We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

186,000

200M

Our authors are among the

TOP 1% most cited scientists

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Preparation and Characterization and Reducing Properties of MoO₃ Nano-Fibers

Zhao Peng Applied Materials Research Lab of Chang'an University, China

1. Introduction

New methods of making new or existing inorganic materials are always interesting and challenging for materials scientists(Tenne 2006). Development of one-dimensional (1D) materials has become a focal area in nanostructured materials research, owing to their special characteristics which differ from those of respective bulk crystals(Romo-Herrera, 2007). These highly anisotropic 1D materials include elemental carbon, metals, semiconductor, alloys, sulfides, oxides, hydroxides, and so forth (Dmitruk, 2007). Among the important layered transition metal oxides and chalcogenides have been extensively investigated (Shabaev 2004).

In the course of the exploration of novel approaches for the preparation of metastable oxide materials, the main interest is focused on soft-chemical routes. Both, topochemical reactions involving ion exchange, intercalation, and pillaring as well as sol-gel, and hydrothermal reactions belong to these low-temperature methods. Especially host-guest compounds realized by the intercalation of different guest species into layered inorganic frameworks represent a new and promising class of material that can be used for the controlled preparation of complex organized structures in the nanoscale regime(Markus 2001, Xiong 2003).

 MoO_3 and its derivatives are widely used in industry as catalysts, display devices, sensors, smart windows, lubricants, battery electrodes(Zhao D.W.2008, Kim Youn-Su 2007, Ghorai T.K.2007, Dillon A.C.2008) . In particular, MoO_3 has been prepared into the forms of carbon-metal-oxide nanocomposites, nanotubes, and nanorods using carbon nanotubes (CNTs) as a host material or template. The MoO_3 nanofibers obtained with this novel method are up to 15µm long with their diameters ranging from 50 to 150 nm (Ajayan 1995, Satishkumar, 2000).

An efficient method to produce nanoscopic molybdenum oxide fibers was reported. The procedure is based on the intercalation of primary amines into the layered structure of molybdic acid and subsequent transformation of the lamellar molybdenum oxide-amine intermediate into the fibrous product. Standard synthesis: In a typical procedure, molybdic acid MoO₃·2H₂O (10 mmol) was mixed with the amine in 5 ml ethanol (molar ratio 2:1). After the addition of 15 ml distilled water, the yellow suspension was stirred at room temperature for 48 hours until a white precipitate was formed. The hydrothermal reaction of this composite was performed in an autoclave at 120°C for 3 to 5 days and, after filtering

and washing with ethanol and diethyl ether, a white powder resulted. The molybdenum oxide-amine composite (2.5g) was stirred in 10 ml 33% nitric acid for 24 hours at room temperature and thereby the fibrous material was formed. The product was filtered, washed with ethanol and diethyl ether and then dried at 80°C under vacuum (10-3 mbar), (Markus,2001).

One-dimensional nanostructures of orthorhombic molybdenum trioxide (α -MoO₃) have been synthesized in the forms of ribbons or rods via acidification under hydrothermal conditions at 140-200°C. The reaction path has been revealed with kinetic investigations, which shows the following sequence: (i) from the starting compound (NH₄)₆Mo₇O₂₄ 4H₂O to (ii) formation of intermediate compound ((NH₄)₂O)_{0.0866} MoO₃ 0.231H₂O, and then to (iii) final α -MoO₃ nanoribbons or nanorods in 100% phase purity. The optimal growth temperature is in the range of 170-180°C under the current experimental settings. At higher reaction temperatures, this transformation can be accelerated, but with poorer crystal morphological homogeneity. It has been found that the dimensions of these rectangular nanorods are about 50 nm in thickness, 150-300 nm (mean value at 200 nm) in width, and a few tens of micrometers in length. The crystal morphology can be further altered with inorganic salts such as NaNO₃, KNO₃, Mg(NO₃)₂, and Al(NO₃)₃. Using an H₂S/H₂ stream, the above-prepared α -MoO₃ nanorods can be converted completely to 2H-MoS₂ nanorods at 600°C. The original rodlike morphology is well-retained, although the aspect ratio of the oxide template is reduced upon the sulfidation treatment,(Xiong Wen Lou 2002).

A new whisker, α -MoO₃, was fabricated via molybdenum thread oxidation at 973,1023, and 1173K. Various morphologies of the whiskers, such as flakelike, platelike, and needlelike, were observed under different fabrication conditions. The lateral surfaces of the whiskers were close-packed (010) plane, and the growth direction was [001], which related to the unique layered structure of the α -MoO₃ crystal. Growth of the MoO₃ whisker was attributed to a vapor-liquid–solid (VLS) mechanism at 1023 and 1173K, whereas, at 973K, growth was attributed to a vapor-liquid(VL) mechanism (Jianqiang Li 2004).

But, for nano Mo metal powders prepared from MoO₃ nanorods or nanofibers have not been reported in the literatures, the principle of preparation of MoO₃ nanofiber prepared by hydrothermal process is not clearly, and the cross-section shape of MoO₃ nanofiber never characterized by electro microscopy.

Here we report the process of MoO_3 nanofiber prepared by hydrothermal method, and, the morphology of MoO_3 nanofiber was studied under different reaction conditions, and nano Mo metal powder indeed can be reduced from the resultant MoO_3 nanofibers through reduction conversion by using H₂ stream.

2. Experimental

2.1 Materials preparation

The α -MoO₃ nanofibers were synthesized by a hydrothermal route. Ammonium heptamolybdate tetrahydrate (AHM; (NH₄)₆Mo₇O₂₄ 4H₂O) and nitric acid were the two starting reagents. A saturated solution of precursor compound AHM was prepared at room temperature. For each run of experiment 30.0 ml of the saturated solution was diluted with deionized water (30.0 ml) and then further acidified using the 2.2M nitric acid to a total of 70-85.0 ml in volume. The resultant solution was transparent and transferred to a Teflon-lined stainless steel autoclave and heated at 170-180°C for 40 h. The product precipitate was

136

filtered and rinsed with deionized water, followed by drying at 62°C for 5h. The dried sample was fibrous and pale yellowish.

The above as-grown α -MoO₃ crystals were further used as metal oxide precursors for reduction investigation. The reactions were carried out in a tubular quartz reactor at 400-600°C using H₂ stream under normal atmospheric pressure.

2.2 Materials characterization

Crystallographic information of samples including reduced ones was investigated with X-ray diffraction (XRD; Shimadzu XRD-6000, Cu K α , λ =1.5406 Å). Crystal sizes and the morphology of crystal samples was examined before and after the reduction reactions with scanning electron microscopy (SEM, JSM-5600LV, 15 kV).

High-resolution analytical transmission electron microscopy (TEM, JEM-2010, 200 kV) was also used to examine crystalline α -MoO₃ and its reduced products. The specimens for TEM imaging study were prepared by suspending solid samples in acetone.

3. Results and discussion

3.1 Preparation of polymorphous molybdenum trioxide by hydrothermal process

In order to get molybdenum trioxide powder with different morphologies, especially to get molybdenum trioxide nanofiber, using saturated solution of ammonium paramolybdate and nitric acid as raw materials, molybdenum trioxide powders with different micromorphology were successfully synthesized through changing synthetic parameters of hydrothermal synthetic process in a hydrothermal reactor.

Synthesized molybdenum trioxide powders were characteristiced by XRD, SEM, and HRTEM. Results showed that molybdenum trioxide nanofibers could be got which were more than $20\mu m$ in length, $50\sim200$ nm in diameter when the heat treatment temperature was more than 150° C, acidity coefficient (acidity coefficient is defined as ratio of number of moles of acid added in the solution with number of moles of Ammonium heptamolybdate tetrahydrate) of precursor solution was more than 15, and heat treatment time more than 20 h.

Crystal growth direction of molybdenum trioxide nanofibers was (001). Deviating of synthetic process parameters mentioned above, molybdenum trioxide powders with rodlike, platelike, and flakelike micro morphologies could be synthesized.

3.1.1 Synthesized at low acidity conditions

Low acidy conditions indicated that acidity coefficient in the reaction solution was less than 10, and the template often used in the synthesis process of nano fibers was not used in this research.

For the 25ml of AHM with 63% (wt) concentration, mixed with 2.2M HNO₃ solution 50ml, then, appropriate amount of milk like mixture got was put in the teflon-lined stainless steel autoclave and heated at 170°C for 20 h,the acidity coefficient is 8.6, the hexagonal short prismatic MoO_3 was obtained (Fig1.).

In the Fig2, the 25ml of AHM with 25% (wt) concentration, mixed with 2.2M HNO₃ solution 10ml, then, appropriate amount of milk like mixture got was put in the teflon-lined stainless steel autoclave and heated at 170°C for 20 h,the acidity coefficient is 4.3, the square flake MoO_3 was obtained.

Fig. 1. MoO_3 powder morphology synthesized at low acidity conditions (acidity coefficient is 8.6).

From Fig2, the morphology of MoO₃ crystal is square flake crystal, the width and length are less than 10 micrometer, the thickness of crystal is less than 1 micrometer.

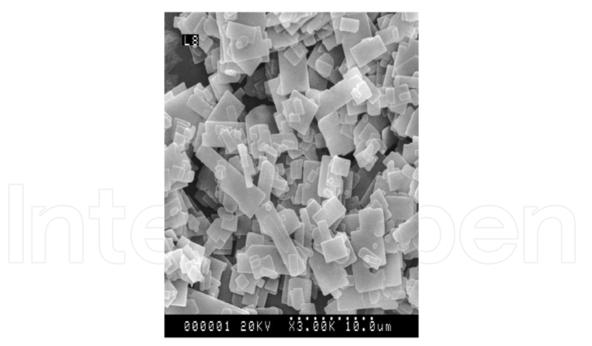


Fig. 2. MoO₃ powder morphology synthesized at low acidity conditions (acidity coefficient is 4.3).

In Fig 3, the 30ml of AHM with 27% (wt) concentration, mixed with 2.2M HNO₃ solution 10ml, then, appropriate amount of milk like mixture got was put in the teflon-lined stainless steel autoclave and heated at 170°C for 20 h, the acidity coefficient is 3.0, the hexagonal long prismatic MoO_3 was obtained.

Fig. 3. MoO₃ powder morphology synthesized at low acidity conditions (acidity coefficient is 3.0).

3.1.2 Synthesized with template at 170°C for 40h

To study the adding template on the morphology of molybdenum trioxide through hydrothermal process, the first use of cetyltrimethylammonium bromide(CTAB) as template agent. Because of CTAB is cationic surfactant, the particles in the AHM solution are negatively charged, so as different amount of CTAB was added, the emulsion solution easy to be formed, the heatreatment temperature is 170°C, the time is 40h, after hydrothermal reaction, the different morphologies of molybdenum trioxide crystal were obtaned (see in the Fig4-Fig5).

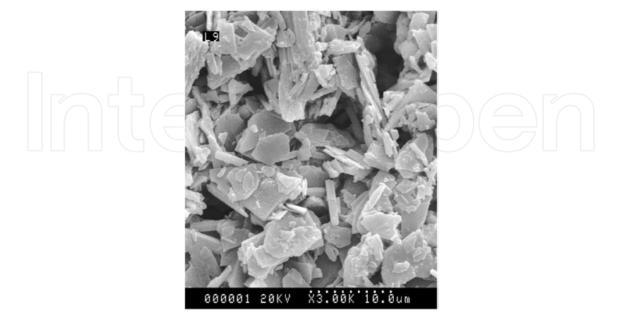


Fig. 4. MoO₃ morphology synthesized at different moles ratio of CTAB with AHM (CTAB / AHM =0.1).

Fig. 5. MoO_3 morphology synthesized at different moles ratio of CTAB with AHM (CTAB / AHM =0.4).

3.1.3 Synthesized with template at 180°C for 40h

Increasing heattreatmeng temperature to 180°C, and increasing ratio of CTAB with AHM in the solution, a series of strip like MoO₃ crystals were obtained (in the Fig.6-Fig.8). From Fig.6 to Fig.8, the results indicated that the size of MoO₃ decreaseed when moles ratio of CTAB with AHM increased, the shapes of samples were nearly strip fiber.

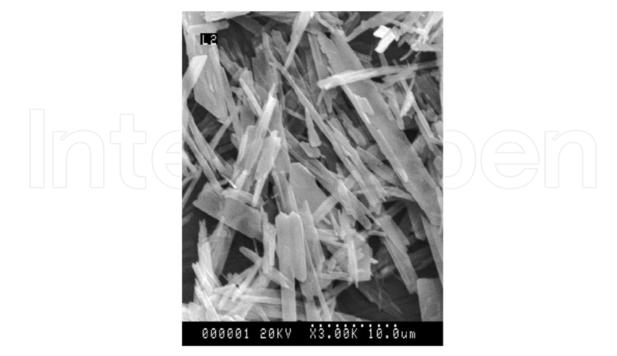


Fig. 6. MoO₃ morphology synthesized at 0.5 moles ratio of CTAB with AHM under 180° C for 40h.

Fig. 7. MoO₃ morphology synthesized at 0.7 moles ratio of CTAB with AHM under 180° C for 40h.

Fig. 8. MoO₃ morphology synthesized at 1.0 moles ratio of CTAB with AHM under 180°C for 40h.

3.1.4 Synthesized at high acidity without template at 170°C for 40h

High acidy conditions indicated that acidity coefficient in the reaction solution was more than 15, and the template CTAB was not used in this research.

For different concentration of AHM(wt%), 25 %, 12.5%, 26% respectively with different acidity coefficient 15, 20, 22, the precursor solutions were all transparent, after heattreatment at 170°C for 40h, fibers of MoO₃ were obtained (see in the Fig.9- Fig.11).

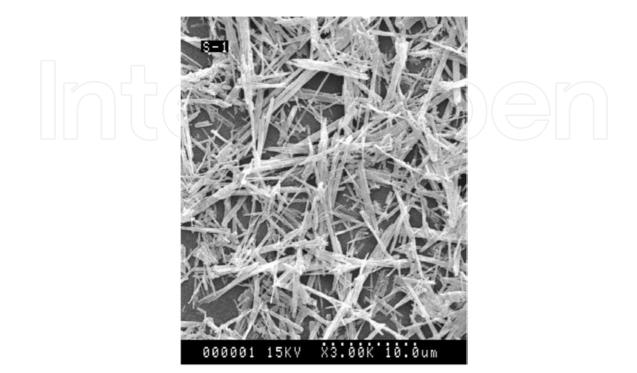


Fig. 9. MoO₃ morphology of precursor of 25% AHM at acidity coefficient 15(180°C for 40h).



Fig. 10. MoO₃ morphology of precursor of 12.5% AHM at acidity coefficient 20(180°C for 40h).

Fig. 11. MoO₃ morphology of precursor of 26% AHM at acidity coefficient 22 (180°C for 40h).

3.1.5 Optimization of synthesis process parameters

A SEM image of a typical product showed the sample as an entirely fiber-like structure after optimized synthesis process parameters(Fig.12),the nanofiber length is more than several tens of microns.

Fig. 12. Typical morphology of MoO₃ nano fibers synthesized under optimized conditions.

3.2 Characterization of MoO₃ nano-fibers 3.2.1 Characterized by HRTEM and FSEM

The result of typical MoO_3 nanofibers characterized by HRTEM is shown in fig.13, the nanofiber cross- section is not round, some nanofibers is not single fiber, combined by two single fiber. Most fibers are with width of about 50 to 200 nm, and length of about a few tens microns.

Nearly rectangle-like cross section of the nanofibers could be seen from the image of Fig.14. HRTEM image of an individual nanofiber (Fig.15) provided further insight into the structure of these products. HRTEM images recorded perpendicular to the growth axis of the single nanofibers could be attributed to the [010] of orthorhombic MoO₃, and suggested that the nanofibers grew along the [001] direction.

Fig. 13. Typical image of MoO₃ nano fibers characterized by HRTEM.

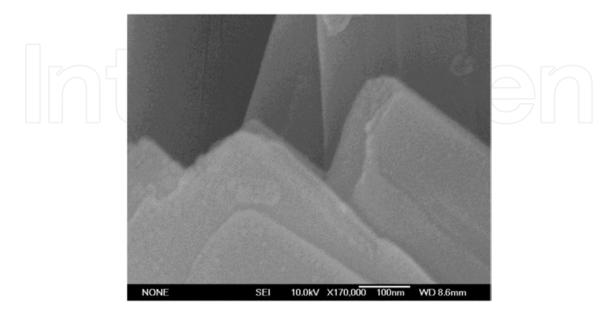


Fig. 14. Typical image of cross-section of MoO3 nano fibers characterized by FSEM.

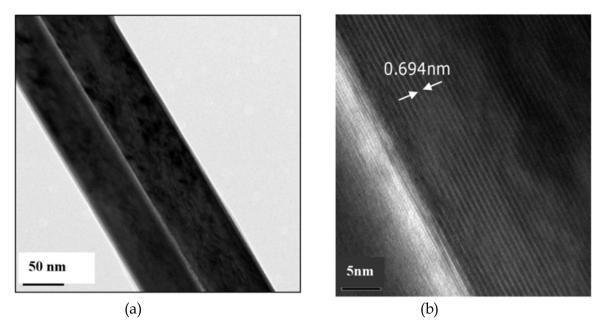


Fig. 15. HRTEM image of an individual nanofiber combined by two single fiber(a); and the lattice image of MoO_3 nanofiber crystal (b).

3.2.2 Characterized by XRD

X-ray diffraction showed that samples consisted only strongly oriented orthorhombic α -MoO₃ (a = 1.385 nm, b = 0.3696 nm, c = 0.3966 nm, JCPDS 89-7112). It can be observed in Fig.16., that(020) , (040) , (060) are strong peak respectivily, that means all the strong diffraction peaks correspond to (0h0) reflections. (110),(021),(002) are weak peaks, which shows that crystal growth is slow in these direction, causing the crystal diffraction line intensity decreased.

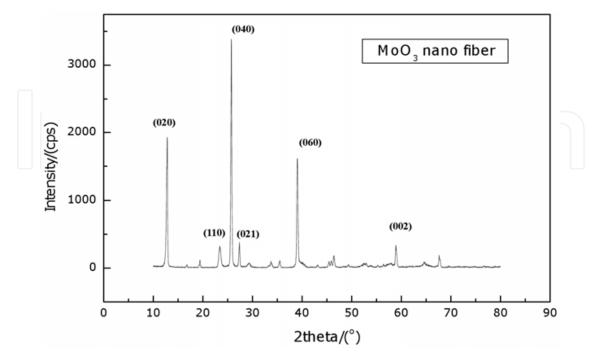


Fig. 16. The XRD patterns of MoO₃ nano fibers.

3.3 Principle of MoO₃ nano-fibers crystal growth

The crystal growth process of MoO_3 under hydrothermal conditions could be explained according literatures, and the MoO_3 nanofiber crystal growth modle is shown in the Fig.17. (Xiao Lin Li 2002).

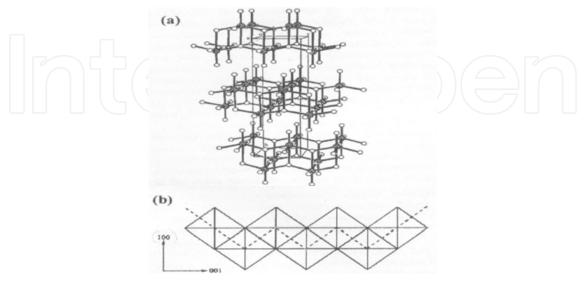


Fig. 17. The atom structure of MoO_3 (a), and schematic diagram of the crystal growth direction(b).

From Fig.17(a), It can be seen, that molybdenum trioxide is a typical orthogonal layered structure. Layered structure constitutes the smallest unit is MoO6 octahedron. Fig.17 (a) shows that the crystal chemistry cell of molybdenum trioxide is selected in three layers of MoO6 octahedron, where a, c values are relatively small, namely 3.966 and 3.693Å, while the b value is relatively large 13.858Å (JCPDS05-0508).

Each layer of molybdenum trioxide crystal is formed by MoO6 octahedrals twist to share angle connectivity in the a axis direction, and in the c-axis direction, MoO6 octahedrals connect by a sharing edge way, this sharing edge way twists and turns along acording the Z-shaped.

From Figure 17 (b), It can be seen, along the [100] direction and [001] direction, the same chemical environment is not same, which led to the [001] and [100] direction connection requires different chemical activation energy. If along the [001] direction is necessary to form two Mo-O bond, while along the [100] only the formation of one Mo-O bond, so MoO6 octahedron cenection along [001] will release more energy, so the crystal growth along [001] preferred orientation, especially in the presence of H⁺, the occurrence of the following reaction:

$$Mo_7O_{24}^{6-} + 3H^+ \rightarrow (H-O)_3 - Mo_7O_{23}^{3-}$$

$$(H-O)_3-Mo_7O_{21}^{3-} + 3H^+ \rightarrow (H-O)_6-Mo_7O_{18} \rightarrow 7MoO_3 + 3H_2O_{18}^{3-}$$

As can be seen from the above reaction, increased the concentration of AHM and nitric acid, were very favorable reaction towards the right, which is the main reason to synthesis of nano-fibers with high concentration of molybdenum trioxide.

Secondly, in order to ensure that the oxygen ions prolapse from AHM to form water molecules, excessive acid concentration to be necessary, the minimum theoretical acidity coefficient is of 7, the actual value in the this research increases to 15 or more, so synthesized the MoO_3 nano fibrous structures, that the high acidity is also needed.

Molybdenum trioxide crystal is the vertex connected along the [100] direction, the combination of atoms along [010] direction is van der Waals force, resulting in fiber diameter direction, the atoms combination is not close, so the double-fiber structure is formed.

3.4 Reducing of MoO₃ nano-fibers

Molybdenum and molybdenum alloys have good electrical conductivity, thermal conductivity, high temperature strength and high temperature hardness, corrosion resistance and good performance, therefore, widely used in chemical engineering, metallurgy and aerospace industry and other fields. With the rapid development of high-tech, material properties of molybdenum and its alloys in many aspects of the request beyond the traditional performance. For getting high performance molybdenum metal materials, ultra-fine powders of molybdenum is its first step (Tuominen 1980).

The methods of ultrafine Mo powder preparation are traditional MoO₃ reduction method, hydroxyl thermal decomposition method, molybdenum chloride vapor method, molybdenum chloride pyrolysis method, laser flash method, and microwave plasma method, etc.(Malikov 1997, Futaki Shoj 1992, Chow 1991, Liu Binghai 1999, Gonzalez 2001)).

However, all of these methods, to achieve large-scale industrial production of fine metal powders of molybdenum, the traditional reduction method still has a certain appeal. It is possible that ultrafine Mo powder could be produced by reducing industrialized nano molybdenum oxide.

3.4.1 MoO₃ nanofibers microstructure before H₂ reduction

The purpose of reduction test of nano-fibers of molybdenum trioxide synthesized by hydrothermal process, is to prepare ultrafine Mo powder. Reduction experiment of molybdenum trioxide nanofibers was performed in the hydrogen reduction furnace by using of the traditional hydrogen reduction method.

The XRD pattern of molybdenum oxide nanofibers befor reduction is shown in Fig.16, and nanofibers of molybdenum trioxide SEM photograph is shown in Fig.18.

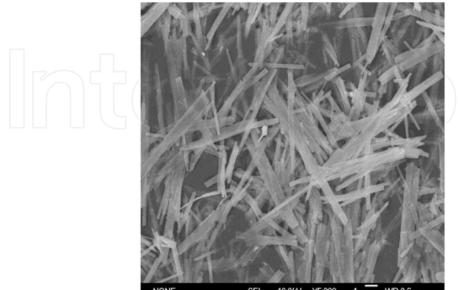


Fig. 18. FSEM image of MoO₃ nanofiber before reduction.

In fig.18 FSEM photo, the nano-fiber length ranging is 10-30 microns, width of it is about 50-200 nm. The MoO_3 nano-fibers has better dispersion and smooth surface. The nano-fiber size is uniform befor hydrogen reduction.

3.4.2 Reduction result of MoO₃ nanofibers

The MoO₃ nanofibers were reduced at different temperature under H₂ stream atmosphere. From fig19, the XRD patterns indicated that MoO₃ nano fibers could be reduced as MoO₂ at 530°C for 1 hour, the materials had a pure phase of MoO₂. That means the MoO₃ nanofibers have been reduced as MoO₂ completely at 530°C. Corresponding to the fig 18, the morphology of the MoO₃ nanofibers have been changed, the fibers-like morphology was partial retained in the MoO₂ sample (Fig.20).

Fig.19 showed that the MoO_3 nanofibers had been reduced as Mo powders completely when the reduced temperature was increased to 600°C, corresponding to the fig21, the morphology of Mo powders is not fibers-like, most of metal Mo powders are irregular shape, neither the ball-like, nor fibers-like.

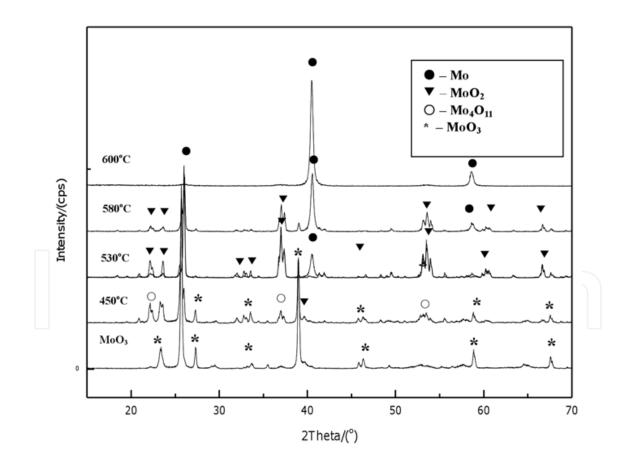


Fig. 19. The XRD patterns of MoO_3 nano fibers reduced at different temperatures by using H_2 .

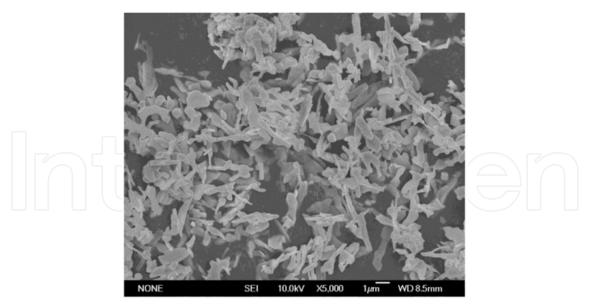
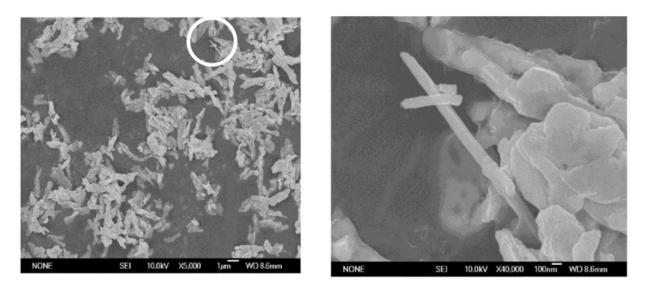



Fig. 20. The SEM image of nanofibers molybdenum trioxide reduction at 530°C for 1h.

(a)

(b)

Fig. 21. SEM images of Mo powder reduced at 600°C(a), and (b) is enlargement of the white circle in (a).

But in some case, the nanofibers-like shape of MoO_3 was retained, the result could be seen in the fig21. From fig.21(b), it could be found that needle-like metal Mo powder was formed. The reason of forming needle-like metal Mo powder could be explained that the MoO_3 nanofiber was restricted in a free space, no other MoO_3 nanofiber contact with each other, although orthorhombic crystal structure of MoO_3 changed as FCC crystal structure of metal Mo, no other metal Mo particles to combine with, so the nanofibers-like shape was retained.

3.4.3 Optimization of reduction result of MoO₃ nanofibers

According to the reason mentioned above, we using small bulk (about 2-3mm) MoO_3 nanofiber as raw materials instead of the MoO_3 nanofibers powders. The small bulk MoO_3

was reduced at 600°C for 1h, XRD indicated that MoO₃ had been completely changed as metal Mo powder. SEM result shown in fig22. Much more needle-like metal Mo powders were formed. It means nanofiber-like MoO₃ could be reduced as needle-like metal Mo powder in some special case.

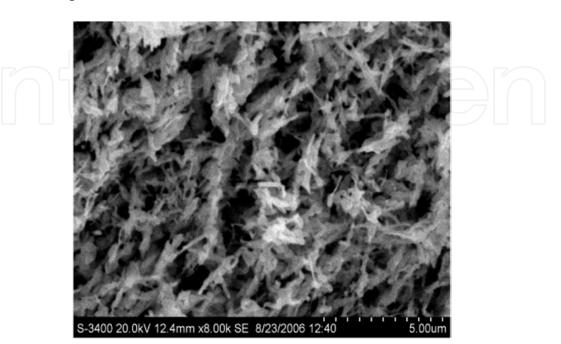
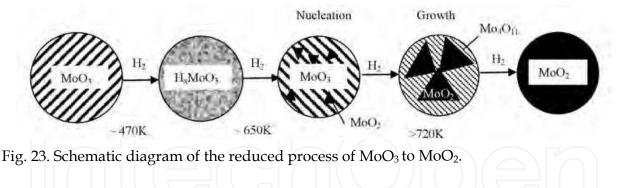


Fig. 22. SEM image of needle-like metal Mo powder.

3.5 Principle of MoO₃ nano-fibers reduced by using H₂

Through analysis the reduction process of nanofibers molybdenum trioxide, in general, the fibrous structure of molybdenum trioxide is difficult to maintain or inherited. Just because of molybdenum trioxide is orthogonal layered structure, and molybdenum dioxide is rutile structure. As we know, the reduction process of nanofibers molybdenum trioxide is a very complicated local chemical processes, including following steps (Tuominen 1980, Thorsten 2001):


- 1. adsorption of reduction gas
- 2. the chemical reaction between molybdenum oxide with the hydrogen molecules
- 3. changes in crystal chemistry and the desorption of gas in the reaction products

The first step of reduction process of molybdenum trioxide is mainly broken of crystal at 450°C or more, because of the molybdenum dioxide is gradually began to be formed on the surface of molybdenum trioxide and the layer of molybdenum dioxide could be peeled off, and the crystal of molybdenum trioxide could be broken or cracked.

As the reaction further, the layer thickness of molybdenum dioxide is more than half the thickness of the crystal of molybdenum trioxide, molybdenum dioxide peeling process could be stopped, the molybdenum trioxide completely transformed into molybdenum dioxide, the shape of crystal was changed generally.

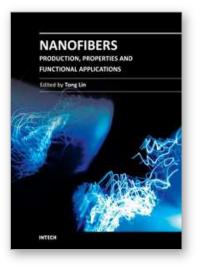
Delamination of molybdenum dioxide should be occurred in the weak place of crystal surface of molybdenum trioxide, due to anisotropy of chemical bonding strength, so it is broken easily in the [001] direction of molybdenum trioxide. Therefore, when molybdenum trioxide nanofiber is reduced as molybdenum oxide, the crystal size is shorter (Fig.23).

Preparation and Characterization and Reducing Properties of MoO₃ Nano-Fibers

4. Conclusion

One-dimensional nanostructures of orthorhombic molybdenum trioxide have been synthesized in the forms of fibers under hydrothermal conditions. The dimensions of the fibers are about 50nm in thickness, 100-200nm in width and a few tens of micrometers in length under our experimental settings.

The MoO₃ fibers prepared can be converted completely to Mo metal powders at 600°C by ussing H_2 stream. The original fiber-like morphology is not well-retained, but in some specials cases, fiber-like morphology can be partial retained, although the aspect ratio of the oxied fibers is reduced upon the reduction treatment.


5. Acknowledgment

The authors gratefully acknowledge research funding supported by "the Fundamental Research Funds for the Central Universities of China" and "National Natural Science Foundation of China 50472028".

6. References

- R. Tenne(2006). Inorganic Nanotubes And Fullerene-Like Nanoparticles. *Nature Nanotechnology*, Vol.1(Jan.2006), pp103-111, ISSN 1748-3387
- Romo-Herrera, J.M., Terrones, M., Terrones, H., Dag, S., & Meunier, V. .(2007), Covalent 2d And 3d Networks From 1d Nanostructures: Designing New Materials. *Nano Letters*, Vol.7,No.4,(Appil 2007), pp 570-576, ISSN 1530-6984
- Dmitruk, N., Barlas, T., Kotova, N.,Romanyuk, V., & Dmytruk, A.(2007), Metal 1d Micro(Nano) Self-Organized Wires On Semiconductor Surface: Preparation, Topology, And Optical Properties. *Materials Science And Engineering C*, Vol.27 No.(5-8), (Sept. 2007),pp1141-1144, ISSN 0928-4931
- Shabaev A., Efros & Al.L.(2004),1d Exciton Spectroscopy Of Semiconductor Nanorods. *Nano Letters*, Vol.4, No.10,(Oct. 2004), pp1821-1825, ISSN1530-6984
- Markus N, Frank K, & Hans-Joachim M.(2001) Synthesis And Characterization Of Novel Nanoscopic Molybdenum Oxide Fibers. *J.Mater.Chem.* Vol.11, (Nov.2001), pp1941-1945, ISSN 0959-9428
- Xiong W L, & Hua C Z.(2003), Complex A-MoO3 Nanostructures With External Bonding Capacity For Self-Assembly. *J.Am.Chem.Soc*, Vol.125, No9, (Sep. 2003), pp2697-2704, ISSN 0002-7863
- Zhao D.W., Sun X.W., Jiang C.Y., Kyaw A.K.K., Lo G.Q., & Kwong D.L.(2008). Efficient Tandem Organic Solar Cells With An Al/MoO₃ Intermediate Layer. *Applied Physics Letters*, Vol.93,No.8, (Aug.2008), pp 3305-3 ISSN 1077-3118

- Kim Youn-Su, Ahn Hyo-Jin, Shim Hee-Sang, Nam Sang Hoon, Seong Tae-Yeon, & Kim Won Bae. (2007), Pt-Embedded MoO3 Electrodes For Rechargeable Lithium Batteries. *Electrochemical And Solid-State Letters*, Vol.10, No. 8 (Oct.2008),pp180-183,ISSN 1099-0062
- Ghorai T.K., Dhak D., Biswas S.K., Dalai S., & Pramanik P.(2007), Photocatalytic Oxidation Of Organic Dyes By Nano-Sized Metal Molybdate Incorporated Titanium Dioxide (Mxmoxti1-Xo6) (M = Ni, Cu, Zn) Photocatalysts. *Journal Of Molecular Catalysis A: Chemical*, Vol.273, No.(1-2),pp224-229,ISSN 1381-1169
- Dillon A.C., Mahan A.H., Deshpande R., Parilla P.A., Jones K.M., & Lee S-H.(2008),Metal Oxide Nano-Particles For Improved Electrochromic And Lithium-Ion Battery Technologies. *Thin Solid Films*, Vol.516,No.5,(May.2008),Proceedings Of The Fourth International Conference On Hot-Wire Cat-Cvd Process,pp794-797, ISSN 0040-6090
- Ajayan P. M., Stephan O., Redlich P., & Colliex C.(1995), Carbon Nanotubes As Removable Templates For Metal Oxide Nanocomposites And Nanostructures. *Nature* Vol.375, (June 1995) pp 564-567 ISSN 0028-0836.
- B. C. Satishkumar, A. Govindaraj, M. Nath & C. N. R. Rao(2000), Synthesis of metal oxide nanorods using carbon nanotubes as templates, *J. Mater. Chem.*, Vol.10, (Oct. 2000) pp2115-2119. ISSN 0959-9428
- Xiong Wen Lou, & Hua Chun Zeng, (2002). Hydrothermal Synthesis Of α-MoO3 Nanorods Via Acidification of Ammonium Heptamolybdate Tetrahydrate. *Chem. Mater.*, Vol.14, (Sept. 2002), pp 4781-4789, ISSN 0897-4756
- Jianqiang Li, Pan Wei, Jian Chen, & Li Rongti (2004), Preparation and Growth Mechanism of Molybdenum Trioxide Whisker, Journal of the American Ceramic Society, Vol.85, No.8, (August 2002), pp2116–2118, ISSN 002-7820
- Xiao Lin Li, Jun Feng Liu, Ya Dong Li (2002). Low-Temperature Synthesis Of Large-Scale Single-Crystal Molybdenum Trioxide MoO3 Nanobelts. *Appl. Phys. Lett.* Vol.81, No.25, (Dec.2002), pp4832-4834, ISSN 003-6951
- Thorsten Ressler, Julia Wienold,& Rolf E. Jentoft (2001). Formation Of Bronzes During Temperature Programmed Reduction Of MoO3 With Hydrogen -An In Situ Xrd And Xafs Study. *Solid State Ionics*. Vol.141-142, (June,2001), pp243-251, ISSN 0167-2738
- Tuominen S M, & Carpenter K H.(1980), Powder metallurgy molybdenum: influence of powder reduction processes on properties. *Journal of Metals*, Vol.32, No.1, (Jan.1980), pp23-27. ISSN 0148-6608
- Malikov I V, & Mikhailov G M. (1997), Electrical resistivity of epitaxial molybdenum films grown by laser ablation deposition.*J.Appl.Phys.*, Vol.82,No.11,(Dec. 1997), pp5555-5559, ISSN 1089-7550
- Futaki Shoj, Shiraishi Katsuzo, & Uemura Mikio(1992).Ultrafine refractory metal particles produced by hybrid plasma process.*Journal of the Japan Institute of Metals*, Vol.56,No.4,(Apr. 1992) pp4:64, ISSN 0021-4876
- Chow.GM.(1991), Sputtering synthesis and properties of molybdenum nanocrystals and Al/Mo layered. *Journal of Material Research*, Vol.4, (Apr.1991) pp737-743, ISSN0884-2904
- Liu Binghai, Gu Hongchen, & Chen Qiling(1999). Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method.*Materials Chemistry and Physice*,Vol. 59, No. 3, (Jun.1999), pp204-209, ISSN 0254-0584
- Gonzalez.G(2001), Synthesis and characterization of nanophase Partieles abtained by D.C sputtering. *Scripta Material*, Vol.3, (Mar.2001), pp1883–1887, ISSN 1359-6462

Nanofibers - Production, Properties and Functional Applications Edited by Dr. Tong Lin

ISBN 978-953-307-420-7 Hard cover, 458 pages Publisher InTech Published online 14, November, 2011 Published in print edition November, 2011

As an important one-dimensional nanomaterial, nanofibers have extremely high specific surface area because of their small diameters, and nanofiber membranes are highly porous with excellent pore interconnectivity. These unique characteristics plus the functionalities from the materials themselves impart nanofibers with a number of novel properties for advanced applications. This book is a compilation of contributions made by experts who specialize in nanofibers. It provides an up-to-date coverage of in nanofiber preparation, properties and functional applications. I am deeply appreciative of all the authors and have no doubt that their contribution will be a useful resource for anyone associated with the discipline of nanofibers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhao Peng (2011). Preparation and Characterization and Reducing Properties of MoO3 Nano-Fibers, Nanofibers - Production, Properties and Functional Applications, Dr. Tong Lin (Ed.), ISBN: 978-953-307-420-7, InTech, Available from: http://www.intechopen.com/books/nanofibers-production-properties-and-functionalapplications/preparation-and-characterization-and-reducing-properties-of-moo3-nano-fibers

INTECH

open science | open minds

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166 www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820 Fax: +86-21-62489821 © 2011 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the <u>Creative Commons Attribution 3.0</u> <u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IntechOpen

IntechOpen