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1. Introduction  

Approximately 20-30% of breast cancers show increased expression of the HER2 receptor 
tyrosine kinase. Elevated levels of HER2 are associated with aggressive disease, high 
metastatic potential, and reduced survival versus other breast cancer subtypes (Slamon, 
1987). Trastuzumab (Herceptin) is a monoclonal antibody targeted against an extracellular 
region of HER2 (Carter, 1992). Clinical trials have shown that 15-30% of patients with HER2-
overexpressing metastatic breast cancer respond to single-agent trastuzumab for a median 
duration of approximately 10 months (Baselga, 1996; Cobleigh, 1999). Response rates 
improve when trastuzumab is combined with chemotherapy in patients with HER2-
overexpressing metastatic breast cancer (Esteva, 2002; Slamon, 2001). A subset of 
trastuzumab-resistant breast cancers respond to the dual EGFR/HER2 kinase inhibitor 
lapatinib, although the majority (70% or more) show primary resistance (Geyer, 2006). 
Similar to trastuzumab treatment, clinical trials with lapatinib indicated that the median 
duration of response to lapatinib in a heavily pre-treated, trastuzumab-refractory 
population was less than one year (Geyer, 2006). Hence, resistance to clinically available 
HER2-targeted agents is a major concern in the treatment of patients with HER2-
overexpressing metastatic breast cancer.  

2. HER2 and breast cancer  

The human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 
25% of invasive breast carcinomas. HER2 is a member of the epidermal growth factor 
receptor (EGFR) family, which also contains two other receptors, HER3 and HER4 (Fig. 1). 
Each of these cell surface receptors has an extracellular ligand-binding domain and a 
transmembrane-spanning domain (Nielsen, 2008). All HER family receptors except HER2 
bind specific ligands that induce conformational changes and receptor homo- or hetero-
dimerization. Several HER family ligands have been identified including transforming 
growth factor alpha (TGFa), epidermal growth factor (EGF), and the heregulins (Nielsen, 
2008). In addition, all except HER3 contain an intracellular tyrosine kinase domain. Receptor 
dimerization activates the kinase function of receptors, leading to receptor auto- or trans-
phosphorylation. The phosphorylated tyrosine residues serve as docking sites for SH2 and 
PTB-domain containing proteins, which links the receptors to multiple cell survival and 
proliferation pathways including the phosphatidylinositol-3 kinase (PI3K) and mitogen-
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activated protein kinase (MAPK) cascades (Spector, 2009; Graus-Porta, 1997). HER2 is the 
preferred dimerization partner for the other HER family members, as HER2 heterodimers 
have increased ligand binding affinity and increased catalytic activity relative to other 
heterodimer complexes (Spector, 2009; Graus-Porta, 1997). In particular, the HER2-HER3 
heterodimer has the strongest kinase activity and transforming ability, as HER3 possesses 
multiple PI3K docking sites in its cytoplasmic tail.  
 

 

Fig. 1. HER/erbB family of growth factor receptors. The four members of the EGFR family 
are illustrated. The inactive ligand-binding domains of HER2 and the inactive kinase 
domain of HER3 are denoted with an X. Trastuzumab binds to domain IV of the 
extracellular region of HER2.  

2.1 Targeting HER2 in breast cancer 

Patients who are diagnosed with HER2-overexpressing breast cancer have a poor prognosis, 
and shorter progression-free and overall survival compared to patients with other subtypes 
of breast cancer (Eccles, 2001). HER2-overexpressing tumors have been found to be larger in 
size, and higher in nuclear grade, S phase fraction, and aneuploidy (Nielsen, 2008). 
Traditional cancer treatments have targeted DNA replication or cell division, leading to 
nonspecific cytotoxicity (Oakman, 2010). The identification of abnormal signaling from 
HER2 led to the development of trastuzumab (Herceptin) (Genentech, San Francisco, CA, 
USA), which is the first drug to target the genetic lesion or oncogenic addiction found in 
patients with HER2-overexpressing breast cancer. Clinically, trastuzumab was found to 
significantly enhance the effectiveness of conventional chemotherapies. However, the 
median duration of response was less than one year, indicating rapid development of 
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resistance. The precise mechanism of action of trastuzumab is unclear, but it is thought to 
involve HER2 downregulation (Cuello, 2001; Gajria, 2011), selective inhibition of HER2-
HER3 heterodimerization (Junttila, 2009; Gajria, 2011), prevention of HER2 extracellular 
domain proteolytic cleavage (Molina, 2001; Gajria, 2011), and activation of an immune 
response including antibody-dependent cellular cytotoxicity (Sliwkowski, 1999). As a single 
agent, trastuzumab achieved an overall response rate for a median duration of about nine 
months (Baselga, 1996; Cobleigh, 1999; Nielsen, 2008; Slamon, 2001). The low response rate 
indicates that many patients with HER2-overexpressing breast cancer have primary resistance 
to trastuzumab, while the short duration of response indicates rapid development of acquired 
resistance. Multiple mechanisms contributing to trastuzumab resistance have been proposed, 
resulting in multiple approaches to potentially treat resistant cancers (Table 1).  
 

Target Role in trastuzumab resistance 

PI3K Increased PI3K signaling due to PIK3CA mutations or PTEN loss was reported 
in trastuzumab-resistant cancers 

mTOR As a downstream molecule of PI3K, mTOR has become a target of inhibition in 
resistant cancers; multiple mTOR inhibitors are in advanced phases of clinical 
development 

IGF-
IR 

Increased expression of IGF-IR has been shown to reduce response to 
trastuzumab; increased IGF-IR overexpression was associated with lower 
response to neoadjuvant trastuzumab; IGF-IR/HER2 interaction and crosstalk 
were associated with acquired resistance 

Src Trastuzumab-mediated inhibition of Src activity appears to be important to its 
anti-cancer activity; resistance to trastuzumab was associated with PTEN loss 
and increased Src activity; targeting Src with dasatinib or genetic knockdown 
blocked growth of resistant cancers 

Cdk2 Reduced p27kip1 levels or amplification of cyclin E gene have been reported to 
result in increased cdk2 activity in trastuzumab-resistant cancers 

Table 1. Potential pharmacologic targets in trastuzumab-resistant HER2-positive breast 
cancers.  

3. Targeting PI3K/mTOR signaling in HER2-overexpressing breast cancer  

HER2 signaling is initiated upon receptor dimerization, which induces phosphorylation of 
tyrosine residues within the receptor cytoplasmic domain. The phosphorylated residues 
serve as docking sites for adaptor proteins and link the receptor to downstream survival 
pathways including the PI3K/Akt/mTOR axis (Spector, 2009). The PI3K pathway is 
frequently hyper-activated in many cancers. An association between oncogenic PI3K 
mutations and trastuzumab resistance was found in a study examining HER2-
overexpressing tumors from patients with trastuzumab-refractory disease (Berns, 2007). 
About 25% of tumors analyzed had PIK3CA mutations, and reduced phosphatase and 
tensin homolog (PTEN) expression was present in 22% of the tumors. 
Immunohistochemistry studies performed in a retrospective analysis of HER2-amplified 
breast tumors treated with trastuzumab plus taxanes showed a postive correlation between 
PTEN down-regulation and tumor response (Nagata, 2004). To evaluate the role of PI3K 
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post-trastuzumab exposure, tumors that had progressed on trastuzumab were analyzed for 
changes in PI3K signaling. The findings demonstrated that PI3K mutations and PTEN loss 
were identified in patients who had initially responded to trastuzumab; reduced PTEN 
expression was identified in tumors that had developed trastuzumab resistance, but had not 
been identified before trastuzumab treatment. This finding indicates that PI3K mutations 
can occur as a result of trastuzumab treatment in some tumors (Kalinsky, 2009; Sakr, 2010; 
Gajria, 2011). Thus, there is ample rationale for co-targeting PI3K and HER2 in breast cancer.  
Activated Akt regulates several downstream signaling molecules including mTOR, a highly 
conserved 289-kDa serine/threonine kinase that plays roles in cell proliferation, survival, 
and motility (Lang, 2010). mTOR activation is initiated when phosphorylated PI3K/Akt 
inhibits the TSC1/TSC2 complexes, thereby preventing Rheb from inhibiting mTOR. 
mTORC1 (mTOR, Raptor, mLST8/GBL and PRAS40) and mTORC2 (mTOR, RICTOR, 
mLST8/GBL, SIN1, and PROTOR/PRR5) are the two distinct complexes through which 
mTOR exerts cellular effects. The complexes have different functional roles, with mTORC1 
having been implicated in cell cycle progression, motility, and protein biosynthesis, while 
mTORC2 regulates cytoskeleton organization, and regulates cell growth and survival 
(Wullschleger, 2005; Van der Heijen, 2011).  
Preclinical in vivo studies in which mice were treated with single agent trastuzumab, the 
mTOR inhibitor rapamycin, or a combination of trastuzumab plus rapamycin showed that 
the combination was more effective at inducing tumor regression than either of the single 
agent treatments (Miller, 2009). In cell culture experiments using the rapamycin analogue 
RAD001, a greater amount of growth inhibition was observed with combination mTOR 
inhibition plus HER2-targeting than with either drug alone. Trastuzumab partially 
decreased PI3K activity, but not mTOR activity (Miller, 2009). Increased PI3K signaling is a 
validated mechanism of trastuzumab resistance, but its association with lapatinib resistance 
is yet to be determined due to conflicting data (Eichhorn, 2008; O’Brien, 2010). Patients with 
HER2-overexpressing breast cancer who have developed resistance to trastuzumab may be 
given the dual EGFR/HER2 tyrosine kinase inhibitor lapatinib. Response to single agent 
lapatinib is less than 25%, indicating cross-resistance between trastuzumab and lapatinib 
(Blackwell, 2010; Eichhorn, 2008). As with trastuzumab treatment, the small subset of 
patients who initially responded to lapatinib eventually developed resistance, at which 
point there is no standard therapeutic approach available. Phase I trials have indicated that 
in patients with trastuzumab-resistant, heavily pretreated breast cancer, combined 
everolimus plus trastuzumab could be a promising treatment (Jerusalem, 2011). It is thought 
that the inability of trastuzumab to completely inhibit PI3K/Akt/mTOR signaling may 
permit escape from growth inhibition; mTOR inhibitors would thus synergize with 
trastuzumab to prevent the continued growth of HER2-dependent cancer cells.  
In contrast to PI3K, very little has been published regarding the role of MAPK signaling in 
trastuzumab resistance. Our data suggests that phosphorylation of Erk1/2, which is a 
marker of MAPK activity, is not increased in resistant cells (Fig. 2A). Inhibition of MEK 
(upstream of Erk1/2) using a small molecule MEK kinase inhibitor called PD0325901 
reduces p-Erk1/2 levels in parental HER2-overexpressing breast cancer cells and in acquired 
trastuzumab-resistant and primary trastuzumab-resistant cells (Fig. 2B). However, 
trastuzumab-naïve and trastuzumab-resistant cells are relatively resistant to PD0325901, in 
that doses up to 10 uM do not block proliferation of HER2-overexpressing trastuzumab-
naïve or resistant cells (Fig. 2C). Thus, our data indicate that MAPK signaling may not be a 
major mechanism of trastuzumab resistance.  
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Fig. 2. Role of MAPK signaling in trastuzumab-resistant cells. (A) SKBR3 parental, 
trastuzumab-resistant pool 2, and BT474 parental, and trastuzumab-resistant clone 2 and 
clone 3 cells were Western blotted for phosphorylated and total Erk1/2. (B) BT-parental, BT-
c2 (resistant clone 2), and MDA-MB-361 primary trastuzumab-resistant cells were treated 
with MEK inhibitor PD0325901 at 10, 100, or 1000nM for 6 hours or with DMSO control (C) 
corresponding to the volume found in the highest dose of PD0325901. Total protein lysates 
were Western blotted for phosphorylated and total Erk1/2. (C) BT-parental, resistant clone 2 
and 3, MDA361, and MDA453 cells were treated with MEK inhibitor PD0325901 at 1, 10, 
100, 1000, or 10, 000nM for 48 hours with six replicates per treatment group. Control cells 
were treated with DMSO corresponding to the volume found in the highest dose of 
PD0325901. Proliferation was assessed by MTS assay, and is shown as a percentage of 
control group per line.  

4. Targeting IGF-IR signaling in HER2-overexpressing breast cancer  

The insulin-like growth factor receptor I (IGF-IR) is a heterotrimeric transmembrane 
tyrosine kinase receptor that regulates cell metabolism and growth (Chaves, 2010), and has 
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been associated with increased risk and maintenance of multiple cancers including HER2-
overexpressing breast cancer (Esparis-Ogando, 2008; Hankinson, 1998; Surmacz, 2000). 
Circulating ligands of the insulin-like growth factor (IGF) system include IGF-I and IGF-II, 
with IGF-I having the highest affinity for IGF-IR. Upon binding to IGF-IR, a receptor 
conformational change is induced that leads to tyrosine phosphorylation and activation of 
several downstream survival signaling pathways such as the Ras/Raf/mitogen activated 
protein kinase pathway (MAPK), and the PI3K/Akt/mTOR pathway. Activation of these 
pathways results in cell cycle progression and resistance to apoptosis (Chaves, 2011; Adams, 
2000). The IGF binding proteins (IGFBPs) modulate IGF-IR activity by binding to the IGF 
ligands thereby sequestering them and preventing ligand-induced receptor activation 
(Adams, 2000). Higher levels of circulating IGF-I have been linked to trastuzumab resistance 
in HER2-overexpressing breast cancer, with the addition of IGFBP3 decreasing IGF-IR 
activity, and subsequently resulting in an increased response to trastuzumab (Lu, 2001; 
Jerome, 2006).  
We found by gene microarray analysis that IGFBP3 and IGFBP5 were down-regulated in 
resistant versus sensitive cells (Table 2). However, ELISA of secreted IGFBP3 (Fig. 3A) or 
real-time PCR analysis of endogenous IGFBP3 or IGFBP5 transcript level (Fig. 3B) failed to 
show any differences in IGFBP3 or IGFBP5 level in resistant versus parental cells. Thus, our 
data do not support down-regulation of IGFBP3 or IGFBP5 as a mechanism of increased 
IGF-IR signaling in trastuzumab resistance.  
 

Gene 
Name Fold Change ILMN_GENE DEFINITION 

IGFBP5 -20. 55848937 IGFBP5 
Homo sapiens insulin-like growth factor binding protein 
5 (IGFBP5), mRNA.  

IGFBP5 -20. 0185274 IGFBP5 
Homo sapiens insulin-like growth factor binding protein 
5 (IGFBP5), mRNA.  

IGFBP3 -7. 77282369 IGFBP3 
Homo sapiens insulin-like growth factor binding protein 
3 (IGFBP3), transcript variant 2, mRNA.  

PKIA -6. 484521044 PKIA 
Homo sapiens protein kinase (cAMP-dependent, 
catalytic) inhibitor alpha (PKIA), transcript variant 7, 
mRNA.  

IGFBP3 -6. 193624741 IGFBP3 
Homo sapiens insulin-like growth factor binding protein 
3 (IGFBP3), transcript variant 1, mRNA.  

PKIA -5. 371909749 PKIA 
Homo sapiens protein kinase (cAMP-dependent, 
catalytic) inhibitor alpha (PKIA), transcript variant 6, 
mRNA.  

BASP1 -4. 444496135 BASP1 
Homo sapiens brain abundant, membrane attached 
signal protein 1 (BASP1), mRNA.  

HERC6 -4. 048474978 HERC6 Homo sapiens hect domain and RLD 6 (HERC6), mRNA.  

FRAS1 -3. 988854857 FRAS1 Homo sapiens Fraser syndrome 1 (FRAS1), mRNA.  

THBS1 -3. 966312615 THBS1 Homo sapiens thrombospondin 1 (THBS1), mRNA.  

Table 2. Genes that are down-regulated in SKBR3- and BT474-derived acquired 
trastuzumab-resistant cells versus parental SKBR3 and BT474 cells by 4-fold or more.  
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Fig. 3. IGFBP3 and IGFBP5 in resistant and sensitive cells. (A) Secreted IGFBP3 was assessed 
by ELISA in SKBR3 parental, resistant pool 2, BT474 parental, resistant clone 2 and clone 3 
cells. IGFBP3 is shown in pg/mL and was measured in triplicate with reproducible results 
per line. (B) Real-time PCR analysis of IGFBP3 and IGFBP5 was examined in triplicate per 
line, with error bars representing standard deviation between replicates. Housekeeping 
gene RPLPO was measured as an internal control; IGFBP3 and IGFBP5 values are 
normalized to RPLPO.  

A subset of HER2-/ IGF-IR-overexpressing cells were found to be less sensitive to the 
growth inhibitory effects of trastuzumab when compared to HER2-overexpressing cells that 
do not overexpress IGF-IR (Lu, 2001). Flow cytometry revealed that after trastuzumab 
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treatment, HER2 overexpressing cells were less likely to progress through the cell cycle and 
stopped at the G1 phase, while a greater number of HER2/IGF-IR overexpressing cells 
passed the restriction point and completed the cell cycle. These results demonstrate that 
IGF-IR interferes with the growth inhibitory actions of trastuzumab, supporting therapeutic 
strategies that co-target HER2 and IGF-IR. Further, we discovered that signaling interactions 
exist between IGF-IR and HER2 in trastuzumab-resistant cancers (Nahta, 2005; Jin, 2008). 
Immunoprecipitation and immunoblotting experiments revealed that IGF-I stimulation 
results in an increase in IGF-IR phosphorylation more rapidly in trastuzumab-resistant cells 
than in trastuzumab-sensitive cells. Furthermore, IGF-IR heterodimerization with HER2 
results in HER2 activation in trastuzumab-resistant cells, but not in trastuzumab-sensitive 
cells, indicating crosstalk between the two receptors. Kinase inhibition or antibody blockade 
of IGF-IR restores trastuzumab sensitivity. Treatment of trastuzumab-resistant breast cancer 
cells with the highly specific IGF-IR antibody alpha IR3 disrupted the IGF-IR/HER2 
heterodimer and increased trastuzumab sensitivity. These results suggest that IGF-IR-
targeted treatments may be useful in combination with trastuzumab.  
The association of increased IGF-IR activity with the development of trastuzumab resistance 
in HER2-overexpressing breast cancer makes IGF-IR an important target. Researchers have 
been working toward the goal of developing agents that target IGF-IR for the past several 
years with each generation of agents aimed at producing a greater benefit for the patient 
while decreasing adverse effects. IGF-IR and the insulin receptor (IR) are 60% homologous, 
with one of the adverse effects of IGF-IR antibody treatment being downregulation of the IR, 
leading to hyperglycemia (Sachdev, 2006). In an effort to remedy this problem, 
pharmacological agents like the small molecule tyrosine kinase inhibitor NVP-AEW541 
(Novartis Pharma, Basel Switzerland) are specific for IGF-IR and less likely to interfere with 
glucose metabolism. Combination treatment with NVP-AEW541 and trastuzumab showed 
synergistic growth inhibitory effects, indicating that inhibiting IGF-IR plus HER2 could 
benefit patients whose tumors overexpress both receptors (Esparis-Ogando, 2008).  
IGF-IR overexpression and crosstalk with HER2 suggests that IGF-IR plays a crucial role in 
conferring trastuzumab resistance. The molecular signaling pathways by which IGF-IR 
confers resistance to trastuzumab is not clear, although downstream focal adhesion kinase 
(FAK) and PI3K/Akt pathway signaling likely play a role (Yang, 2010). This data linking 
IGF-IR to the development of trastuzumab resistance, along with the increased sensitivity to 
trastuzumab upon IGF-IR inhibition provides a rational for the development of 
combinatorial HER2 and IGF-IR targeting.  

5. Targeting Src in HER2-overexpressing breast cancer  

Trastuzumab treatment of HER2-overexpressing breast cancer cells results in inhibition of 
Src non-receptor tyrosine kinase (Nagata, 2004). Src inhibition appears to be important to 
trastuzumab-mediated anti-cancer activity, as increased Src signaling is associated with 
trastuzumab resistance (Mitra, 2009; Liang, 2010; Zhang, 2011). One mechanism leading to 
increased Src activity appears to be a variant of HER2 called HER2 delta 16 (Mitra, 2009), 
which shows increased oncogenic activity. Local disease progression involved HER2Delta16 
in 89% of breast cancer patients with HER2-positive tumors (Mitra, 2009). Transfection of 
MCF7 or NIH3T3 cells with HER2 delta 16 promoted receptor dimerization, invasion, and 
trastuzumab resistance (Mitra, 2009). The oncogenic properties of HER2Delta16 were 
mediated through direct interaction of HER2Delta16 with Src kinase. Activated Src kinase 
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was found in 44% of HER2Delta16-positive breast carcinomas (Mitra, 2009). Dual targeting 
of HER2Delta16 plus Src with dasatinib resulted in Src inactivation, destabilization of 
HER2Delta16, and decreased tumorigenicity (Mitra, 2009). In addition, Src activation via 
Jak2 has been shown to reduce trastuzumab activity (Liang, 2010). Recombinant human 
erythropoietin activated Jak2-Src signaling and inactivated PTEN in HER2-positive cells 
(Liang, 2010). Combined treatment with recombinant human erythropoietin plus 
trastuzumab reduced response to trastuzumab in cell culture and in vivo models. Further, 
shorter progression-free and overall survival was found in patients with HER2-positive 
breast cancer treated concurrently with erythropoietin and trastuzumab (Liang, 2010). Src 
was also shown to be activated in primary and acquired trastuzumab resistance as a 
consequence of PTEN loss (Zhang, 2011). Src-targeted therapy blocked growth of 
trastuzumab-resistant tumors in vivo (Zhang, 2011). Thus, Src activation may occur via 
multiple mechanisms, ultimately abrogating sensitivity to trastuzumab. Combining Src-
targeted therapy with trastuzumab may offer benefit to patients with HER2-overexpressing 
breast cancer.  

6. Role of p27 and cdk2 in HER2-overexpressing breast cancer 

Trastuzumab induces G1 arrest by several mechanisms including increased expression of 
cyclin-dependent kinase inhibitor p27kip1, which inhibits cyclin E/cdk2 and cyclin 
A/cdk2 complexes and blocks cell cycle progression through S phase (Lane, 2001; Le, 
2003). Trastuzumab induces p27kip1expression by suppressing expression of proteins that 
sequester p27kip1, which also results in increased interaction between p27kip1 and cdk2 
leading to cdk2 inactivation (Lane, 2001). We previously reported (Nahta, 2004b) that cells 
with acquired trastuzumab resistance showed increased proliferation, reduced p27kip1 
expression, reduced p27kip1-cdk2 interaction, and increased cdk2 activity relative to 
parental, trastuzumab-sensitive cells. Transfection of wild-type p27kip1 increased 
trastuzumab sensitivity in cells with acquired resistance (Nahta, 2004b). Yakes et al. 
(Yakes, 2002) showed that knockdown of p27kip1 reduced trastuzumab sensitivity in 
HER2-overexpressing breast cancer cell lines, further supporting a requirement of p27kip1 
expression for optimal response to trastuzumab. Post-translational modification of 
p27kip1 occurs primarily by phosphorylation, with subsequent protein ubiquitination and 
degradation. Preliminary data supporting ubiquitin-proteasome degradation of p27kip1 
as a mechanism of p27kip1 down-regulation in trastuzumab resistance includes our 
finding that proteasome inhibitor MG132 induced p27 expression and reduced viability of 
resistant cells (Nahta, 2004b). Further, Cardoso et al. (Cardoso, 2006) showed that 
proteasome inhibitor bortezomib induced p27kip1 and increased the efficacy of 
trastuzumab in HER2-overexpressing breast cancer cells. PI3K inhibition has been shown 
to induce p27kip1 expression, and is believed to contribute to p27kip1 down-regulation 
and acquired trastuzumab resistance. In addition to observing reduced p27kip1 levels in 
models of acquired resistance, our data indicates that p27kip1 expression is down-
regulated post-transcriptionally in cells with primary trastuzumab resistance (Fig. 4). 
Cyclin E expression has been shown to be regulated by HER2 expression status, in that 
HER2 knockdown resulted in reduced cyclin E level and reduced cyclin E-associated 
kinase activity (Mittendorf, 2010). In addition, HER2-overexpressing breast cancers that 
also show increased cyclin E expression have lower 5 year disease-free survival versus 
those that have lower cyclin E levels (Mittendorf, 2010). Recently, cyclin E overexpression 
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in HER2-overexpressing breast cancer cells that have acquired trastuzumab resistance was 
shown to be due to amplification of the cyclin E gene (Scaltriti, 2011). Amongst 34 patients 
with HER2-overexpressing breast cancer, cyclin E amplification was associated with 
worse response to trastuzumab (Scaltriti, 2011). Knockdown of cyclin E or cdk2 inhibition 
reduced proliferation and induced apoptosis of trastuzumab-resistant tumors (Scaltriti, 
2011). Thus, cdk2 inhibition is a potential pharmacologic strategy for treating 
trastuzumab-resistant HER2-overexpressing breast cancers that show reduced p27kip1 or 
increased cyclin E levels.  
 

 

Fig. 4. p27 down-regulation in models of intrinsic (primary resistance). (A) SKBR3 and 
BT474 trastuzumab-sensitive cells and trastuzumab-resistant HCC1419, HCC1954, and 
JIMT-1 cells were examined by Western blotting for p27 and actin internal control. (B) BT474 
and acquired resistant clone BT-HRc1 and primary resistant HCC1954 and JIMT-1 cells were 
examined by real-time PCR for p27 transcript which was normalized to RPLPO 
housekeeping gene.  

7. Combining multiple HER2-targeted agents in HER2-overexpressing breast 
cancer 

Two HER2-targeted agents are currently approved for use in the setting of metastatic HER2-
positive breast cancer, trastuzumab and lapatinib. These agents target HER2 via distinct 
mechanisms (Fig. 5). Trastuzumab is a monoclonal antibody that specifically recognizes and 
binds to an extracellular part of HER2. Since antibodies are large, bulky molecules, 
trastuzumab is unable to cross the blood-brain barrier and thus cannot combat brain 
metastases. In contrast, lapatinib is a small molecule kinase inhibitor targeted against the 
EGFR and HER2 active sites. Since it is a small molecule, it is believed that lapatinib has the 
potential to enter the brain and target metastatic cells that overexpress HER2. A phase II 
trial of lapatinib in patients with trastuzumab-refractory disease and CNS metastases 
showed some volumetric changes in brain lesions and improved neurologic symptoms (Lin, 
2008; Lin, 2009). Amongst 50 patients who were terated with lapatinib plus capecitabine, 
20% showed a CNS objective response and 40% experienced 20% or greater volumetric 
reduction in their CNS lesions (Lin, 2009), suggesting that lapatinib may have some utility in 
limiting CNS metastases of primary HER2-overexpressing breast cancers.  
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Fig. 5. Novel targeted agents in trastuzumab-resistant HER2-positive breast cancer. T-DM1, 
Trastuzumab-DM1; TRAST, Trastuzumab; PERT, Pertuzumab; IGFR, insulin growth factor 
receptor; EGFR, epidermal growth factor receptor; LAP, lapatinib; NER, neratinib. 

7.1 Combining trastuzumab with lapatinib 

Combination of trastuzumab plus lapatinib has been shown to induce apoptosis in part via 
down-regulation of survivin in cell culture and animal models (Xia, 2005). Initial phase I 
data suggested that the combination is well-tolerated and elicits partial or complete 
responses in a subset of patients who have progressed on prior trastuzumab therapy 
(Storniolo, 2008). The combination has been tested clinically in advanced phase trials in 
patients who have progressed on trastuzumab-based regimens. Progression-free survival 
and quality of life were improved in patients treated with the combination versus lapatinib 
alone (Wu, 2011). EGF104900 showed that the combination was superior to lapatinib alone 
in the trastuzumab-resistant setting, with a clonical benefit rate of 24. 7% versus 12. 4% 
(Blackwell, 2010). A potentially important mechanism of action of this drug combination is 
that lapatinib has been shown to induce accumulation of inactive HER2 dimers via reduced 
receptor ubiquitination, providing increased pharmacologic target for trastuzumab-
mediated antibody-dependent cellular cytotoxicity (Scaltriti, 2009). Combining trastuzumab 
with lapatinib offers a chemotherapy-free option for treating HER2-positive trastuzumab-
resistant disease.  

7.2 Combining trastuzumab with pertuzumab 
Pertuzumab is an anti-HER2 monoclonal antibody that targets an extracellular epitope 
distinct from what is targeted by trastuzumab. Pertuzumab binds to HER2 near the center of 

www.intechopen.com



 
Breast Cancer – Current and Alternative Therapeutic Modalities 

 

14

domain II, sterically blocking a binding pocket necessary for receptor dimerization and 
signaling (Franklin, 2004). In contrast, trastuzumab does not significantly inhibit HER2 
interaction with other erbB receptors. We were the first to show that combining pertuzumab 
with trastuzumab results in synergistic inhibition of proliferation of HER2-overexpressing 
breast cancer cells (Nahta, 2004a). Trastuzumab increased pertuzumab-mediated disruption 
of HER2 dimerization with EGFR and HER3, and further reduced pertuzumab-mediated 
inhibition of PI3K signaling (Nahta, 2004a). Phase II data shows that combining trastuzumab 
with pertuzumab in patients who have progressed on prior trastuzumab regimens achieves 
clinical benefit rate of 50%, objective response rates of 24%, and median progression-free 
survival of 5. 5 months (Baselga, 2010a). A potential mechanism of synergy is non-
overlapping mechanisms by single agents, trastuzumab-mediated inhibition of p95HER2 
cleavage and pertuzumab-mediated disruption of dimerization (Scheuer, 2009). Clinical 
evaluation of pertuzumab and trastuzumab (CLEOPATRA) is an international, randomized, 
double-blind, placebo-controlled phase III trial. Patients with HER2-positive breast cancer 
with locally recurrent or metastatic disease will be randomized to receive docetaxel, 
trastuzumab, and pertuzumab or docetaxel, trastuzumab, and placebo. Progresion-free 
survival will be assessed to determine efficacy of combination pertuzumab plus 
trastuzumab in the trastuzumab-refractory setting (Baselga, 2010b).  

8. Novel HER2-targeted agents in clinical development 

8.1 Trastuzumab-DM1 
One novel preparation of trastuzumab is a drug conjugate called trastuzumab-DM1, which 
is trastuzumab conjugated to a microtubule-depolymerizing drug called maytansinoid 
(Lewis Phillips, 2008). Trastuzumab-DM1 blocks growth of trastuzumab-naive and 
trastuzumab-refractory HER2-overexpressing breast tumors in vivo (Lewis Phillips, 2008), 
and retains the mechanistic activity of unconjugated trastuzumab (Junttila, 2010). Antibody-
dependent cellular cytotoxicity was induced by trastuzumab-DM1, and tumor growth of 
trastuzumab-resistant cells was blocked by trastuzumab-DM1 due to induction of apoptosis 
and mitotic catastrophe (Barok, 2011). A phase I dose-escalation study in patients who had 
progressed on trastuzumab showed clinical benefit of 73% in 15 of 24 patients, including 
objective responses in 5 patients (Krop, 2010). A phase II study of trastuzumab-DM1 in 
patients with trastuzumab-refractory HER2-positive breast cancer showed objective 
response of 25. 9% and median progression-free survival of 4. 6 months (Burris, 2011). Thus, 
trastuzumab-DM1 HER2 antibody-chemotherapy conjugate is a promising treatment for 
HER2-positive breast cancer that has progressed on prior HER2-directed therapies.  

8.2 Irreversible pan-HER kinase inhibitors 
In contrast to lapatinib, which is a reversible EGFR/HER2 kinase inhibitor, irreversible pan-
HER inhibitors are being developed for use against HER2-dependent breast cancers (Ocana, 
2009). Neratinib, an irreversible EGFR/HER2 inhibitor, achieved a response rate of 26% in 
trastuzumab-pretreated patients and 55% in trastuzumab-naïve patients (Burstein, 2009). 
Progression-free survival at 16 weeks was 60% and 77%, respectively, for trastuzumab-
pretreated and naïve patients (Burstein, 2009). Finally, the median time to progression was 
23 weeks and 40 weeks, respectively, for trastuzumab-pretreated and naïve patients 
(Burstein, 2009). Canertinib (CI-1033) is an irreversible inhibitor of all HER proteins. 
Response to canertinib was higher in patients with HER2-positive breast cancer, although 
toxicity at the most effective dose was limiting and unacceptable (Rixe, 2009).  
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9. Conclusion 

In conclusion, several major mechanisms of trastuzumab resistance have been proposed, 
including increased signaling from PI3K/mTOR, Src, and IGF-IR, as well as reduced 
p27kip1 and increased cdk2 activity. These mechanisms have uncovered new therapeutic 
targets for which multiple pharmacologic agents have been developed. Some of the most 
promising include mTOR-targeted agents derived from rapamycin and trastuzumab-DM1. 
Combining multiple HER2-targeted agents appears to be beneficial due to different 
mechanisms of action. Future studies should more clearly address the role of IGF-IR in 
acquired versus primary resistance, and test IGF-IR-targeted agents in combination with 
trastuzumab and/or lapatinib in a trastuzumab-refractory setting. In addition, studies 
examining the role of estrogen receptor (ER) signaling in trastuzumab resistant HER2-
positive ER-positive disease should be performed. Finally, biological predictors of response 
or resistance need to be developed to determine which patients are most likely to benefit 
from trastuzumab therapy, thus allowing for more specific individualization of targeted 
therapy in patients with HER2-overexpressing breast cancer.  
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