must be solved within the 
domain [0, a], where a is the length (scale) of the experiment, 

1 2 2 2 10 ( , ) ( ) ( )a
i i iq x x f x dx f x .                  (3.3.11) 

Equation (3.3.11) can be written as,  

1 2
2

1 2 20
1( ) ( )

x x
a b

i i
i

f x e f x dx


 

  .                    (3.3.12) 

 

As the upper limit of integration is a constant, equation (3.3.10) is a homogenous Fredholm 
integral equation of the second kind. 

We now discuss the general solution of the integral equation generated by equation (3.3.10) 
considering the solutions of a general Fredholm integral equation of the form (Polyanin et 
al., 1998), 

( ) 1 ( ) ( )b x t
ay x A e y t dt f x   ,                      (3.3.13) 

where A1 and θ are constants. 

Then the function y = y(x) obeys the following second order linear non-homogeneous 
differential equation with constant coefficients, 

2(2 1 ) ( ) ( )xx xxy A y f x f x       .                   (3.3.14) 

The boundary conditions for this ordinary differential equation (ODE) have the form, 

( ) ( ) ( ) ( )x xy a y a f a f a     ,and                       (3.3.15) 

( ) ( ) ( ) ( )x xy b y b f b f b     .                   (3.3.16) 

Polyanin et al. (1998) explain why the given ODE (equation (3.3.16)) under these boundary 
conditions determines the solutions of the original integral equation (3.3.12). 

Case 1. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by, 

1 2 0
2 1( ) ( ) ( ) ( ) [ ( )] ( )xAy x C Cosh k x C Sinh kx f x Sinh k x t f t dt

k


     ,       (3.3.17) 

where ( 2 1)k A   , and 1C  and 2C  are arbitrary constants. 

Case 2. For (2 1 ) 0A   , the general solution of equation (3.3.13) is given by 

1 2 0

2 1( ) ( ) ( ) ( ) [ ( )] ( )
xAy x C Cos k x C Sin kx f x Sin k x t f t dt

k


     ,        (3.3.18) 

where (2 1 )k A   . 

Case 3. For 2 1A  , the general solution of equation (3.3.13) is given by, 

2
1 2( ) ( ) 4 1 ( ) ( )x

ay x C C x f x A x t f t dt     .                (3.3.19) 

The constants 1C  and 2C  are determined by the boundary conditions.  

These results (Cases 1, 2, and 3) can be applied to the integral equation (3.3.11) by changing 
notation, and observing that 

21 2 1(2 1 ) 0A
b b




       
  

.                      (3.3.20) 
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The eigenvalues of equation (3.3.13) for constant 2  over [0, a] are given by 
2

2 2

2
i

i


 




,                          (3.3.21) 

where 1
b

  , and 

ωi s are the roots of the following equation, 

2 2

2( ) i
i

i

Tan a 
 




.                           (3.3.22) 

The orthonormal basis functions of the Hilbert space associated with the given exponential 
kernel (equation (3.3.10)) are the normalised eigenfunctions, 

1( ) ( ) ( )i
i i if x Sin x Cos x

N
 


   
 

,                     (3.3.23) 

where, 

 
2 2

2 2

1 1 11 1 (2 ) (2 ) 1
2 4 2

i i
i i

i

N a Sin a Cos a   
   

   
        

   
.          (3.3.24) 

As seen from equation (3.3.21), the eigenvalues are dependent on the correlation length b 
and the variance 2  directly and to the length of the experiment, a, indirectly through 
equation (3.3.22). Equation (3.3.22) is a transendental equation with roots ωi. Firstly, 
equation (3.3.22) has to be solved numerically for a given a and b, then the eigenvalues λi s 
and finally the basis functions of 0H . Then the random field ( )d t  for a given number of 
terms, m, can be evaluated by using equation (3.3.8) in conjunction with the standard 
Wiener increments. 
 

3.4 The Dispersion and Travel Length Fluctuations 
In this section, we explore the dispersion term in the SSTM to understand its behaviour in 
simplified settings; as we have seen previously, ( ( , ) ( ))S C x t d t  can be expanded by using 
the spectral expansion, 

1
( ( , ) ( )) ( ( , ) ( ) ( ))

m

j j j
j

S C x t d t S C x t f x db t 


  .                 (3.4.1) 

Let us assume that we use the same realisation of the standard Wiener process across all x in 
evaluating this term, i.e., dbj is independent of x. Then we can express the dispersion term 
for this situation, 

1
( ( , ) ( )) ( ( , ) ) ( )

m

j j j
j

S C x t d t S C x t f db t 


 .                (3.4.2) 

 

Now for the sake of argument, let us assume that all the Wiener increments are the same, a 
situation which is never encountered in computation. Then we can take dbj s out of the 

summation, and explore the behaviour of the term, 
1

( ( , ) ( ) )
m

j j
j

S C x t f x 

 .  

By substituting for the differential operator S and for ( )jf x , after symbolic manipulations,  
we can express, 

2

2
1 1 1 1

( ( , ) ( ) )
m m m m

j j j j j
j j j j

C CS C x t f x C
x x


   

      
          

      
    ,           (3.4.3) 

where, 

1 ( ) ( )
2

j x j
j x j j

h
h Sin x Cos x

N
 

 


 
    

 
;                        (3.4.3a) 

  

1 ( ) ( )j j x j
j j j x j

h
Sin x h Cos x

N
  

  
 

    
             

; and          (3.4.3b) 

2 2 3

( ) ( )
2 2

j j x j j x
j j j j

h h
Sin x Cos x

N
   

  
 

    
                

.            (3.4.3c) 

This exercise shows the complexity of the dispersion term and it is related to the local spatial 

gradient of the concentration, C
x




 , the second order spatial derivative 
2

2

C
x



 , as well as 

C(x,t). j , j  and j  coefficients are also dependent on λi s, hx, and ωi s, and they are 
analogous to Fourier series, i.e., the coefficients themselves have the form of spectral 
expansions. Recall that hx is a scale length introduced to retain the second order derivative 

of fluxes in the SSTM. We can assume that ( )xh x  , i.e., 
0

0x

x

hLim
x 

   
 where  x  is 

the discretization length in x direction. If we make hx=0 then j =0, which eliminates the 
second order spatial derivative of the concentration in equation (3.4.3). Even in a simplified 
setting of having a common standard Wiener increment (dbi(t)) for all x, and assuming a 
differentiable function for C(x,t), this analysis shows that the dispersion term depicts much 
more complicated behaviours that cannot be modelled by scale independent simplifying 
assumptions. Therefore, one should note that as time increases the effects of Wiener process 
increases, and it would be worthwhile to investigate the dependence of the random field 

( )d t  for different scales of experiments. In other words, from equation (3.2.7), we see that, 

( ) ( , ) ( , )dX t V x t dt x t dt  ,                         (3.4.4) 

where X(t) is travel distance of a solute particle in x-direction. 
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The eigenvalues of equation (3.3.13) for constant 2  over [0, a] are given by 
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,                          (3.3.21) 

where 1
b

  , and 

ωi s are the roots of the following equation, 
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

.                           (3.3.22) 

The orthonormal basis functions of the Hilbert space associated with the given exponential 
kernel (equation (3.3.10)) are the normalised eigenfunctions, 
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where, 
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   
.          (3.3.24) 

As seen from equation (3.3.21), the eigenvalues are dependent on the correlation length b 
and the variance 2  directly and to the length of the experiment, a, indirectly through 
equation (3.3.22). Equation (3.3.22) is a transendental equation with roots ωi. Firstly, 
equation (3.3.22) has to be solved numerically for a given a and b, then the eigenvalues λi s 
and finally the basis functions of 0H . Then the random field ( )d t  for a given number of 
terms, m, can be evaluated by using equation (3.3.8) in conjunction with the standard 
Wiener increments. 
 

3.4 The Dispersion and Travel Length Fluctuations 
In this section, we explore the dispersion term in the SSTM to understand its behaviour in 
simplified settings; as we have seen previously, ( ( , ) ( ))S C x t d t  can be expanded by using 
the spectral expansion, 
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Let us assume that we use the same realisation of the standard Wiener process across all x in 
evaluating this term, i.e., dbj is independent of x. Then we can express the dispersion term 
for this situation, 
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S C x t d t S C x t f db t 


 .                (3.4.2) 

 

Now for the sake of argument, let us assume that all the Wiener increments are the same, a 
situation which is never encountered in computation. Then we can take dbj s out of the 

summation, and explore the behaviour of the term, 
1

( ( , ) ( ) )
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j

S C x t f x 

 .  

By substituting for the differential operator S and for ( )jf x , after symbolic manipulations,  
we can express, 
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where, 
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 


 
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This exercise shows the complexity of the dispersion term and it is related to the local spatial 

gradient of the concentration, C
x




 , the second order spatial derivative 
2

2

C
x



 , as well as 

C(x,t). j , j  and j  coefficients are also dependent on λi s, hx, and ωi s, and they are 
analogous to Fourier series, i.e., the coefficients themselves have the form of spectral 
expansions. Recall that hx is a scale length introduced to retain the second order derivative 

of fluxes in the SSTM. We can assume that ( )xh x  , i.e., 
0

0x

x

hLim
x 

   
 where  x  is 

the discretization length in x direction. If we make hx=0 then j =0, which eliminates the 
second order spatial derivative of the concentration in equation (3.4.3). Even in a simplified 
setting of having a common standard Wiener increment (dbi(t)) for all x, and assuming a 
differentiable function for C(x,t), this analysis shows that the dispersion term depicts much 
more complicated behaviours that cannot be modelled by scale independent simplifying 
assumptions. Therefore, one should note that as time increases the effects of Wiener process 
increases, and it would be worthwhile to investigate the dependence of the random field 

( )d t  for different scales of experiments. In other words, from equation (3.2.7), we see that, 

( ) ( , ) ( , )dX t V x t dt x t dt  ,                         (3.4.4) 

where X(t) is travel distance of a solute particle in x-direction. 
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As seen in equation (3.3.7), ( ) ( , )d t x t dt   is the fluctuating part of the travel length of a 

solute within the time dt at a given x. Assuming ( , )V x t  is a constant across the domain 
[0,a], by investigating the nature of  the fluctuating component of  the travel length as the 
scale of the experiments changes, we can understand the scale dependency of the dispersion 
term better.  

( )d t  is an irregular stochastic function of time with spatial component appearing in 
normalised eigen functions, ( )jf x .A standard Wiener process increment (dbi)  
corresponding to a time increment,  Δti , should be generated for each eigenfunction. 

( )d t  can be approximated as a summation of M terms: 

1
( ) ( ) ( )

M

i i i
i

d t f x db t 


 . 

Let ( ) ( )i i ix f x  , then 
1

( ) ( )
M

i i
i

d x db t 


 . 

Recall ( )idb t s are independent zero-mean Gaussian increments with Δti variance. 

Therefore, [ ] ( ) 0i iE d E x db     , for a given x. 

For a given x, 2[ ] ( ) [ ]i iVar d x Var db  . 

If we discretise the time axis equidistantly, 1 2 ... ...it t t t        , then, 

 2[ ] ( )iVar d x t   .                         (3.4.5) 

As seen from equation (3.4.5), d  is a summation of independent Gaussian processes for a 
given x value making it a Gaussian process zero mean and variance proportional to Δt. We 
will make use of equation (3.4.5) in the approximate numerical solution of SSTM for large 
scale experiments in chapter 4. 
 

3.5 Numerical Solutions of the 1-D SSTM and Their Behaviours 
We solve equation (3.2.14) for strong solutions using a finite difference scheme which is 
based on Euler solution of Ito integral. One dimensional domain is discretised, and the basis 

of numerical solutions to SPDEs as given by Gaines and Lyons (1997) is adopted. A constant 
mean velocity is assumed in the scheme. The differential operator S in equation (3.2.11) was 
expressed as a differential operator using a backward difference scheme. One dimensional 
spatial length, a ( 0 x a  ) on x axis was divided into (k-1) equidistant intervals of small 
lengths of x . The total model time, T, was divided into (n-1) equidistant small intervals of 

t . The space-time grid for the explicit difference scheme that can be used to independently 
calculate the concentration value at time level 1nt   from the concentration values at time 
intervals nt , thus preserving the non-antipating nature of Ito integral.  

 

 

Figure 3.2 show the space-time grid for the explicit difference scheme that can be used to 
independently calculate the value at time 1nt  (denoted by ●) from the values at time nt  
(denoted by ○). 

 
Figure 3.2. An explicit space-time scheme used for the computational solution. 

The first derivative of a variable U can be described as (Morton and Mayers, 1994), 

       

1
n n n

k k

k

U UU
x x

     
,                           (3.5.1) 

where n
kU  = value of U at the grid point (k, n). 

The second derivative can be given by, 

2
1 2

2 2

2
n n n n

k k k

k

U U UU
x x

    
   

.                                             (3.5.2) 

The operator S can be written as, 

2

22
xU h USU

x x
  

    
, 
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As seen in equation (3.3.7), ( ) ( , )d t x t dt   is the fluctuating part of the travel length of a 

solute within the time dt at a given x. Assuming ( , )V x t  is a constant across the domain 
[0,a], by investigating the nature of  the fluctuating component of  the travel length as the 
scale of the experiments changes, we can understand the scale dependency of the dispersion 
term better.  

( )d t  is an irregular stochastic function of time with spatial component appearing in 
normalised eigen functions, ( )jf x .A standard Wiener process increment (dbi)  
corresponding to a time increment,  Δti , should be generated for each eigenfunction. 

( )d t  can be approximated as a summation of M terms: 
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Recall ( )idb t s are independent zero-mean Gaussian increments with Δti variance. 
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For a given x, 2[ ] ( ) [ ]i iVar d x Var db  . 

If we discretise the time axis equidistantly, 1 2 ... ...it t t t        , then, 
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As seen from equation (3.4.5), d  is a summation of independent Gaussian processes for a 
given x value making it a Gaussian process zero mean and variance proportional to Δt. We 
will make use of equation (3.4.5) in the approximate numerical solution of SSTM for large 
scale experiments in chapter 4. 
 

3.5 Numerical Solutions of the 1-D SSTM and Their Behaviours 
We solve equation (3.2.14) for strong solutions using a finite difference scheme which is 
based on Euler solution of Ito integral. One dimensional domain is discretised, and the basis 

of numerical solutions to SPDEs as given by Gaines and Lyons (1997) is adopted. A constant 
mean velocity is assumed in the scheme. The differential operator S in equation (3.2.11) was 
expressed as a differential operator using a backward difference scheme. One dimensional 
spatial length, a ( 0 x a  ) on x axis was divided into (k-1) equidistant intervals of small 
lengths of x . The total model time, T, was divided into (n-1) equidistant small intervals of 

t . The space-time grid for the explicit difference scheme that can be used to independently 
calculate the concentration value at time level 1nt   from the concentration values at time 
intervals nt , thus preserving the non-antipating nature of Ito integral.  

 

 

Figure 3.2 show the space-time grid for the explicit difference scheme that can be used to 
independently calculate the value at time 1nt  (denoted by ●) from the values at time nt  
(denoted by ○). 

 
Figure 3.2. An explicit space-time scheme used for the computational solution. 

The first derivative of a variable U can be described as (Morton and Mayers, 1994), 
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where n
kU  = value of U at the grid point (k, n). 

The second derivative can be given by, 
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The operator S can be written as, 
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Therefore, we can express the operator in the difference form 

    

 
2

22

nn
n x
k

k k

U h USU
x x

               
.                                            (3.5.3) 

Substituting the backward difference schemes from (3.5.1) and (3.5.3) and taking xh x , 

  1 2
1 3 4

2
n n n n

k k kkSU U U U
x  

         
.               (3.5.4) 

The first derivative of U with respect to time can be expressed using a forward difference 
scheme, 

1n n
k kU UU

t t

 


 
.                   (3.5.5) 

Applying equation (3.5.1) and (3.5.3) to (3.5.5) and considering the mean velocity for the 
region as a constant, v, we can obtain the following scheme:  
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
 

   

          
         

            (3.5.6) 

where ( )d t = Wiener process increments in Hilbert space for a given x. 

The explicit difference model (3.5.6) gives the future values of a stochastic variable in terms 
of the past values preserving the properties of Ito definition of integration with respect to 
time. This scheme is stable and gives strong solutions to equation (3.2.14), as in many 
SPDEs, if 410t   . For example, if a=1000 meters, and if we simulate the solute transport 
for at least 1000 days, taking x =0.01 m and t =0.0001 days for stability reasons, we need 
a grid of 5 710 10x . In addition, the evaluation of ( )d t  for each x involves the summation 
of a large number of ( )i x dbi terms. Because of the computational time it requires to solve 
the SPDE, we use the scheme given in equation (3.5.6) when a< 10 m, and for larger a values 
we approximate ( )d t  term as described later. 

We can now investigate the behaviour of the stochastic solute transport model (SSTM) in 
one-dimension. The main parameters of the SSTM are correlation length, b and variance, 

2 . As the statistical nature of the computational solution changes with different b and 2 , 
we would like to understand the effect of these parameters on the solution of the model.  
Furthermore, we attempt to understand these parameters in relation to the hydrodynamic 
dispersion.  

The finite difference numerical schemes are used in the investigation taking the numerical 
convergence and stability into account for the domain [0, 1]. First we solve equation (3.3.20) 
for the given values of b and 2 . It is necessary to find and appropriate number of roots for 
equation (3.3.20) to produce the desired accuracy of the numerical solution. For the domain 

 

[0, 1], the first 30 values of the roots (ωi ) are generally sufficient. We generate the standard 
Wiener process increments for 0.001 day time intervals for total of three days. Then the 
eigenvalues n  are computed for the given 2  using equation (3.3.21). With these roots, 
  and n , we calculate the basis functions using equation (3.3.23). These values are used 
to compute (t)d , the Hilbert space valued Wiener incremental processes, using the KL 
expansion (equation (3.3.7)). Then we calculate the concentration profile for the discretised 
values of spatial-temporal development for the mean velocity of 0.5 m/day. The numerical 
solution is implemented in a mathematical software package, Mathematica (Wolfram 
Research, 1999). 

We use a spatial grid length of 0.1 m for the numerical calculation. The initial concentration 
distribution profile of 1.0 unit at x = 0 is considered and it exponentially decreases through 
the rest of the domain according to the function, e-5k x , where k = 1, 2, …,10 and x = grid 
size. We begin the numerical scheme with very small numerical concentration values, rather 
than zero concentrations, to reduce the numerical errors at the beginning of the scheme. The 
concentration of 1.0 unit is maintained at the boundary of x = 0 for the whole time period of 
the solution to mimic a continuous point source.  

To investigate the general behaviour of the SSTM, we obtain the temporal development of 
the concentration profiles at the mid point of the domain, x = 0.5 m, for various parameter 
combinations of b and 2 . The same realisation of the standard Wiener process increments 
and constant mean velocity of 0.5 m/day are used for all the experiments, so that we would 
not bias our comparisons.  
 

       
Figure 3.3. Comparison of deterministic advection-dispersion (D = 0.01) and stochastic ( 2  
= 0.001 and b = 0.0001) model concentration profiles. An explicit space-time scheme used for 
the computational solution. 

Figure 3.3 shows that the stochastic model can mimic the solution of the advection-
dispersion equation with reasonable accuracy. The concentration breakthrough curves (the 
time history of concentration at a fixed x ) for the SSTM for 2 = 0.001 and b = 0.0001, and 
the deterministic curve for the advection-dispersion equation for dispersion coefficient (D) 
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Therefore, we can express the operator in the difference form 
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where ( )d t = Wiener process increments in Hilbert space for a given x. 
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of a large number of ( )i x dbi terms. Because of the computational time it requires to solve 
the SPDE, we use the scheme given in equation (3.5.6) when a< 10 m, and for larger a values 
we approximate ( )d t  term as described later. 

We can now investigate the behaviour of the stochastic solute transport model (SSTM) in 
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to compute (t)d , the Hilbert space valued Wiener incremental processes, using the KL 
expansion (equation (3.3.7)). Then we calculate the concentration profile for the discretised 
values of spatial-temporal development for the mean velocity of 0.5 m/day. The numerical 
solution is implemented in a mathematical software package, Mathematica (Wolfram 
Research, 1999). 

We use a spatial grid length of 0.1 m for the numerical calculation. The initial concentration 
distribution profile of 1.0 unit at x = 0 is considered and it exponentially decreases through 
the rest of the domain according to the function, e-5k x , where k = 1, 2, …,10 and x = grid 
size. We begin the numerical scheme with very small numerical concentration values, rather 
than zero concentrations, to reduce the numerical errors at the beginning of the scheme. The 
concentration of 1.0 unit is maintained at the boundary of x = 0 for the whole time period of 
the solution to mimic a continuous point source.  

To investigate the general behaviour of the SSTM, we obtain the temporal development of 
the concentration profiles at the mid point of the domain, x = 0.5 m, for various parameter 
combinations of b and 2 . The same realisation of the standard Wiener process increments 
and constant mean velocity of 0.5 m/day are used for all the experiments, so that we would 
not bias our comparisons.  
 

       
Figure 3.3. Comparison of deterministic advection-dispersion (D = 0.01) and stochastic ( 2  
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Figure 3.3 shows that the stochastic model can mimic the solution of the advection-
dispersion equation with reasonable accuracy. The concentration breakthrough curves (the 
time history of concentration at a fixed x ) for the SSTM for 2 = 0.001 and b = 0.0001, and 
the deterministic curve for the advection-dispersion equation for dispersion coefficient (D) 
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of 0.01 m2/day are overlaid in Figure 3.3. We can always find a solution for the SSTM that 
reasonably represents the deterministic break through curve for any given dispersion 
coefficient using appropriate values for the parameters, 2  and b.  

To study the influences of b and 2  on the solution of the problem, we keep one parameter 
constant and change the other within a reasonable range to examine the behavioural change 
of the concentration breakthrough curves. Figure 3.4 shows the concentration profile at x = 
0.5 m for a small value of the variance, 2 = 0.0001, when the correlation length, b varies 
from 0.0001m to 0.25m. Although the range of b varies from 0.0001 to 0.25m (a change of 
2500 times) the change of stochasticity (noise level) is negligible and the solutions of the 
SSTM are independent of b and behave like those of a deterministic model. 
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Figure 3.4. Concentration profiles at x = 0.5m for 2 = 0.0001. 
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Figure 3.5. Concentration profiles at x = 0.5 m for 2 = 0.001. 

We gradually increase 2  and obtain the concentration profiles for the same regime of b 
(0.0001 m to 0.25 m) to examine the effect of 2 . With an increase in 2  by 10 times, 
Figure 3.5 shows that two types of changes have occurred in the concentration profiles; 

 

individual concentration profiles have worse fluctuatiing stochasticity, and there are 
significant differences between concentration values for different b values at a given time. 
The high values of the variance not only directly increase the unpredictable nature of the 
flow but also influence the ways in which b affects the flow. We also observe that with high 
b values the asymptotic values (sills) of the concentration profiles are lower than the 
deterministic sill. 

In the note that when b is very small, the concentration profile is smooth, but when b is 0.1 m 
it lowers the sill. By increasing 2  by 10 times, to 0.01, and by using the same standard 
Wiener process increments, we obtain the break through curves as shown in Figure 3.6. The 
flow tends to be significantly unsteady for larger correlation lengths and still shows smaller 
fluctuations smaller b values. Furthermore larger values of 2  intensities the fluctuation 
the effect of b significantly. 
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Figure 3.6. Concentration profiles at x = 0.5 m for 2 = 0.01. 
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Figure 3.7. Concentration profiles at x = 0.5 m for 2 = 0.1. 
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of 0.01 m2/day are overlaid in Figure 3.3. We can always find a solution for the SSTM that 
reasonably represents the deterministic break through curve for any given dispersion 
coefficient using appropriate values for the parameters, 2  and b.  

To study the influences of b and 2  on the solution of the problem, we keep one parameter 
constant and change the other within a reasonable range to examine the behavioural change 
of the concentration breakthrough curves. Figure 3.4 shows the concentration profile at x = 
0.5 m for a small value of the variance, 2 = 0.0001, when the correlation length, b varies 
from 0.0001m to 0.25m. Although the range of b varies from 0.0001 to 0.25m (a change of 
2500 times) the change of stochasticity (noise level) is negligible and the solutions of the 
SSTM are independent of b and behave like those of a deterministic model. 
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Figure 3.4. Concentration profiles at x = 0.5m for 2 = 0.0001. 
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Figure 3.5. Concentration profiles at x = 0.5 m for 2 = 0.001. 

We gradually increase 2  and obtain the concentration profiles for the same regime of b 
(0.0001 m to 0.25 m) to examine the effect of 2 . With an increase in 2  by 10 times, 
Figure 3.5 shows that two types of changes have occurred in the concentration profiles; 

 

individual concentration profiles have worse fluctuatiing stochasticity, and there are 
significant differences between concentration values for different b values at a given time. 
The high values of the variance not only directly increase the unpredictable nature of the 
flow but also influence the ways in which b affects the flow. We also observe that with high 
b values the asymptotic values (sills) of the concentration profiles are lower than the 
deterministic sill. 

In the note that when b is very small, the concentration profile is smooth, but when b is 0.1 m 
it lowers the sill. By increasing 2  by 10 times, to 0.01, and by using the same standard 
Wiener process increments, we obtain the break through curves as shown in Figure 3.6. The 
flow tends to be significantly unsteady for larger correlation lengths and still shows smaller 
fluctuations smaller b values. Furthermore larger values of 2  intensities the fluctuation 
the effect of b significantly. 
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Figure 3.6. Concentration profiles at x = 0.5 m for 2 = 0.01. 
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Figure 3.7. Concentration profiles at x = 0.5 m for 2 = 0.1. 
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The concentration profiles for higher b regimes for the increased value of 2  (=0.1) are 
highly random as shown in Figure 3.7. With higher values of b, the concentration profiles 
become highly irregular making the numerical scheme unstable. Therefore, limit our 
experiments to smaller b values, that are less than 0.01 m. Figure 4.8 shows that the 
fluctuation invariably increase with the high 2  values and the behaviour of the model 
continues with the same trend that we noticed earlier, but with enhanced effects. 
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Figure 3.8. Concentration profiles at x = 0.5 m for 2 = 0.25. 

Figure 3.9 shows the concentration profiles at b = 0.0001 for the range of 2  that varies from 
0.0001 to 0.25. By comparing in Figure 3.4, when 2  was very small, the fluctuation are not 
distinguishable even for very high b values; however, in Figure 3.9, irrespective of smaller b, 

2  influenced the behaviour of the flow. It is not possible to differentiate the concentration 
profiles for very small 2 , such as 0.0001 and 0.001. With the increase of 2  stochasticity 
increases rapidly, and 2  influences the behaviour of the flow more than b does. 
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Figure 3.9. Concentration profiles at x = 0.5 m for b = 0.0001. 

 

We increase b by 10 times to obtain Figure 3.10, which shows considerable changes in the 
breakthrough curves. 

To understand the effects of different Wiener realizations on the concentration profiles by 
using 50 different Wiener realisations to calculate the 95% confidence intervals. They show 
that, for smaller values of parameters (for example, 2 = 0.001, b= 0.01), the variations in the 
concentration profile are negligible, but for larger values (for example, 2 = 0.1, b= 0.1) the 
fluctuation regimes increase but the solutions remain stable. Obviously, the confidence 
intervals widen with the larger values of the parameters. 
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Figure 3.10. Concentration profiles at x = 0.5 m for b = 0.001. 

We can now extend the investigation to a 10 m flow length. Similar to the 1 m investigation, 
a simple setting of the one-dimensional case is used to explore the behaviour of the model 
for different model parameters of the correlation length, b and the variance, 2 . To obtain 
meaningful concentration profiles for the extended spatial domain, we also increase the time 
interval of the solution. The stochastic model is computationally solved for an average linear 
velocity of 0.5 m/day for 30 days, which allows sufficient time for the solute to travel the 
entire spatial domain. However, due to increases in the time length, a different realisation of 
the standard Wiener process increments was used for the 10 m length. This may raise the 
question of the validity in comparing of the model for two different spatial lengths. 
However, as we have shown earlier the model is reasonably stable for different Wiener 
process increments and therefore, it is reasonable to assume that the solutions of the model 
are not significantly affected by the different Wiener processes. A single realisation of the 
standard Wiener process is used throughout the investigation of the 10 m spatial domain.  

Similar to 1 m case, the 10 m scale shows that a SSTM could mimic the solution of the 
advection – dispersion equation for the same distance (Figure 3.11)
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The concentration profiles for higher b regimes for the increased value of 2  (=0.1) are 
highly random as shown in Figure 3.7. With higher values of b, the concentration profiles 
become highly irregular making the numerical scheme unstable. Therefore, limit our 
experiments to smaller b values, that are less than 0.01 m. Figure 4.8 shows that the 
fluctuation invariably increase with the high 2  values and the behaviour of the model 
continues with the same trend that we noticed earlier, but with enhanced effects. 
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Figure 3.8. Concentration profiles at x = 0.5 m for 2 = 0.25. 

Figure 3.9 shows the concentration profiles at b = 0.0001 for the range of 2  that varies from 
0.0001 to 0.25. By comparing in Figure 3.4, when 2  was very small, the fluctuation are not 
distinguishable even for very high b values; however, in Figure 3.9, irrespective of smaller b, 

2  influenced the behaviour of the flow. It is not possible to differentiate the concentration 
profiles for very small 2 , such as 0.0001 and 0.001. With the increase of 2  stochasticity 
increases rapidly, and 2  influences the behaviour of the flow more than b does. 
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Figure 3.9. Concentration profiles at x = 0.5 m for b = 0.0001. 

 

We increase b by 10 times to obtain Figure 3.10, which shows considerable changes in the 
breakthrough curves. 

To understand the effects of different Wiener realizations on the concentration profiles by 
using 50 different Wiener realisations to calculate the 95% confidence intervals. They show 
that, for smaller values of parameters (for example, 2 = 0.001, b= 0.01), the variations in the 
concentration profile are negligible, but for larger values (for example, 2 = 0.1, b= 0.1) the 
fluctuation regimes increase but the solutions remain stable. Obviously, the confidence 
intervals widen with the larger values of the parameters. 
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Figure 3.10. Concentration profiles at x = 0.5 m for b = 0.001. 

We can now extend the investigation to a 10 m flow length. Similar to the 1 m investigation, 
a simple setting of the one-dimensional case is used to explore the behaviour of the model 
for different model parameters of the correlation length, b and the variance, 2 . To obtain 
meaningful concentration profiles for the extended spatial domain, we also increase the time 
interval of the solution. The stochastic model is computationally solved for an average linear 
velocity of 0.5 m/day for 30 days, which allows sufficient time for the solute to travel the 
entire spatial domain. However, due to increases in the time length, a different realisation of 
the standard Wiener process increments was used for the 10 m length. This may raise the 
question of the validity in comparing of the model for two different spatial lengths. 
However, as we have shown earlier the model is reasonably stable for different Wiener 
process increments and therefore, it is reasonable to assume that the solutions of the model 
are not significantly affected by the different Wiener processes. A single realisation of the 
standard Wiener process is used throughout the investigation of the 10 m spatial domain.  

Similar to 1 m case, the 10 m scale shows that a SSTM could mimic the solution of the 
advection – dispersion equation for the same distance (Figure 3.11)
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Figure 3.11. Comparison of deterministic advection-dispersion (D = 0.035 m2/day) and the 
SSTM ( 2  = 0.001 and b = 0.0001) concentration profiles at x  = 5m for 10 m domain. 

The behaviours of the SSTM model for the 10-m flow length are quite similar to those for the 
1-m flow length. The influence of the parameter b can be seen in Figure 3.12 for the fixed 
values of 2 . High b values increase the propensity of the flow to be more stochastic and 
decrease the asymptotic values of the concentration. For a given b, the effects of increasing 

2  are more profound in comparison to those associated with increasing b for a fixed 2 . 
 

 
Figure 3.12. Comparison of deterministic advection-dispersion (D = 0.035 m2/day) and the 
SSTM ( 2  = 0.001 and b = 0.0001) concentration profiles at x  = 5m for 10 m domain. 

How do we relate the parameter, 2  and b, to the physical porous structure? The 
relationship need to be understood through the influences on the concentration profiles. b is 
the correlation length of the velocity Kernel 1 2( , )q x x  (see equation 3.3.9), and higher the b 
slower the rate at which 1 2( , )q x x  decays. This means that pore structure contains larger 

 

pores; and b is indicative of the size of pores, and, may be, geometric shapes of pores. 2  
affects the profiles more dramatically, especially depressing asymptotic of the profiles, 
indicating that solute mass is dissolved in a larger volume of water. This alludes again to 
pore geometry (shapes and interconnecting paths) and if pore structure is heterogeneous 
with high porosity, one could expect 2  as well as b to be high. 2  and b allow us more 
flexibility of defining the nature of solute dispersion, and the complex interaction between 

2  and b would help us to characterise the pore structures for a given velocity kernel. 
 

3.6 A Comparison of the SSTM with the Experiments Data 
The Lincoln University aquifer is 9.49 m long, 4.66 m wide and 2.6 m deep. As shown in 
Figure 3.13, constant head tanks are the boundaries of the aquifer at its upstream and 
downstream ends. A porous wall provides the hydraulic connection between the aquifer 
and the head tanks. A weir controls the water surface elevation in each head tank, and each 
weir can be adjusted to provide different hydraulic gradients. However, a uniform 
hydraulic gradient of 0.0018 (head loss along the aquifer / flow length = 0.017 m / 9.49 m) is 
maintained during the entire experiment along the longitudinal direction of the tank. 
 

 
Figure 3.13. Schematic diagram of the artificial aquifer at Lincoln University, New Zealand 
(Courtesy of Dr.John Bright, Lincoln Ventures Ltd). 
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2  are more profound in comparison to those associated with increasing b for a fixed 2 . 
 

 
Figure 3.12. Comparison of deterministic advection-dispersion (D = 0.035 m2/day) and the 
SSTM ( 2  = 0.001 and b = 0.0001) concentration profiles at x  = 5m for 10 m domain. 

How do we relate the parameter, 2  and b, to the physical porous structure? The 
relationship need to be understood through the influences on the concentration profiles. b is 
the correlation length of the velocity Kernel 1 2( , )q x x  (see equation 3.3.9), and higher the b 
slower the rate at which 1 2( , )q x x  decays. This means that pore structure contains larger 

 

pores; and b is indicative of the size of pores, and, may be, geometric shapes of pores. 2  
affects the profiles more dramatically, especially depressing asymptotic of the profiles, 
indicating that solute mass is dissolved in a larger volume of water. This alludes again to 
pore geometry (shapes and interconnecting paths) and if pore structure is heterogeneous 
with high porosity, one could expect 2  as well as b to be high. 2  and b allow us more 
flexibility of defining the nature of solute dispersion, and the complex interaction between 

2  and b would help us to characterise the pore structures for a given velocity kernel. 
 

3.6 A Comparison of the SSTM with the Experiments Data 
The Lincoln University aquifer is 9.49 m long, 4.66 m wide and 2.6 m deep. As shown in 
Figure 3.13, constant head tanks are the boundaries of the aquifer at its upstream and 
downstream ends. A porous wall provides the hydraulic connection between the aquifer 
and the head tanks. A weir controls the water surface elevation in each head tank, and each 
weir can be adjusted to provide different hydraulic gradients. However, a uniform 
hydraulic gradient of 0.0018 (head loss along the aquifer / flow length = 0.017 m / 9.49 m) is 
maintained during the entire experiment along the longitudinal direction of the tank. 
 

 
Figure 3.13. Schematic diagram of the artificial aquifer at Lincoln University, New Zealand 
(Courtesy of Dr.John Bright, Lincoln Ventures Ltd). 
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Multi-port monitoring wells are laid out on a 1m x 1m grid. The computer controlled 
peristaltic pumps enable fully automated, simultaneous solute water samples to be collected 
from sample points that are uniformly distributed throughout the aquifer (four sample 
points for each grid point at 0.4m, 1.0m, 1.6m and 2.2m depth from the top surface of the 
aquifer). The tracer used is Rhodamine WT (RWT) dye with an initial concentration of 200 
parts per million and then allowed to decrease exponentially. Tracer is injected at the middle 
of the header tank using an injection box (dimensions of 50 cm length, 10 cm width and 20 
cm depth). This tracer is rapidly mixed in the upstream header tank and, thus, infiltrates 
across the whole of the upstream face of the aquifer. This particular experiment described 
here lasted 432 hours, and two samples were taken at four-hour intervals from the wells. 

Since, STTM described in this chapter is a one-dimensional model, we experiment in directly 
relating the one-dimension solute concentration profiles of the aquifer. However, as one can 
assume, the actual aquifer is subjected to transverse dispersion, and consideration of only a 
one-dimensional flow is not sufficiently accurate. Hence, we employ the following 
methodology to approximate the aquifer parameters.  

Solute concentration values for the artificial aquifer are available for a large number of 
spatial points at different temporal intervals. The data are available mainly for header tank, 
row 1, row 3, row 5, row 7 and row 9 (see Figure 3.13) at all levels. Initially, we select a few 
spatial coordinates at row 5 of well A – level YE. We then develop a two-dimensional 
deterministic advection-dispersion transport model and obtain corresponding concentration 
values of the model that are similar to the selected spatial locations of the aquifer. As past 
studies show, we approximate that the transverse dispersion coefficient is 10% of the 
longitudinal dispersion (Fetter, 1999). The mean velocity is 0.5 m/day. The profiles of both 
the aquifer and the deterministic model are plotted in one axis system, to compare their 
similarities. This trial-and-error curve fitting technique is carried out to determine the most 
accurate dispersion coefficients of the deterministic model. In this procedure concentration 
values of the aquifer are normalised (i.e., the values vary from 0 to 1). 

By trial and error, we find that the closest fit is given by the longitudinal dispersion coefficient 
of 0.15 m2/day, i.e., transverse dispersion is 0.015 m2/day, (Figure 3.14) for the aquifer. 
 

 
Figure 3.14. Concentration profile of trial and error curve fit for D = 0.15 m2/day of the 
advection dispersion model with row 5 of the aquifer data. 

 

 
Figure 3.15. Concentration profiles of deterministic advection-dispersion model with D = 0.15 
m2/day and SSTM with 2 = 0.01 and b = 0.01. 

Subsequently, we develop a one-dimensional deterministic advection-dispersion model 
using the D obtained from a two-dimensional comparison. We then use a similar curve 
fitting technique with the 1-D deterministic model and 1-D stochastic model to find the most 
suitable 2  and b for the SSTM. 

Figures 3.15 show the best fitting curves for both the SSTM and the 1-D advection-
dispersion model. Having determined the appropriate parameters of the SSTM ( 2 = 0.01 
and b = 0.01) that simulate the Lincoln University aquifer at the spatial location under 
consideration (Row 5 – well A) we investigated the robustness of the model for different 
Wiener processes and found that the SSTM is reasonably stable for the seven different 
Wiener realisations tested. 

Even though the results show, as mentioned above, that the parameter combination of 2 = 
0.01 and b = 0.01 is a fairly accurate representation of the experimental aquifer for the given 
spatial point, we need to test these parameters other spatial locations. Figure 3.16 shows that 
the 2-D deterministic advection-dispersion model with the longitudinal dispersion 
coefficient of 0.15 m2/day fits the aquifer data reasonably well for the similar locations. 
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Figure 3.16. Concentration profiles of 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer. 
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Multi-port monitoring wells are laid out on a 1m x 1m grid. The computer controlled 
peristaltic pumps enable fully automated, simultaneous solute water samples to be collected 
from sample points that are uniformly distributed throughout the aquifer (four sample 
points for each grid point at 0.4m, 1.0m, 1.6m and 2.2m depth from the top surface of the 
aquifer). The tracer used is Rhodamine WT (RWT) dye with an initial concentration of 200 
parts per million and then allowed to decrease exponentially. Tracer is injected at the middle 
of the header tank using an injection box (dimensions of 50 cm length, 10 cm width and 20 
cm depth). This tracer is rapidly mixed in the upstream header tank and, thus, infiltrates 
across the whole of the upstream face of the aquifer. This particular experiment described 
here lasted 432 hours, and two samples were taken at four-hour intervals from the wells. 

Since, STTM described in this chapter is a one-dimensional model, we experiment in directly 
relating the one-dimension solute concentration profiles of the aquifer. However, as one can 
assume, the actual aquifer is subjected to transverse dispersion, and consideration of only a 
one-dimensional flow is not sufficiently accurate. Hence, we employ the following 
methodology to approximate the aquifer parameters.  

Solute concentration values for the artificial aquifer are available for a large number of 
spatial points at different temporal intervals. The data are available mainly for header tank, 
row 1, row 3, row 5, row 7 and row 9 (see Figure 3.13) at all levels. Initially, we select a few 
spatial coordinates at row 5 of well A – level YE. We then develop a two-dimensional 
deterministic advection-dispersion transport model and obtain corresponding concentration 
values of the model that are similar to the selected spatial locations of the aquifer. As past 
studies show, we approximate that the transverse dispersion coefficient is 10% of the 
longitudinal dispersion (Fetter, 1999). The mean velocity is 0.5 m/day. The profiles of both 
the aquifer and the deterministic model are plotted in one axis system, to compare their 
similarities. This trial-and-error curve fitting technique is carried out to determine the most 
accurate dispersion coefficients of the deterministic model. In this procedure concentration 
values of the aquifer are normalised (i.e., the values vary from 0 to 1). 

By trial and error, we find that the closest fit is given by the longitudinal dispersion coefficient 
of 0.15 m2/day, i.e., transverse dispersion is 0.015 m2/day, (Figure 3.14) for the aquifer. 
 

 
Figure 3.14. Concentration profile of trial and error curve fit for D = 0.15 m2/day of the 
advection dispersion model with row 5 of the aquifer data. 

 

 
Figure 3.15. Concentration profiles of deterministic advection-dispersion model with D = 0.15 
m2/day and SSTM with 2 = 0.01 and b = 0.01. 

Subsequently, we develop a one-dimensional deterministic advection-dispersion model 
using the D obtained from a two-dimensional comparison. We then use a similar curve 
fitting technique with the 1-D deterministic model and 1-D stochastic model to find the most 
suitable 2  and b for the SSTM. 

Figures 3.15 show the best fitting curves for both the SSTM and the 1-D advection-
dispersion model. Having determined the appropriate parameters of the SSTM ( 2 = 0.01 
and b = 0.01) that simulate the Lincoln University aquifer at the spatial location under 
consideration (Row 5 – well A) we investigated the robustness of the model for different 
Wiener processes and found that the SSTM is reasonably stable for the seven different 
Wiener realisations tested. 

Even though the results show, as mentioned above, that the parameter combination of 2 = 
0.01 and b = 0.01 is a fairly accurate representation of the experimental aquifer for the given 
spatial point, we need to test these parameters other spatial locations. Figure 3.16 shows that 
the 2-D deterministic advection-dispersion model with the longitudinal dispersion 
coefficient of 0.15 m2/day fits the aquifer data reasonably well for the similar locations. 
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Figure 3.16. Concentration profiles of 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer. 
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We compare the curves of the one-dimensional deterministic advection-dispersion model 
with D= 0.15 and of the SSTM with 2 = 0.01 and b = 0.01. Figure 3.17 illustrates that the 
curves for the deterministic model and the SSTM are in agreement.  
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Figure 3.17. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 3 well A. 

Figures 3.18 and 3.19 show that the same parameter combination is valid for the data from 
well A of row 7. 
 

 
Figure 3.18. Concentration profiles of the 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer at row 7. 

The comparative study of the SSTM and the experimental data described here is to show 
that the SSTM would faithfully mimic the concentration breakthrough curves in a real 
experiment situation. However, we do not attempt to validate the SSTM using the trial-and-
error curve fitting techniques for all the data sets as if is too labour intensive. As the 
experimental aquifer consists of sand of similar particle size, one would expect that one set 
of 2  and b values should be able to characterise the whole aquifer. It appears that 

2 =0.01 and b=0.01 would be an acceptable set of parameters. However, we can not say 

 

much about the uniqueness of these set of parameters. A correlation length (b) of 0.01 m 
seems to be reasonable for a porous medium containing sand. But this has not been 
ascertained through the experiments in a laboratory. Therefore, one of the ways of 
determining the uniqueness of the parameters set is to develop the methodologies to 
estimate them using all the observations we have. We have used the maximum likelihood 
estimation (MLE) to determine the parameters of the deterministic advection and dispersion 
model for the aquifer data. However, MLE can not be used to estimate parameters of SSTM 
as the SSTM contains the stochastic integral for dispersion which can not be built into 
likelihood functions. Therefore, we make use of ANN to estimate the parameters of the 
SSTM for the experimental aquifer in section 3.6. 
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Figure 3.19. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 7 well A. 
 

3.7 Parameter Estimation using Maximum Likelihood Method 
In chapter 1, we discuss the parameter estimation of the partial differential equations when 
the additive noise terms are present. The development of the likelihood functions are based 
on the theory of parameter estimation for stochastic process (Kutoyants, 1984; Lipster and 
Shirayer, 1977; Basawa and Prakasa Rao, 1980) and we use this theory to estimate 
parameters. 

Let us consider a one-dimensional stochastic advection-dispersion equation with additive 
fluctuations:  

2

2
( , )L x

C C C
D v x t

t x x


  
  

  

   
     

,                   (3.7.1) 

where LD  is the longitudinal hydrodynamic dispersion coefficient, in m2/day, and xv  is 
the velocity of water flow, in m/day. 

The two parameters to be estimated are LD  and xv , and we can express the right hand 
side of equation (3.7.1) as a linear function of the parameters (see section 1.4) 
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We compare the curves of the one-dimensional deterministic advection-dispersion model 
with D= 0.15 and of the SSTM with 2 = 0.01 and b = 0.01. Figure 3.17 illustrates that the 
curves for the deterministic model and the SSTM are in agreement.  
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Figure 3.17. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 3 well A. 

Figures 3.18 and 3.19 show that the same parameter combination is valid for the data from 
well A of row 7. 
 

 
Figure 3.18. Concentration profiles of the 2-D deterministic advection-dispersion model (D = 
0.15 m2/day) and the experimental aquifer at row 7. 

The comparative study of the SSTM and the experimental data described here is to show 
that the SSTM would faithfully mimic the concentration breakthrough curves in a real 
experiment situation. However, we do not attempt to validate the SSTM using the trial-and-
error curve fitting techniques for all the data sets as if is too labour intensive. As the 
experimental aquifer consists of sand of similar particle size, one would expect that one set 
of 2  and b values should be able to characterise the whole aquifer. It appears that 

2 =0.01 and b=0.01 would be an acceptable set of parameters. However, we can not say 

 

much about the uniqueness of these set of parameters. A correlation length (b) of 0.01 m 
seems to be reasonable for a porous medium containing sand. But this has not been 
ascertained through the experiments in a laboratory. Therefore, one of the ways of 
determining the uniqueness of the parameters set is to develop the methodologies to 
estimate them using all the observations we have. We have used the maximum likelihood 
estimation (MLE) to determine the parameters of the deterministic advection and dispersion 
model for the aquifer data. However, MLE can not be used to estimate parameters of SSTM 
as the SSTM contains the stochastic integral for dispersion which can not be built into 
likelihood functions. Therefore, we make use of ANN to estimate the parameters of the 
SSTM for the experimental aquifer in section 3.6. 
 

 

2 4 6 8 10 12 14 t (days)
0.2 

0.4 

0.6 

0.8 

1 
C 

SSTM

DET

 
Figure 3.19. Concentration profiles of the deterministic advection-dispersion model (D = 
0.15 m2/day) and SSTM with 2 = 0.01 and b = 0.01 for row 7 well A. 
 

3.7 Parameter Estimation using Maximum Likelihood Method 
In chapter 1, we discuss the parameter estimation of the partial differential equations when 
the additive noise terms are present. The development of the likelihood functions are based 
on the theory of parameter estimation for stochastic process (Kutoyants, 1984; Lipster and 
Shirayer, 1977; Basawa and Prakasa Rao, 1980) and we use this theory to estimate 
parameters. 

Let us consider a one-dimensional stochastic advection-dispersion equation with additive 
fluctuations:  

2
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t x x

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,                   (3.7.1) 

where LD  is the longitudinal hydrodynamic dispersion coefficient, in m2/day, and xv  is 
the velocity of water flow, in m/day. 

The two parameters to be estimated are LD  and xv , and we can express the right hand 
side of equation (3.7.1) as a linear function of the parameters (see section 1.4) 
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0 1 1 2 2( , , ) ( , ) ( , ) ( , ).f t C a C t a C t a C t                     (3.7.2) 

where 
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Then the log-likelihood function can be written as, 
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Differentiating equation (3.7.3) with respect to 1  and 2 , respectively, we obtain the 
following two simultaneous equations: 
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Suppose we have the observations of solute concentration, iC  at M independent space 
coordinates along the x-axis, where 1   i   M, at different time intervals, t (where 0   t 
  T , and T is an integer that represents the last reading taken at unit intervals on t-axis). In 
other words, we have M number of iC  observations for each time step. Hence, there are, 
altogether, ((T+1)M) iC  observations. We use these observations to estimate the parameter 

1  and 2 ,  

We substitute 0( , )ia C t , 1( , )ia C t , 2( , )ia C t ,  1  and 2  in equations (3.7.4) to obtain the 
following set of equations, 
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Therefore, DL and xv  values can be obtained by solving these two simultaneous equations.  

Once xv  is known, the hydraulic conductivity (K) can be obtained from, 

 
x

e

K dhv
n dl
   
 

 = average linear velocity, m/day,            (3.7.6) 

 

C  = solute concentration, mg/l, 

K  = hydraulic conductivity, m/day, 

dh
dl

 = hydraulic gradient, m/m, and 

en  = effective porosity. 

We have used the experimental data from the artificial aquifer (Figure 3.13) to estimate DL 
and xv . Table 3.1 shows the estimated and experimental values for DL and K (calculated 
from equation (3.7.6)) at different depths of the aquifer from the top surface. 
 

Depth 
(m) 

Hydraulic conductivity, K (m/day) Longitudinal hydrodynamic 
dispersion, DL (m2/day) 

Estimated Experimental Estimated Experimental 

0.4 203.2 137 0.167 0.1596 

1.0 210.6 137 0.143 0.1596 

1.6 208.9 137 0.134 0.1596 

2.2 262.3 137 0.242 0.1596 

Table 3.1. Estimated and experimental parameters hydraulic conductivity, K (m/day) and 
longitudinal hydrodynamic dispersion, DL (m2/day). 

The results show the accuracy of DL estimates is better than that of K. We estimate the vx by 

using equation (3.7.6) for and for simplicity, we assume that the hydraulic gradient, dh
dl

  

and the effective porosity, en  to be constants, or in other words, their spatial distributions 
are homogeneous. However, distribution of these values in the aquifer may be slightly 
heterogeneous. This assumption may have influenced the accuracy of less precise K 
estimates. However, the DL values are estimated directly and not affected by such 
assumptions, and the maximum likelihood estimates are closer to the experimental. 

Another possible phenomenon that can be present in solute transport is adsorption and the 
occurrence of short circuits which are, assumed to be included in the random component, 

( , )x t , of the governing equation, equation (3.7.1). However, we assumed that in the 
experiments the tracer is mixed in the upstream header tank, hence, adsorption in the 
aquifer could be neglected. 

As mentioned earlier, in the process of calibration to obtain parameters, it is assumed that 
the experimental aquifer is homogeneous. However, Figures 3.20, 3.21 and 3.22 show that 
the aquifer did not behave as expected (please refer to Figure 3.13 for notation). Figure 3.10 
shows that the concentration values at a well which is closer to the middle of the artificial 
aquifer (Row 5 – Well B). This well is approximately 3 m away from the header tank as 
shown in Figure 3.13. Other Figures, 3.21 and 3.22, show that the concentration profiles of 
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Suppose we have the observations of solute concentration, iC  at M independent space 
coordinates along the x-axis, where 1   i   M, at different time intervals, t (where 0   t 
  T , and T is an integer that represents the last reading taken at unit intervals on t-axis). In 
other words, we have M number of iC  observations for each time step. Hence, there are, 
altogether, ((T+1)M) iC  observations. We use these observations to estimate the parameter 

1  and 2 ,  

We substitute 0( , )ia C t , 1( , )ia C t , 2( , )ia C t ,  1  and 2  in equations (3.7.4) to obtain the 
following set of equations, 
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Therefore, DL and xv  values can be obtained by solving these two simultaneous equations.  

Once xv  is known, the hydraulic conductivity (K) can be obtained from, 

 
x

e

K dhv
n dl
   
 

 = average linear velocity, m/day,            (3.7.6) 

 

C  = solute concentration, mg/l, 

K  = hydraulic conductivity, m/day, 

dh
dl

 = hydraulic gradient, m/m, and 

en  = effective porosity. 

We have used the experimental data from the artificial aquifer (Figure 3.13) to estimate DL 
and xv . Table 3.1 shows the estimated and experimental values for DL and K (calculated 
from equation (3.7.6)) at different depths of the aquifer from the top surface. 
 

Depth 
(m) 

Hydraulic conductivity, K (m/day) Longitudinal hydrodynamic 
dispersion, DL (m2/day) 

Estimated Experimental Estimated Experimental 

0.4 203.2 137 0.167 0.1596 

1.0 210.6 137 0.143 0.1596 

1.6 208.9 137 0.134 0.1596 

2.2 262.3 137 0.242 0.1596 

Table 3.1. Estimated and experimental parameters hydraulic conductivity, K (m/day) and 
longitudinal hydrodynamic dispersion, DL (m2/day). 

The results show the accuracy of DL estimates is better than that of K. We estimate the vx by 

using equation (3.7.6) for and for simplicity, we assume that the hydraulic gradient, dh
dl

  

and the effective porosity, en  to be constants, or in other words, their spatial distributions 
are homogeneous. However, distribution of these values in the aquifer may be slightly 
heterogeneous. This assumption may have influenced the accuracy of less precise K 
estimates. However, the DL values are estimated directly and not affected by such 
assumptions, and the maximum likelihood estimates are closer to the experimental. 

Another possible phenomenon that can be present in solute transport is adsorption and the 
occurrence of short circuits which are, assumed to be included in the random component, 

( , )x t , of the governing equation, equation (3.7.1). However, we assumed that in the 
experiments the tracer is mixed in the upstream header tank, hence, adsorption in the 
aquifer could be neglected. 

As mentioned earlier, in the process of calibration to obtain parameters, it is assumed that 
the experimental aquifer is homogeneous. However, Figures 3.20, 3.21 and 3.22 show that 
the aquifer did not behave as expected (please refer to Figure 3.13 for notation). Figure 3.10 
shows that the concentration values at a well which is closer to the middle of the artificial 
aquifer (Row 5 – Well B). This well is approximately 3 m away from the header tank as 
shown in Figure 3.13. Other Figures, 3.21 and 3.22, show that the concentration profiles of 
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wells at Well B at Row 3 and Well A at Row 7, respectively. These figures demonstrate that 
the concentration values are not the same at all the depths and, hence, the behaviour of the 
aquifer is not similar throughout. The plots of other wells also exhibit heterogeneous 
behaviour. Therefore, we can state that the aquifer is not behaving homogeneously, 
meaning that the aquifer parameters, such as hydraulic gradient and effective porosity are 
not uniformly distributed throughout the system. The variables used to calibrate the aquifer 
parameters are subjected to randomness and the accuracy of the results could be affected, 
considerably.  

 
Figure 3.20. Concentration profiles at Row 5 – Well B. 

 
Figure 3.21. Concentrations profiles at Row 3 – Well B. 

 

The reason that the artificial aquifer does not behave homogeneously may be due to the 
method of construction. The aquifer was constructed using sand blocks that were laid layer 
by layer. We assume that even though material used in the aquifer is uniform, joints in the 
blocks can create diverse flow patterns and different flow lengths. Besides, due to the high 
pressure on the bottom layers (from the top layers), they may be more compacted and, 
therefore, behave differently. 

 
Figure 3.22. Concentrations profiles at Row 7 – Well A. 

We can extend the parameter estimation procedure to determine parameters of a two-
dimensional groundwater problem. In the two-dimensional case, an advancing solute front 
will also tend to spread in the directions normal to the direction of flow because at the pore 
scale the flow paths can diverge. This results in mixing in the directions normal to the flow 
path, which is called transverse dispersion. Considering the transverse dispersion, the two-
dimensional advection-dispersion equation can be written as (Fetter, 1999), 

2 2

2 2L T x
C C CC D D dt v dt

x y x
                        

,                 (3.7.7) 

where  C = solute concentration (mg/l), 

 t = time (day), 

        DL = hydrodynamic dispersion coefficient parallel to the principal direction of  
            flow (longitudinal) (m2/day), 

  DT = hydrodynamic dispersion coefficient perpendicular to the principal direction  

            of flow (transverse) (m2/day), and 

 vx = average linear velocity (m/day). 
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The randomness of heterogeneous groundwater systems can be accounted for by adding a 
noise component to equation (3.7.7), and it can be given by 

2 2

2 2 ( , )L T x
C C CC D D dt v dt x t dt

x y x


                         
,             (3.7.8) 

where ( , )x t  is assumed to be a zero-mean stochastic process. 

We multiply equation (3.6.8) by dt throughout and replace ( , )x t dt  by 2 ( )dB t  
(Jazwinski, 1970), where 2  is the amplitude of the Wiener increments, ( )dB t , to obtain 
equation (3.7.9). We can now obtain the stochastic partial differential equation as follows, 

2 2
2

2 2 ( )L T x
C C CC D D dt v dt dB t

x y x


                         
.              (3.7.9) 

As we described in equation (3.7.6) average linear velocity can be expressed by 

x
e

K dhv
n dl
   
 

, 

Hence, equation (3.7.9) becomes, 

2 2
2

2 2 ( )L T
e

C C K dh CC D D dt dt dB t
x y n dl x


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.           (3.7.10) 

We assume that transverse dispersion ( TD ) can be approximated to 10% of the longitudinal 
dispersion LD  , i.e., TD  = 0.1 LD  (Felter,1999). 

Then equation (3.7.10) becomes, 

2 2
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2 20.1 ( )L
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C C K dh CC D dt dt dB t
x y n dl x


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.           (3.7.11)             

Equation (3.7.11) can be written in the following form: 

0 1 1 2 2( , , ) ( , ) ( , ) ( , ),f t C a C t a C t a C t      
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1 ;LD    2 x
e
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 

. 

 

We use the observations for C(x, y, t) at M discrete points in (x, y) coordinate space for a 
period of time t (where 0 )t T  . Then we obtain the estimates for two unknown 
parameters as the solution to the following simultaneous equations: 

We can simplify equation (3.7.11) to 
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We can rewrite equations (3.7.12) as 
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                        (3.7.13) 
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The randomness of heterogeneous groundwater systems can be accounted for by adding a 
noise component to equation (3.7.7), and it can be given by 

2 2
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x y x
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where ( , )x t  is assumed to be a zero-mean stochastic process. 

We multiply equation (3.6.8) by dt throughout and replace ( , )x t dt  by 2 ( )dB t  
(Jazwinski, 1970), where 2  is the amplitude of the Wiener increments, ( )dB t , to obtain 
equation (3.7.9). We can now obtain the stochastic partial differential equation as follows, 
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As we described in equation (3.7.6) average linear velocity can be expressed by 
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Hence, equation (3.7.9) becomes, 

2 2
2

2 2 ( )L T
e

C C K dh CC D D dt dt dB t
x y n dl x


                            

.           (3.7.10) 

We assume that transverse dispersion ( TD ) can be approximated to 10% of the longitudinal 
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We use the observations for C(x, y, t) at M discrete points in (x, y) coordinate space for a 
period of time t (where 0 )t T  . Then we obtain the estimates for two unknown 
parameters as the solution to the following simultaneous equations: 
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values of k1, l1, m1, k2, l2, and m2. Furthermore, by substituting average values for the 

hydraulic gradient, dh
dl

 
 
 

, and the effective porosity, ne , two simultaneous equations 

(3.7.13) can be solved to obtain DL and K, for a two-dimensional groundwater system. 

We estimate the parameters of the artificial aquifer at Lincoln University using the 
procedure developed. The observations of solute concentration are obtained at 1 m grid 
intervals at four different levels (0.4, 1.0, 1.6, and 2.2 m from the surface of the aquifer). 
Hence, we rearrange the dataset to be four two-dimensional datasets for each level.  

Table 3.2 shows the estimated parameters for the two-dimensional aquifer and the estimates 
have come closer to the experimental values. However, as the experimental values may not 
represent the real values within the aquifer, further computational experiments by changing 
the lateral dispersion would not improve the estimates. 
 

Depth 
(m) 

Hydraulic conductivity, K 
(m/day) 

Longitudinal hydrodynamic dispersion, 
DL (m2/day) 

Estimated Experimental Estimated Experimental 

0.4 198.2 137 0.165 0.1596 

1.0 166.7 137 0.162 0.1596 

1.6 171.5 137 0.143 0.1596 

2.2 231.1 137 0.197 0.1596 

Table 3.2. Estimated and experimental parameters, hydraulic conductivity, K (m/day), and 
longitudinal hydrodynamic dispersion, DL (m2/day), for the aquifer. 
 

3.8 Parameter Estimation using ANN 
In estimating parameters with ANN, first we employ a deterministic 2-D advection-
dispersion transport numerical model to generate synthetic data. Afterwards, ANN are 
trained to learn the complex excitation and response relationship of the generated data. This 
is done by training the network sufficiently to minimise the error between the actual and 
network response while retaining the generalising capabilities of the network. We then 
estimate the associated parameters using noisy concentration data that represent real world 
aquifer systems. We also test the ability of the model to estimate hydraulic conductivity of 
an artificial experimental aquifer.  

The two-dimensional deterministic advection–dispersion equation (Fetter, 1999), is used as 
the governing equation for this section. It is important to mention that other possible 
phenomenon that can be present in the solute transport, such as adsorption and the 
occurrence of short circuits, are neglected in the governing equation on the assumption that 
the introduction of noise into the solute concentration values used to estimate the 
parameters would compensate for them. 

 

The deterministic solute concentration values are generated for a 10 m x 5 m 2-D aquifer 
using equation (3.6.7). Eight hundred data examples (patterns) are generated for different 
hydraulic conductivity, K, values that ranged from 40 to 240 m/day. It is assumed that all 
other parameters, control variables and subsidiary conditions are fixed. An initial 
concentration value of 100 ppm is considered as a point source at the middle of the header 
boundary of the aquifer and the same source is maintained at the boundary throughout the 
10 day period considered. Exponentially distributed concentration values of the point source 
(at the middle of the header boundary) are considered along with the longitudinal and 
lateral directions as the initial conditions for the other spatial coordinates. We gather 50 
input values for each example. These input values represent solute concentration values at 
10 spatial locations (Figure 6.1) at five different time intervals; t = 1, t = 3, t = 5, t = 7, t = 10 
day. We examine the possibility of amalgamating the time as an independent variable into 
the concentration input data. However, it is difficult to meaningfully integrate them into 
presently available ANN architectures and innovative model structures need to be 
developed. 
 

 
Figure 3.23. Spatial coordinates of concentration observations of the 2-D aquifer. 

It is noted, in many studies, that determination of an appropriate network architecture is 
one of the most important but also one of the most difficult tasks in the model building 
process (Maier and Dandy, 2000). The network architecture determines the number of 
connection weights (free parameters) and the way information flows through the network. It 
is common practice to fix the number of hidden layers in the network and then to choose the 
number of nodes in each of these layers. Initially, it may be worthwhile to consider a 
network with simple properties. Such networks have higher processing speeds and can be 
implemented on hardware more economically (Towell et al., 1991; Bebis and Georgiopoulos, 
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1994; Castellano et al., 1997). Cybenko (1989) showed that only one hidden layer was 
required to approximate any continuous function, given that sufficient degrees of freedom 
(i.e. connection weights) are provided. However, in practice many functions are difficult to 
approximate with one hidden layer, requiring a prohibitive number of hidden layer nodes 
(Flood and Kartam, 1994). The use of more than one hidden layer provides greater flexibility 
and enables the approximation of complex functions with fewer connection weights in 
many situations (Sarle, 1994). 

Despite numerous studies, no systematic approach has been developed for the selection of 
an optimal network architecture and its geometry. Hence, we employ a trial and error 
exercise to determine the network architecture (number of hidden layers and number of 
nodes for each layer). Initially, a simple three layer MLP network (only one hidden layer) is 
used to train the network to build the complex relationship of output, K, and the associated 
concentration values. Hecht-Nielsen (1987) suggested that an optimum number of hidden 
nodes for a single hidden layer network can be selected from following relationship, 
Number if hidden nodes = 2 ( Number of input nodes ) + 1. 

This suggests we should have 101 hidden nodes for 50 inputs. Nevertheless, after a number 
of trial and error tests, it was found that the optimum results can be achieved by 20 hidden 
neurons. As reported elsewhere, Abrahart et al. (1999) presented a method based on genetic 
algorithms to identify the best number of suitable hidden nodes. Chakilam (1998) used 
principal component analysis to determine the optimal structure of the multi-layered feed 
forward neural network for a time series forecasting problems, thus reducing the 
generalisation error and overcoming the over fitting problems. 

The dataset is divided into two categories with a random selection of 80% used for training 
and the rest for testing. The maximum and minimum values of the training network are set by 
selecting the values from both training (and testing) and estimating dataset, to prevent the 
ANN from extrapolating beyond its range. We apply scale functions of none, logistic and 
logistic for input, hidden and output layers, respectively. The default network parameters of 
NeuroShell2 (neural computing software package) are used; learning rate = 0.1, momentum = 
0.1, initial weight = 0.3. The network reached the stopping criterion of average error on test set, 
fixed at 0.000002, in less than two minutes in a 1GHz personal computer with performance 
measurements of the coefficient of multiple determination, R2 = 0.9999 and the square of the 
correlation coefficient, r2 = 0.9999. The network that produces the best results on the test set is 
the one most capable of generalising, so this is saved as the best network.  

Having completed the successful training, another dataset is employed to test the 
performance of the trained network. We make use of the same model to generate 800 new 
data values, however, the initial concentration is randomly changed by up to 5%, and up to 
5% noise is arbitrarily added to all concentration input values. The reason for adding the 
noise is to simulate the real world problem of erratic behaviour of aquifers. The estimation 
error of each K value is given in Figure 3.4.4, which shows that the error increases with K.  

Table 3.3 illustrates that the statistical measurements of error with mean square error (MSE) of 
45.25, an average absolute percentage error (AAPE) of 5.63%, and a maximum error of 22.45 
m/day. Such high error values may not be acceptable in the most practical cases. Since the 
objective range of parameters is fairly large (40 –240 m/day), the accuracy of the approximation 
tends to decrease (Figure 3.24). Therefore, we conduct the same estimation procedure with four 

 

smaller permissible parameter regimes of K; (i) 40-90, (ii) 90-140, (iii) 140-190, and (iv) 190-240 
m/day. Table 3.3 shows that accuracy of the estimates has improved considerably. 
 

 
Figure 3.24. Absolute error of estimated parameter, K, when considering the whole range, 
40–240 m/day. 

The maximum error in the 190-240 range has been reduced by about 90% (Figure 3.25 and 
Table 3.3). Therefore, it is reasonable to assume that if we can gather prior information about 
the system under consideration, it is possible to obtain more accurate estimates. However, in 
the real world problems the prior knowledge of the system is limited. Later, we discuss a 
method to identify the range of parameters by using Self-Organising Maps (SOM). 
However, before using SOM, we explore the robustness of the ANN estimation models. 
 

 
Figure 3.25. Absolute Error of estimated parameter K, only for the range 190 – 240 m/day. 
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Error 
K Range (m/day) 

40-240 40–90 90–140 140–190 190-240 

Max 22.45 1.88 2.23 2.99 2.98 

Mean 8.03 0.27 0.38 0.36 0.39 

StDev 5.15 0.32 0.41 0.49 0.47 

MSE 45.25 0.11 0.14 0.20 0.19 

AAPE(%) 5.63 0.11 0.12 0.18 0.18 

Table 3.3. Statistics of estimated error for different ranges of K with up to a ±5% difference in 
initial value and up to a ±5% noise in observations. 
 

Initial condition Error of K (m/day) 

Point C value Noise Maximum Mean Stdev MSE AAPE  

50 -50% 9.72 3.48 1.68 12.66 0.95 

60 -40% 7.55 2.06 1.57 3.36 0.94 

70 -30% 6.18 2.01 1.42 3.01 0.92 

80 -20% 4.36 1.59 0.97 2.58 0.77 

90 -10% 2.84 0.97 0.72 1.46 0.43 

Trained value 
(100) 

0% 1.64 0.34 0.44 0.17 0.17 

110 +10% 2.92 1.04 0.86 1.46 0.44 

120 +20% 4.57 1.68 1.05 2.95 0.84 

130 +30% 6.49 2.11 1.48 3.26 1.06 

140 +40% 7.58 2.08 1.57 3.47 1.07 

150 +50% 10.14 3.67 1.73 13.81 1.07 

Table 3.4. Statistics of estimated error for different initial values with up to a ±5% error for 
the K range, 190-240. 

As discussed in chapter 1, real world aquifer systems are subject to numerous random 
effects. One of them may be an initial value problem. First, we investigate in the range of K 
between 190 – 240 m/day for the stability of the model for different initial values. The point 
source value of the initial concentration are changed from –50% to 50%. Since, as explained 
above, an exponentially distributed pattern was used to determine the initial concentration 
values of other spatial points, change of initial value at the point source also resulted in 
changing the initial values of every spatial location. Furthermore, to illustrate the 
heterogeneity of the aquifers, up to 5% extra noise is added to the generated concentration 

 

values of all time intervals. Table 3.4 shows the statistics of the estimates. The estimates 
exhibit a direct relationship to the noise; however, the most of the results are dependable 
even at higher noise levels.  

Random boundary conditions and an irregular porous structure can result in an erratic 
distribution of flow paths. Therefore, solute concentration spreads could be highly 
stochastic. We address this issue by extending the investigation of the robustness by adding 
different level of randomness to the concentration values. First, the data is generated using 
the deterministic solutions of equation (3.6.7) for each case and then noise is added 
randomly to each deterministic concentration value to generate a noisy dataset. For 
example, to generate up to a ±10% noise component to a deterministic value, d, two random 
functions are used as follows, 

random function 1  generate a random number between 0-1 (say n) 

random function 2  generate either + or -.  

Therefore, noisy data = d (1 ± 10%  n). 

Table 3.5 demonstrates the statistics of the estimates obtained for noisy concentration data. 
Estimates show that the ANN model is stable even for highly stochastic systems. 
 

 % 

added noise 

Error of Estimate K (m/day) 

Max Mean StDev MSE AAPE 

10 2.29 0.85 1.10 1.98 0.68 

20 3.54 1.05 1.19 2.04 0.76 

30 5.46 1.74 1.22 2.25 0.81 

40 5.88 1.96 1.35 2.31 0.92 

50 6.00 1.99 1.39 2.39 0.93 

Table 3.5. Statistics of estimates for noisy data for the K range, 190-240 m/day. 

The ANN model gives more accurate estimates when the target parameter range is small. 
However, in real world heterogeneous aquifers, it may not be a trivial task to identify the 
accurate parameter range without reliable prior information. Self Organising Maps (SOM ) 
has the ability to sort items into categories of similar objects by nonlinearly projecting the 
data onto a lower dimensional display and by clustering the data (Kohonen, 1990). We use 
this power of SOM and develop a method to identify the parameter range for given solute 
concentration values. We employ SOM to cluster an 800 x 50 dimension noisy dataset used 
before with a parameter range of 40 –240 m/day into four different categories. The 
“Supervised Kohonen” network architecture of NeroShell2 successfully categorised four 
different groups with 201, 200, 197 and 202 data patterns in each cluster, respectively. The 
SOM put data into categories with a high accuracy, with few exceptions which can be 
expected with noisy data, at the boundaries of the parameter ranges. To test the accuracy of 
the prediction capability of the trained model, we then create and feed 12 different test 
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before with a parameter range of 40 –240 m/day into four different categories. The 
“Supervised Kohonen” network architecture of NeroShell2 successfully categorised four 
different groups with 201, 200, 197 and 202 data patterns in each cluster, respectively. The 
SOM put data into categories with a high accuracy, with few exceptions which can be 
expected with noisy data, at the boundaries of the parameter ranges. To test the accuracy of 
the prediction capability of the trained model, we then create and feed 12 different test 
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datasets with the same number of input variables (50) into the trained SOM and it accurately 
identified the correct parameter range for all the datasets. 

We extend the hybrid methodology to solve the groundwater inverse problem in the case of 
two unknown system parameters. We simulate the same aquifer as used above. The two 
parameters to be estimated are hydraulic conductivity, K (m/day) and longitudinal 
dispersion coefficient, DL (m2/day). In line with earlier work, we fed 50 concentration values 
and two actual outputs (K and DL) to train the network. 

We use a simple three layer network and produce R2 = 0.9999 and r2 = 0.9999 for both 
outputs in 2 min and 50 sec. We then feed a different dataset, which has not been seen by the 
trained network before. The new dataset consisted of randomly varying (up to 5%) initial 
conditions and added noise to replicate a natural system. We explore two different levels of 
noise; up to 5% and 50%. The parameter ranges are; K between 190 – 240 m/day, DL 
between 0.03 – 0.08 m2/day. The ANN model produces reasonable estimates for both 
parameters and the summary of estimates is given in Table 3.6. 
 

Parameter Actual Range  % noise 
Error of Estimate 

Max Mean MSE AAPE 

K 190-240 
5 2.48 0.99 2.65 0.81 

50 6.78 2.35 3.18 1.12 

DL 0.03-0.08 
5 0.00341 0.00092 0.0014 0.0005 

50 0.00875 0.00247 0.0029 0.0010 

Table 3.6. Statistics of estimates for two parameter case 

We apply the hybrid ANN inverse approach presented in the above sections to estimate 
parameters of the artificial aquifer at Lincoln University. Although, initial conditions, other 
parameters and the subsidiary conditions of the aquifer are somewhat known, we have to 
conduct a fairly tiresome, “trial and error” exercise to replicate the aquifer. Eight hundred 
data patterns are generated for the hydraulic conductivity range of 80 to 280 m/day. Each 
pattern consists of 100 concentration input variables for 10 distinct spatial locations for 10 
different time intervals. We then use Kohonen’s SOM (80% data for training and 20% for 
testing) to classify the input values into four clusters. Next we feed the actual aquifer data 
into the trained network and the selected subrange; it is established that the aquifer 
parameter should be within the second cluster (130 – 180 m/day). Based on this 
information, we generate a separate dataset for the specified range and train an MLP 
network with the associated K values. 

The estimate of K given by the trained ANN is 152.86 m/day. The experimental value of 
hydraulic conductivity, K, is found to be 137 m/day, which is calculated by calibration tests 
conducted by aquifer testing staff. In these experiments they have assumed that the aquifer 
is homogeneous. The difference between two estimates is only 10.37 %. Considering the 
assumptions of homogeneity made by the aquifer researchers and other possible human 

 

errors, it is fair to state that the estimate obtained from the ANN model is reasonable and 
acceptable. 

Our investigation emphasise that the importance of modelling a sufficiently true 
representation of the physical system and subsidiary conditions to obtain accurate 
parameter values. As Minns et al. (1996) pointed out, the ANN is susceptible to becoming “a 
prisoner of its training data”. Therefore, prior information, such as type of contaminant 
source, boundary conditions and subsidiary conditions is crucial to modelling the system 
accurately. If we could gain such prior information and model the system with ANN, it 
would be capable of solving the inverse problem with greater accuracy, even with highly 
noisy data, as well as different system input values. 
 

3.9 Parameter Estimation of SSTM 
In this section, we apply the ANN hybrid approach presented in the previous section to 
estimate parameters of the Stochastic Solute Transport Model (SSTM) developed in this 
chapter. Since SSTM consists of two parameters ; variance ( σ2 ) and correlation length (b), 
we estimate both parameters simultaneously. 

In section 3.8 we showed that the accuracy of the estimates was inversely proportional to the 
size of the objective range of the output (maximum error of the estimate of parameter K was 
reduced by about 90% for smaller output ranges). In addition, the accuracy of the estimates 
may reduce when two parameters are estimated simultaneously. To limit the diminution of 
accuracy of the results imposed by the above mentioned performance characteristics of the 
method and, as this research is conducted in a general personal computer, we select a 
smaller permissible output ranges. Additionally, it has shown that the higher parameter 
values of SSTM (especially σ2  around 0.25) represent greater heterogeneous flow systems. 
Thus, we limit the parameter range for both parameters, σ2  and b, to be between 0.0001 
and 0.2.  

The main objective of this section is to estimate parameters of SSTM using a hybrid ANN 
approach developed in the above section. We then extend the exercise using a case study to 
validate the method. As used in the previous section, the results from the artificial aquifer is 
used for the validation. However, we intend to achieve an auxiliary objective in the 
validation process by comparing the artificial aquifer parameters with the estimates 
obtained for the same aquifer using a curve fitting technique.

As the first step of the implementation process, we use SSTM to simulate a one-dimensional 
aquifer of 10 m in length. Eight hundred data patterns for different combinations of σ2  and 
b are generated. Each parameter ranges from 0.0001 and 0.2. Every data pattern consists of 
200 inputs for 10 various spatial locations of the aquifer for 20 distinct time intervals. The 
same standard Wiener process is used for generating all data sets. The initial condition of 
the concentration value of unit 1.0 at x = 0.0 and exponentially distributed values for other 
spatial locations are considered. Throughout the simulation the same concentration (unit 
1.0) is maintained at the upper end boundary. It is assumed that the mean velocity of the 
solute is 0.5 m/day. As mentioned above, it is very important to limit the objective range of 
the parameters for smaller regimes to attain accurate approximations. Thus, Kohonen’s Self 
Organising Map (SOM) is employed to cluster the data set into four categories. 
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datasets with the same number of input variables (50) into the trained SOM and it accurately 
identified the correct parameter range for all the datasets. 

We extend the hybrid methodology to solve the groundwater inverse problem in the case of 
two unknown system parameters. We simulate the same aquifer as used above. The two 
parameters to be estimated are hydraulic conductivity, K (m/day) and longitudinal 
dispersion coefficient, DL (m2/day). In line with earlier work, we fed 50 concentration values 
and two actual outputs (K and DL) to train the network. 

We use a simple three layer network and produce R2 = 0.9999 and r2 = 0.9999 for both 
outputs in 2 min and 50 sec. We then feed a different dataset, which has not been seen by the 
trained network before. The new dataset consisted of randomly varying (up to 5%) initial 
conditions and added noise to replicate a natural system. We explore two different levels of 
noise; up to 5% and 50%. The parameter ranges are; K between 190 – 240 m/day, DL 
between 0.03 – 0.08 m2/day. The ANN model produces reasonable estimates for both 
parameters and the summary of estimates is given in Table 3.6. 
 

Parameter Actual Range  % noise 
Error of Estimate 

Max Mean MSE AAPE 

K 190-240 
5 2.48 0.99 2.65 0.81 

50 6.78 2.35 3.18 1.12 

DL 0.03-0.08 
5 0.00341 0.00092 0.0014 0.0005 

50 0.00875 0.00247 0.0029 0.0010 

Table 3.6. Statistics of estimates for two parameter case 

We apply the hybrid ANN inverse approach presented in the above sections to estimate 
parameters of the artificial aquifer at Lincoln University. Although, initial conditions, other 
parameters and the subsidiary conditions of the aquifer are somewhat known, we have to 
conduct a fairly tiresome, “trial and error” exercise to replicate the aquifer. Eight hundred 
data patterns are generated for the hydraulic conductivity range of 80 to 280 m/day. Each 
pattern consists of 100 concentration input variables for 10 distinct spatial locations for 10 
different time intervals. We then use Kohonen’s SOM (80% data for training and 20% for 
testing) to classify the input values into four clusters. Next we feed the actual aquifer data 
into the trained network and the selected subrange; it is established that the aquifer 
parameter should be within the second cluster (130 – 180 m/day). Based on this 
information, we generate a separate dataset for the specified range and train an MLP 
network with the associated K values. 

The estimate of K given by the trained ANN is 152.86 m/day. The experimental value of 
hydraulic conductivity, K, is found to be 137 m/day, which is calculated by calibration tests 
conducted by aquifer testing staff. In these experiments they have assumed that the aquifer 
is homogeneous. The difference between two estimates is only 10.37 %. Considering the 
assumptions of homogeneity made by the aquifer researchers and other possible human 

 

errors, it is fair to state that the estimate obtained from the ANN model is reasonable and 
acceptable. 

Our investigation emphasise that the importance of modelling a sufficiently true 
representation of the physical system and subsidiary conditions to obtain accurate 
parameter values. As Minns et al. (1996) pointed out, the ANN is susceptible to becoming “a 
prisoner of its training data”. Therefore, prior information, such as type of contaminant 
source, boundary conditions and subsidiary conditions is crucial to modelling the system 
accurately. If we could gain such prior information and model the system with ANN, it 
would be capable of solving the inverse problem with greater accuracy, even with highly 
noisy data, as well as different system input values. 
 

3.9 Parameter Estimation of SSTM 
In this section, we apply the ANN hybrid approach presented in the previous section to 
estimate parameters of the Stochastic Solute Transport Model (SSTM) developed in this 
chapter. Since SSTM consists of two parameters ; variance ( σ2 ) and correlation length (b), 
we estimate both parameters simultaneously. 

In section 3.8 we showed that the accuracy of the estimates was inversely proportional to the 
size of the objective range of the output (maximum error of the estimate of parameter K was 
reduced by about 90% for smaller output ranges). In addition, the accuracy of the estimates 
may reduce when two parameters are estimated simultaneously. To limit the diminution of 
accuracy of the results imposed by the above mentioned performance characteristics of the 
method and, as this research is conducted in a general personal computer, we select a 
smaller permissible output ranges. Additionally, it has shown that the higher parameter 
values of SSTM (especially σ2  around 0.25) represent greater heterogeneous flow systems. 
Thus, we limit the parameter range for both parameters, σ2  and b, to be between 0.0001 
and 0.2.  

The main objective of this section is to estimate parameters of SSTM using a hybrid ANN 
approach developed in the above section. We then extend the exercise using a case study to 
validate the method. As used in the previous section, the results from the artificial aquifer is 
used for the validation. However, we intend to achieve an auxiliary objective in the 
validation process by comparing the artificial aquifer parameters with the estimates 
obtained for the same aquifer using a curve fitting technique.

As the first step of the implementation process, we use SSTM to simulate a one-dimensional 
aquifer of 10 m in length. Eight hundred data patterns for different combinations of σ2  and 
b are generated. Each parameter ranges from 0.0001 and 0.2. Every data pattern consists of 
200 inputs for 10 various spatial locations of the aquifer for 20 distinct time intervals. The 
same standard Wiener process is used for generating all data sets. The initial condition of 
the concentration value of unit 1.0 at x = 0.0 and exponentially distributed values for other 
spatial locations are considered. Throughout the simulation the same concentration (unit 
1.0) is maintained at the upper end boundary. It is assumed that the mean velocity of the 
solute is 0.5 m/day. As mentioned above, it is very important to limit the objective range of 
the parameters for smaller regimes to attain accurate approximations. Thus, Kohonen’s Self 
Organising Map (SOM) is employed to cluster the data set into four categories. 
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Since the data set represents the stochastic behaviour of the flow, the time needed to classify 
the data into separate groups is much more than for the similar case, in the deterministic 
advection – dispersion data, in the previous section. Randomly selected 80% of data were 
used for training the network and the rest for the validation. Notwithstanding the random 
nature of the current dataset, the SOM has clustered the data to an adequate degree of 
accuracy that may be sufficient for the problem at hand. 

To test the performance of the trained network model, we use eight different data patterns. 
Two datasets are generated for each group of clustered network. Moreover, each dataset is 
produced using different standard Wiener process. New data patterns are fed into the 
trained model and it accurately identified the parameter range it fitted into.  

Having substantiated that the SOM could be successfully used to cluster large dataset that 
represent heterogeneous data, such as given by SSTM, we create four separate specialised 
network models for smaller parameter regimes of both parameters in the following ranges; 

0.0001 – 0.05;0.05 – 0.1;0.1 – 0.15; and 0.15 – 0.2. 

Each dataset comprises 441 data patterns of different combinations of σ2  and b at intervals 
of 0.0025. For instance, for the range of 0.05 – 0.1, there are 21 different values of each 
parameter; 0.05, 0.0525, 0.055, 0.0575, … , 0.1 (21 x 21 = 441 data patterns). Same SSTM 
model used above for SOM cluster distribution is also used for data generation. 
Nevertheless, in this case each data pattern contains not only 200 inputs but also two 
corresponding output parameters. The number of training patterns has considerable 
influence on the performance of the ANN model (Flood and Kartam, 1994). Increasing the 
number of data patterns provides more information about the shape of the solution surface 
and, thus, improves the accuracy of the model prediction. However, in most real world 
applications, numerous logistical issues impose limitations on the amount of data available 
and, consequently, the size of the training set. Hence, in developing a method for practical 
applications, it is important to test the robustness of the method for such data limitations. 
For that reason, we limit the parameter range of each model to 21 values (between 0.0001 
and 0.2 at intervals of 0.0025). 

Maier and Dandy (2000) showed that it was important to select a suitable network 
architecture and model validation method in the development of ANN models to achieve 
optimum results. In addition, it may be necessary to select the most suitable model for 
handling highly random data such as SSTM data. Therefore, we conduct a few trial and 
error exercises to choose the appropriate model structure, and training and testing 
procedure. The following are the MLP ANN models that are considered for different 
combinations of hidden layers and various grouping of activation functions: three layer 
standard connections; four layer standard connections; five layer standard connections; one 
hidden layer with two parallel slabs with different activation functions; one hidden layer 
with three hidden slabs with different activation functions; one hidden layer of two parallel 
slabs, different activation functions and jump connection; three layer jump connections; four 
layer jump connections; and five layer jump connections. 

After numerous attempts, it is found that the network model of five layer standard 
connections could produce the best trained model in the least time. In the selected model, 
each hidden layer consists of 30 neurons. Activation functions of linear <0, 1>, logistic, tanh, 

 

Gaussian and logistic are used for layers of input, hidden (3 layers) and output, respectively. 
The default network parameters (NeuroShell2) are employed; learning rate = 0.1, 
momentum = 0.1, initial weight = 0.3. The stopping criterion is set to a minimum error of 
0.000001. All four networks reach the stopping condition in about 30 minutes in a 1 GHz 
personal computer with the performance measurements shown in Table 3.7. 

After the completion of successful training for each model, separate datasets are generated 
to test the prediction capability of each model. The same SSTM is employed to produce 
another dataset of 441 data patterns for each parameter range. However, different standard 
Wiener process increments are used. In addition, initial and boundary conditions are 
adjusted up to ±5% by adding random values. Input data values of each dataset are then fed 
into the corresponding trained network and processed to obtain model predictions. 
 

Parameter 
range 

Coefficient of multiple 
determination, R2 

Square of the correlation 
coefficient, r2 

Mean absolute 
error 

σ2  b σ2  b σ2  b 

0.0001 – 0.05 0.9912 0.9876 0. 9911 0.9876 0.0 0.0 

0.05 – 0.1 0.9911 0.9876 0. 9899 0.9876 0.0 0.0 

0.1 – 0.15 0.9898 0.9870 0. 9872 0.9868 0.0 0.0 

0.15 – 0.2 0.9728 0.9774 0. 9721 0.9661 0.0001 0.0001 

Table 3.7. Performance measurements of trained ANN model for four different parameter 
ranges. 

Figure 3.26 illustrates the absolute error of estimated parameter σ2 , for the range of 0.0001 – 
0.05. It shows that the ANN model prediction is extremely satisfactory and that the average 
absolute error is approximately 0.04%. Figure 3.27 shows that prediction for the other 
parameter, b also met with similar accuracy for the same range. 

 

Figure 3.26. Absolute error of estimated parameter σ2 , for the range of 0.0001 – 0.05. 
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Since the data set represents the stochastic behaviour of the flow, the time needed to classify 
the data into separate groups is much more than for the similar case, in the deterministic 
advection – dispersion data, in the previous section. Randomly selected 80% of data were 
used for training the network and the rest for the validation. Notwithstanding the random 
nature of the current dataset, the SOM has clustered the data to an adequate degree of 
accuracy that may be sufficient for the problem at hand. 

To test the performance of the trained network model, we use eight different data patterns. 
Two datasets are generated for each group of clustered network. Moreover, each dataset is 
produced using different standard Wiener process. New data patterns are fed into the 
trained model and it accurately identified the parameter range it fitted into.  

Having substantiated that the SOM could be successfully used to cluster large dataset that 
represent heterogeneous data, such as given by SSTM, we create four separate specialised 
network models for smaller parameter regimes of both parameters in the following ranges; 

0.0001 – 0.05;0.05 – 0.1;0.1 – 0.15; and 0.15 – 0.2. 

Each dataset comprises 441 data patterns of different combinations of σ2  and b at intervals 
of 0.0025. For instance, for the range of 0.05 – 0.1, there are 21 different values of each 
parameter; 0.05, 0.0525, 0.055, 0.0575, … , 0.1 (21 x 21 = 441 data patterns). Same SSTM 
model used above for SOM cluster distribution is also used for data generation. 
Nevertheless, in this case each data pattern contains not only 200 inputs but also two 
corresponding output parameters. The number of training patterns has considerable 
influence on the performance of the ANN model (Flood and Kartam, 1994). Increasing the 
number of data patterns provides more information about the shape of the solution surface 
and, thus, improves the accuracy of the model prediction. However, in most real world 
applications, numerous logistical issues impose limitations on the amount of data available 
and, consequently, the size of the training set. Hence, in developing a method for practical 
applications, it is important to test the robustness of the method for such data limitations. 
For that reason, we limit the parameter range of each model to 21 values (between 0.0001 
and 0.2 at intervals of 0.0025). 

Maier and Dandy (2000) showed that it was important to select a suitable network 
architecture and model validation method in the development of ANN models to achieve 
optimum results. In addition, it may be necessary to select the most suitable model for 
handling highly random data such as SSTM data. Therefore, we conduct a few trial and 
error exercises to choose the appropriate model structure, and training and testing 
procedure. The following are the MLP ANN models that are considered for different 
combinations of hidden layers and various grouping of activation functions: three layer 
standard connections; four layer standard connections; five layer standard connections; one 
hidden layer with two parallel slabs with different activation functions; one hidden layer 
with three hidden slabs with different activation functions; one hidden layer of two parallel 
slabs, different activation functions and jump connection; three layer jump connections; four 
layer jump connections; and five layer jump connections. 

After numerous attempts, it is found that the network model of five layer standard 
connections could produce the best trained model in the least time. In the selected model, 
each hidden layer consists of 30 neurons. Activation functions of linear <0, 1>, logistic, tanh, 

 

Gaussian and logistic are used for layers of input, hidden (3 layers) and output, respectively. 
The default network parameters (NeuroShell2) are employed; learning rate = 0.1, 
momentum = 0.1, initial weight = 0.3. The stopping criterion is set to a minimum error of 
0.000001. All four networks reach the stopping condition in about 30 minutes in a 1 GHz 
personal computer with the performance measurements shown in Table 3.7. 

After the completion of successful training for each model, separate datasets are generated 
to test the prediction capability of each model. The same SSTM is employed to produce 
another dataset of 441 data patterns for each parameter range. However, different standard 
Wiener process increments are used. In addition, initial and boundary conditions are 
adjusted up to ±5% by adding random values. Input data values of each dataset are then fed 
into the corresponding trained network and processed to obtain model predictions. 
 

Parameter 
range 

Coefficient of multiple 
determination, R2 
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Table 3.7. Performance measurements of trained ANN model for four different parameter 
ranges. 

Figure 3.26 illustrates the absolute error of estimated parameter σ2 , for the range of 0.0001 – 
0.05. It shows that the ANN model prediction is extremely satisfactory and that the average 
absolute error is approximately 0.04%. Figure 3.27 shows that prediction for the other 
parameter, b also met with similar accuracy for the same range. 

 

Figure 3.26. Absolute error of estimated parameter σ2 , for the range of 0.0001 – 0.05. 
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A similar approach is also applied to other parameter ranges. The precision of the estimates 
given by ANN models shrinks with highly heterogeneous data. As larger values of 
parameters indicate excessive stochastic flows, we can expect the accuracy of the prediction 
to diminish for highly stochastic flows. Nonetheless, the average absolute error for the 
estimates for a range of 0.15 to 0.2 is approximately 5.5% (for example, Figure 3.28 illustrates 
the error of estimated parameter σ2  for parameter range of 0.15 to 0.2), which may be 
acceptable for the most of practical applications. 

The above prediction accuracy analyses of the ANN models are based on similar ranges for 
both parameters. However, in real world applications we may have to deal with extremely 
different values for two parameters. Therefore, the robustness of the ANN method for 
different values of parameter regimes for two parameters need to be assessed.  

 
Figure 3.27. Absolute error of estimated parameter b, for the range of 0.0001 – 0.05. 

 
Figure 3.28. Absolute error of estimated parameter σ2 , for the range of 0.15– 0.2. 

 

 

We generate two separate datasets for two extreme cases: 

where σ2  is smaller and b is higher - σ2  ranges of 0.0001 – 0.05 and b ranges of  0.15 – 
0.2; and where σ2  is higher and b is smaller - σ2  ranges of 0.15 – 0.2 and b ranges of  
0.0001 – 0.05. 

A similar method to that which was used for earlier investigations is employed to gauge the 
capability of the ANN model. Figures 3.29 and 3.30 reveal that the trained network has 
predicted the estimates with reasonable precision. In both cases the percentage average 
absolute error is approximately 4%. 
 

 

Figure 3.29. Absolute error of estimated parameter σ2 , for the σ2  range of 0.0001 – 0.05 
and b range of  0.15 – 0.2. 
 

 

Figure 3.30. Absolute error of estimated parameter b, for the σ2  range of 0.15 – 0.2 and b 
range of 0.0001 – 0.05. 

We use the artificial aquifer data to validate the developed hybrid ANN method. We make 
use of the same aquifer dataset in this section to estimate the parameters of SSTM for the 
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We use the artificial aquifer data to validate the developed hybrid ANN method. We make 
use of the same aquifer dataset in this section to estimate the parameters of SSTM for the 
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aquifer. Additionally, we use the same data to partially validate the stochastic model 
(SSTM) previously using a curve fitting technique to approximate the aquifer parameters. It 
was found that the approximate artificial aquifer parameters are variance, σ2  = 0.01 and 
correlation length, b = 0.01.  

In the present validation, first, we used the known conditions such as initial and boundary 
conditions, and hydraulic gradient to simulate the aquifer using the SSTM. The initial 
concentration at x = 0 is 1.0 unit and it is reduced exponentially with time. Initial values of 
other spatial points are considered as zero. 1681 data patterns are generated for different 
combinations of parameters, σ2  and b. Single standard Wiener process increments are 
retained for every simulation run. Both parameters varied between 0.0001 and 0.2.  

The 1681 generated data patterns are fed into Kohonen’s self-organising map architecture to 
cluster them into four different groups. After classifying them with reasonable accuracy the 
aquifer dataset is fed into the SOM model to identify relevant groups that the data resemble 
the most. In this case, we make an assumption that the effect of the transverse dispersion of 
the flow is reflected in the stochastic flow described by SSTM. As shown in Figure 3.13, the 
data have been collected along five wells at four levels (A to E wells at levels BR, BL, RE and 
YE). We consider the data collected along each well at a certain level as a one-dimensional 
flow path. Hence, we reproduce 20 different one-dimensional datasets. 

Concentration values of the aquifer are normalised to enable to weigh them against the 
normalised SSTM data. 

Initially, a dataset closer to the middle of the aquifer, well C – level RE is chosen for the 
estimation of parameters. An aquifer dataset has to be interpolated to produce missing data 
and fabricate uniform spatial and temporal grids. Having constructed an exact number of 
data for similar spatial and time intervals as for the original ANN model, the aquifer dataset 
is fed into the trained model. The selected dataset is then separated from the larger set and 
trained for the smaller range selected. Based on the findings described previously, a five 
layer standard connections is used with the same activation functions, initial weights, 
momentum and learning rates. 

After completing sufficient training, the artificial aquifer dataset is fed into the ANN model 
to estimate parameters. The estimates that are produced by the model are σ2  = 0.01364 and 
b = 0.01665. The estimates produced by the ANN model show close resemblance to the 
values given by the curve fitting technique. Since we avoid considering lateral dispersions 
for estimation by ANN model, the results may be subject to slight errors.  

We extend the estimation procedure to determine the parameters of the Lincoln University 
aquifer for other flow lines. Since the earlier dataset is closer to the middle of the aquifer, we 
choose the next dataset that is nearer to the boundary of the aquifer. Estimates obtained using 
well A – level YE are σ2  = 0.01483 and b = 0.00912. These estimates are similar to earlier values.  
 

3.10 Dispersivity Based on the SSTM 
To estimate the parameter of the SSTM, we develop a procedure consisting of the following 
steps: (1) we generate a large number of realizations of concentration (usually 100) for a 
particular set of values of σ2  and b using the SSTM; (2) estimate the diffusion coefficient 

 

(D) using the maximum likelihood estimation procedure for the 1-D advection-dispersion 
equation for a given velocity using each of the realization; and (3) take the mean of the 
estimates of D as the dispersivity for the given set of parameters 

We have demonstrated that the SSTM can be used to characterise an experimental 
homogeneous sand aquifer of  5 m width x 10 m length x 2.7 height using a single set of 
values of ( σ2  = 0.01 and b = 0.01) quite satisfactorily. It has also been shown that the 
numerical solutions of SSTM, in conjunction with the parameter estimation methods such as 
maximum likelihood method and artificial neural networks, can be used to estimate reliable 
effective dispersion coefficients, therefore, effective dispersivity, for different scale 
experiments up to 10 meters.  

We use this procedure, which we call stochastic inversive method (SIM) to estimate D for 
other combinations of 2  and b for different flow lengths. Table 3.8 exhibits the estimated 
dispersion coefficients (D) for the range of scales; 1, 10, 20, 30, 50 and 100 m.  

We need to remember that the SSTM is based on the velocity covariance kernel, 
1 2
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x x

be
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, 
and a different kernel would give different D values. In addition, SIM is not accurate for 
very noisy realizations because the theory of estimation is strictly valid when noise is small 
and Gaussian (Kutoyants, 1984). 
 

b σ2  
Estimated D 

1 m 10 m 20 m 30 m 50 m 100 m 

0.0001 0.0001 0.01634 0.03502 0.05804 0.07328 0.09447 0.12493 

0.0001 0.001 0.01942 0.03738 0.06126 0.07526 0.09930 0.13006 

0.0001 0.01 0.03844 0.05287 0.08469 0.10502 0.13591 0.18294 

0.0001 0.05 0.04758 0.07799 0.12986 0.16064 0.20645 0.27009 

0.0001 0.1 0.06786 0.08690 0.14214 0.17914 0.23342 0.31205 

0.0001 0.15 0.06968 0.09060 0.15044 0.18790 0.24022 0.31327 

0.0001 0.2 0.07047 0.09259 0.15717 0.20209 0.25756 0.33937 

0.0001 0.25 0.07188 0.09382 0.15905 0.19747 0.25542 0.33289 

0.0001 0.3 0.07258 0.09466 0.16131 0.19895 0.26026 0.34742 

0.001 0.0001 0.01917 0.03738 0.05519 0.07807 0.09628 0.12984 

0.001 0.001 0.03749 0.05289 0.08020 0.11085 0.13335 0.18273 

0.001 0.01 0.06739 0.08698 0.13530 0.18702 0.23005 0.31770 

0.001 0.05 0.07424 0.09650 0.15306 0.21656 0.26236 0.36391 

0.001 0.1 0.08492 0.09910 0.15522 0.21291 0.25431 0.35222 
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aquifer. Additionally, we use the same data to partially validate the stochastic model 
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and Gaussian (Kutoyants, 1984). 
 

b σ2  
Estimated D 

1 m 10 m 20 m 30 m 50 m 100 m 

0.0001 0.0001 0.01634 0.03502 0.05804 0.07328 0.09447 0.12493 

0.0001 0.001 0.01942 0.03738 0.06126 0.07526 0.09930 0.13006 

0.0001 0.01 0.03844 0.05287 0.08469 0.10502 0.13591 0.18294 

0.0001 0.05 0.04758 0.07799 0.12986 0.16064 0.20645 0.27009 

0.0001 0.1 0.06786 0.08690 0.14214 0.17914 0.23342 0.31205 

0.0001 0.15 0.06968 0.09060 0.15044 0.18790 0.24022 0.31327 

0.0001 0.2 0.07047 0.09259 0.15717 0.20209 0.25756 0.33937 

0.0001 0.25 0.07188 0.09382 0.15905 0.19747 0.25542 0.33289 

0.0001 0.3 0.07258 0.09466 0.16131 0.19895 0.26026 0.34742 

0.001 0.0001 0.01917 0.03738 0.05519 0.07807 0.09628 0.12984 
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0.001 0.15 0.08671 0.10782 0.17443 0.24632 0.29578 0.40749 

0.001 0.2 0.09482 0.11886 0.18858 0.26626 0.32559 0.44440 

0.001 0.25 0.10701 0.12933 0.20057 0.28264 0.33817 0.46265 

0.001 0.3 0.11008 0.13860 0.21898 0.30438 0.36830 0.50826 

0.01 0.0001 0.02541 0.05302 0.08035 0.11327 0.14376 0.20657 

0.01 0.001 0.05697 0.08773 0.13444 0.19613 0.24574 0.34753 

0.01 0.01 0.07906 0.10003 0.15332 0.22578 0.28589 0.40472 

0.01 0.05 0.09457 0.16952 0.26730 0.38284 0.48728 0.69328 

0.01 0.1 0.11483 0.21334 0.33450 0.48658 0.61670 0.87920 

0.01 0.15 0.13745 0.24065 0.37173 0.54195 0.67787 0.96664 

0.01 0.2 0.15574 0.25994 0.40478 0.58780 0.73802 1.05102 

0.01 0.25 0.18468 0.27120 0.41747 0.59966 0.75083 1.06491 

0.01 0.3 0.18994 0.27751 0.43013 0.62369 0.78586 1.11591 

0.05 0.0001 0.01874 0.07828 0.12467 0.17543 0.22998 0.34209 

0.05 0.001 0.03559 0.10128 0.16245 0.22834 0.29946 0.44681 

0.05 0.01 0.06957 0.15994 0.25211 0.34326 0.45352 0.68013 

0.05 0.05 0.07651 0.26271 0.41319 0.56701 0.75557 1.13054 

0.05 0.1 0.08450 0.29209 0.45872 0.63193 0.83988 1.26490 

0.05 0.15 0.08725 0.29659 0.47462 0.66040 0.88362 1.33137 

0.05 0.2 0.08987 0.29700 0.46840 0.64492 0.85205 1.27735 

0.05 0.25 0.09219 0.29480 0.46693 0.65051 0.87047 1.30991 

0.05 0.3 0.09294 0.29137 0.45748 0.63153 0.83935 1.26428 

0.1 0.0001 0.01797 0.08546 0.14242 0.19805 0.26901 0.42102 

0.1 0.001 0.02971 0.10536 0.16856 0.23555 0.31622 0.48560 

0.1 0.01 0.05925 0.17795 0.29101 0.41507 0.56815 0.88488 

0.1 0.05 0.06452 0.28179 0.45334 0.64813 0.87743 1.35846 

0.1 0.1 0.07232 0.29698 0.48594 0.68641 0.93357 1.45105 

0.1 0.15 0.07485 0.29776 0.47662 0.67992 0.91941 1.42114 

0.1 0.2 0.07587 0.29876 0.48105 0.68887 0.93379 1.44814 

0.1 0.25 0.07608 0.29928 0.48535 0.68808 0.93290 1.45029 

 

Table 3.8. Estimates of D obtained by using a stochastic inverse method for different 
combinations of parameters of SSTM for different flow lengths (velocity = 0.5 m/day). 

 

0.1 0.3 0.07678 0.29791 0.48068 0.67575 0.91363 1.41871 

0.15 0.0001 0.01731 0.08784 0.14149 0.20423 0.28678 0.45299 

0.15 0.001 0.02570 0.10921 0.18047 0.25898 0.35905 0.56336 

0.15 0.01 0.05454 0.16218 0.26117 0.37775 0.52802 0.82934 

0.15 0.05 0.06574 0.24498 0.40463 0.57946 0.81625 1.27853 

0.15 0.1 0.07627 0.24830 0.40532 0.58494 0.82098 1.28586 

0.15 0.15 0.07722 0.24896 0.40327 0.58331 0.82088 1.29136 

0.15 0.2 0.07785 0.25016 0.40435 0.58084 0.81027 1.27489 

0.15 0.25 0.07807 0.25278 0.41587 0.59926 0.83683 1.32106 

0.2 0.3 0.07527 0.27394 0.44577 0.65306 0.93236 1.47560 

0.25 0.0001 0.01694 0.08642 0.14037 0.20553 0.29769 0.47547 

0.25 0.001 0.02292 0.11779 0.19345 0.28363 0.41296 0.65983 

0.25 0.01 0.04829 0.13433 0.22093 0.32259 0.46790 0.74928 

0.25 0.05 0.06187 0.18828 0.30661 0.45919 0.67190 1.08123 

0.25 0.1 0.07470 0.23226 0.37711 0.55761 0.81495 1.30630 

0.25 0.15 0.07537 0.25020 0.41219 0.60827 0.88655 1.42797 

025 0.2 0.07559 0.26583 0.42875 0.63902 0.92617 1.48670 

0.25 0.25 0.07567 0.28102 0.46074 0.68281 0.99764 1.60438 

0.25 0.3 0.07593 0.29162 0.46948 0.69110 1.00010 1.61016 

0.3 0.0001 0.01785 0.08229 0.13906 0.21167 0.31537 0.51395 

0.3 0.001 0.02169 0.11016 0.18535 0.28209 0.42416 0.69259 

0.3 0.01 0.04787 0.14860 0.25288 0.38448 0.58112 0.95251 

0.3 0.05 0.06316 0.22140 0.38149 0.57637 0.87271 1.42535 

0.3 0.1 0.07527 0.25171 0.42778 0.64452 0.97782 1.58726 

0.3 0.15 0.07728 0.27513 0.47773 0.73238 1.10681 1.80695 

0.3 0.2 0.07799 0.28755 0.49003 0.73771 1.11325 1.81448 

0.3 0.25 0.07824 0.29803 0.50666 0.77144 1.17052 1.91032 

0.3 0.3 0.07911 0.30699 0.53747 0.80802 1.22297 1.98500 
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We can summarise some of the estimates in the plots in Figures 3.31, 3.32 and 3.33 as functions 
of the scales of the experiments. What these plots show is that, for a given set of parameters, 
the SSTM would give the estimates of dispersivity increasing with the flow length. 

As discussed in chapter 1, Pickens and Grisak (1981), and Lallemand-Barres and Peaudecerf 
(1978, cited in Fetter, 1999) showed that the scale dependency of L  has a linear 
relationship of L = 0.1 L, where L is the mean travel distance. However, Pickens and 
Grisak (1981) recognised that the linear increase of dispersivity with the mean travel 
distance was unlikely for large travel distances. It was expected that tracer migration 
between aquifer layers could cause a reduction in the magnitude of the proportionality 
constants, since the transverse migration would tend to reduce the spreading effect caused 
by the stratification. Field measurements obtained by Gelhar (1986) illustrate that the scale 
dependence relationship between L and the flow length is non-linear (Figure 3.34). 

To evaluate the comparative estimates of D obtained from the inverse method for the SSTM 
parameters and the field measurements observed by Gelhar (1986), we plot them on the 
same graph (Figure 3.35 – 3.37). Only reliable observations of Figure 3.34 (indicated by 
larger symbols) are considered. Since the parameter estimated from the inverse approach is 
D, L  values of Figure 3.34 are converted to D ( LD v ). Furthermore, we plot the 
relationship of L = 0.1 L in the same graph to assess our estimates. Three different ranges 
of b are chosen. Figure 3.35 shows the estimates for smaller b, 0.0001 m, for four values of 
σ2  (0.0001, 0.05, 0.2 and 0.3). Figures 3.36 and 3.37 illustrate the similar σ2  values for a 
mid range value b, 0.01 m, and larger b, 0.3, respectively.  

 
Figure 3.31. D for the parameter combination of b = 0.0001 and 2  = 0.0001. 

 
Figure 3.32 D for the parameter combination of b = 0.001 and 2  = 0.0001. 

 

 
Figure 3.33. D for the combination of b = 0.3 and σ2  = 0.0001. 
 

 
Figure 3.34. Field measured values of longitudinal dispersivity as a function of the scale of 
measurement. The largest circles represent the most reliable data. The estimated dispersivity 
from the SSTM are given by the squares. (Source: Gelhar (1986).) 

Figures 3.35 – 3.37 demonstrate that corresponding D values obtained for SSTM parameters 
do not agree with the relationship of L = 0.1 L. However, for mid and larger ranges of b, 
estimated D s are in reasonable agreement with the most of the reliable field measurements 
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Figure 3.32 D for the parameter combination of b = 0.001 and 2  = 0.0001. 

 

 
Figure 3.33. D for the combination of b = 0.3 and σ2  = 0.0001. 
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measurement. The largest circles represent the most reliable data. The estimated dispersivity 
from the SSTM are given by the squares. (Source: Gelhar (1986).) 

Figures 3.35 – 3.37 demonstrate that corresponding D values obtained for SSTM parameters 
do not agree with the relationship of L = 0.1 L. However, for mid and larger ranges of b, 
estimated D s are in reasonable agreement with the most of the reliable field measurements 
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Figure 3.35. Estimated D values for b = 0.0001 m for range of σ2  (0.0001 – 0.3), D= 0.1 L v, 
and reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.36. Estimated D values for b = 0.01 m for range of σ2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 
Figure 3.37 Estimated D values for b = 0.1 m for range of 2  (0.0001 – 0.3), D= 0.1Lv, and 
reliable field measurements observed by Gelhar (1986) for different flow lengths. 

 

observed by Gelhar (1986). Data in Figure 3.35 represent a solute transport system with very 
low stochasticity, which may not be realistic in real world aquifers. Figures 3.38 and 3.39  

may be a better representation of an actual aquifer. Note that the L values of Figure 3.36 
were obtained from many sites around the world. The estimated data that agrees with field 
measurements may be obtained from a variety of soil and heterogeneity. 

To simplify the computational burden, we make use of the fact that the expected value of  
mean ( )d t  is zero and the variance is given by equation (3.4.5). Instead of calculating  

( )d t  for each x within a, we take the mean of [ ]Var d  over the length a, 
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To illustrate this approximation, the number of eigenvalues required for each a (M) is 
determined by calculating a number of roots that are sufficient for the Mth eigenvalue to 
reach a value , where  was set to be 5% of the value of the first eigenvalue. The 
relationship between a and the number of roots required is approximately 150 * a, for a = 1 
to 10 000 metres. For example, when 2 =1.0 and b=0.01, M = 
{150,750,1500,7500,15000,75000,150000,300000,450000}, then for a = 

{1,5,10,50,100,500,1000,2000,3000}. 
1

M

i
i



 = {0.8762, 4.2920, 8.5443, 42.5518, 85, 04312, 

425.0663, 850.1131, 1710.6345, and 2684.8313}. This shows the extent of the computational 
problem without the approximation for ( )d t . We have computed ( [ ( ( ))]E Var d t / t  ) 
using equation (3.10.1) for different values of a with b=0.01, t =0.001,  0.01x   , 

2 =1.0, and 150* a number of eigen values. For each a , the computation was done using a 
set of routines written in the Python™ language with the Numeric extension for fast array 
operations. Computing ( [ ( ( ))]E Var d t / t  ) for larger values of a is a computationally 
expensive operation with the computing times increasing exponentially with a. As an 
example, for a = 1000 meters, it takes approximately 200 minutes, with a = 2000 taking 
approximately 760 minutes on a 1.8 GHZ computer. For a 
={1,5,10,50,100,500,1000,2000,3000}, the corresponding values for [ ( ( ))]E Var d t / t  are 
{0.8653, 0.8647,0.8630,0.8615,0.8611,0.8610,0.8610,0.8655, 0.8983}, respectively, and we can 
expect that for an infinite number of eigen functions it will approach 1.0. Therefore, the 
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spatially averaged ( )d t  is a Gaussian random variable with zero-mean and 2 t   -
variance, which can be readly incorporated into the numerical solution scheme for SSTM.  

Because of the high computational times involved, instead of using the SIM procedure, we 
estimate the dispersivity for a computational  experiment by limiting ourselves to the 
SSTM parameters obtained for experimental sand aquifer (i.e., 2 =0.01; b=0.01 m ) in the 
following way: 

(a) Set the initial and boundary conditions as,   

( ,0) 0, 0
(0, ) 1.0, 0
( , ) 0, 0

C x x
C t t
C t t

 
 

  
  and 

(b) Solve equation (21) assuming mean velocity to be 1.0 m/day, 

(c) Use a realization of C(x,t) at x=a to estimate the dispersivity,  L   , using equation (3.10.5) 
(Fetter,  1999)  given  below using  nonlinear  regression:  ( Mathematica®    was  used  for  this 
purpose.)   

( , ) 0.5 exp
2 2LL L

a t a taC x t erfc erfc
t t 

                     
.                                (3.10.5) 

Equation (3.10.5) is the analytical solution for the one-dimensional advection-dispersion 
equation for the initial and boundary conditions given in (a) above. To get a reliable estimate 
of  L  for given a, we need to have x-axis length of 1.5 a meters and should have C(x,t) 
realization upto 2 a days. For example, to obtain an estimate of  L  for a = 3000 meters, we 
need to run the simulation of a domain of 4500 meters for 6000 days. However, to reduce the 
computational time, one can use higher  x  and  t  values than ideally suitable in solving 
SPDEs thereby sacrificing the reliability. ( x =0.01 m and t =0.00001 days would give very 
good solutions to SSTM.) However, this approximate procedure is only valid for the velocity 
covariance kernel used in this chapter. This procedure is not as reliable as the SIM. 

We overlay some representative values of dispersivities from the SSTM on a graph of the 
field measurements obtained by Gelhar (1986) from different experiments in Figure 3.34, 
which shows that SSTM could model the multi-scale dispersion with a single set of 
parameters, 2 =0.01; b=0.01 m, that would give rise to similar non-linear scale dependency 
of “deterministic” dispersivity evaluated using the realisations of SSTM.  

In Figure 3.34, the larger (hollow) circles depict the most reliable experimental data whereas 
the smaller (filled) circles give the data with lesser experimental accuracy. The dotted lines 
show the bounded region of experimental data. The estimated dispersivity values (filled 
squares) from SSTM are within the bounded region and follow similar trends to the most 
reliable experimental data. We estimated the dispersivities from SSTM using only a limited 
number of computational experiments, and each computational experiment produces a 
random realisation. Therefore, the estimated dispersivities are stochastic quantities just like the 
experimental values, and it is reasonable to expect discrepancies within the bounded region.

 

4 
 

A Generalized Mathematical  
Model in One-Dimension 

 
4.1 Introduction 
In the previous chapter we derived a stochastic solute transport model (equation (3.2.14)); 
we developed the methods to estimate its parameters, and investigated its behaviour 
numerically. We see some promise to characterise the solute dispersion at different flow 
lengths, and there are some indications that equation (3.2.14) produce the behaviours that 
would be interpreted as capturing the scale-dependency of dispersivity. However, there are 
weaknesses in the model as evident from Chapter 3. These weaknesses, which are discussed 
in the next section, are stemming from the very assumptions we made in the development 
of the model. One could argue that by relaxing the Fickian assumptions, we are actually 
complicating the problem quite unnecessarily. But as we see in Chapter 3 and in this 
chapter, we develop a new mathematical and computational machinery at a more 
fundamental level for the hydrodynamic dispersion in saturated porous media. 

We see that equation (3.2.14) is based on assuming a covariance kernel for the velocity 
fluctuations, and the solution is dependent on solving an integral equation (see equation 
(3.3.11)). In Chapter 3, the integral equation is solved analytically for the covariance kernel 
given by equation (3.3.10) to obtain the eigen values and eigen functions, but analytical 
solutions of integral equations can not be easily derived for any arbitrary covariance kernel. 
This limits the flexibility of the SSTM in employing a suitable covariance kernel independent 
of the ability to solve relevant integral equations. Further, we need to solve the SSTM in a 
much more computationally efficient manner, and estimating dispersivity by always 
relating to the deterministic advection-dispersion equation is not quite satisfactory. 
Therefore, we seek to develop a more general form of equation (3.2.14) in this chapter. 
 

4.2 The Development of the Generalized Model 
We restate equation (3.2.14) in the differential form: 

         , , , mdC S V x t C x t dt S C x t d t  ,                 (4.2.1) 

where    
1

m

m j j j
j

d t f db t  


  .             (4.2.2) 

We use the same notations and symbols as in Chapter 3. In equation (4.2.2),  md t  is 

calculated by summing m terms of (  j j jf db t ), and for each eigen function, jf , there is an 

associated independent Wiener process increment (  jdb t ). 
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