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Robust Attenuation of Frequency
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Aalto University School of Electrical Engineering
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1. Introduction

Systems described by differential equations with time-periodic coefficients have a long
history in mathematical physics. Applications cover a wide area of systems ranging from
helicopter blades, rotor-bearing systems, mechanics of structures, stability of structures
influenced by periodic loads, applications in robotics and micro-electromechanical systems

etc. (Rao, 2000; Sinha, 2005). Processes characterized by linear time-invariant or time-varying
dynamics corrupted by sinusoidal output disturbance belong to this class of systems. Robust
and adaptive analysis and synthesis techniques can be used to design suitable controllers,
which fulfill the desired disturbance attenuation and other performance characteristics of the
closed-loop system.
Despite of the fact that LTP (Linear Time Periodic) system theory has been under research
for years (Deskmuhk & Sinha, 2004; Montagnier et al., 2004) the analysis on LTPs with
experimental data has been seriously considered only recently (Allen, 2007). The importance
of new innovative ideas and products is of utmost importance in modern industrial society. In
order to design more accurate and more economical products the importance of model-based
control, involving increasingly accurate identification schemes and more effective control
methods, have become fully recognized in industrial applications.
An example of the processes related to the topic is vibration control in electrical machines,
in which several research groups are currently working. Active vibration control has many
applications in various industrial areas, and the need to generate effective but relatively

cheap solutions is enormous. The example of electrical machines considered concerns the
dampening of rotor vibrations in the so-called critical speed declared by the first flexural rotor
bending resonance. In addition, the electromagnetic fields in the air-gap between rotor and
stator may couple with the mechanic vibration modes, leading to rotordynamic instability.
The vibration caused by this resonance is so considerable that large motors often have to be
driven below the critical speed. Smaller motors can be driven also in super-critical speeds,
but they have to be accelerated fast over the critical speed. Active vibration control would
make it possible to use the motor in its whole operation range freely, according to specified
needs given by the load process. Introducing characteristics of this kind for the electric drives
of the future would be a major technological break-through, a good example of an innovative
technological development.
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In practice, the basic electromechanical models of electrical machines can be approximated
by linear time-invariant models with a sinusoidal disturbance signal entering at the so-called
critical frequency. That frequency can also vary which makes the system model time-variable.
The outline of the article is as follows. Two test processes are introduced in Section 2. A
systematic and generic model structure valid for these types of systems is presented in Section
3. Three types of controllers for active vibration control are presented in Section 4 and
their performance is verified by simulations and practical tests. Specifically the extension
to the nonlinear control algorithm presented in Section 4.4 is important, because it extends
the optimal controller to a nonlinear one with good robustness properties with respect to
variations in rotation frequency. Conclusions are given in Section 5.

2. Problem statement

The control algorithms described in the paper were tested by two test processes to be
discussed next.

2.1 An electric machine

(a) Fig1a (b) Fig1b

Fig. 1. Test machine: A 30 kW three-phase squirrel cage induction motor with an extended
rotor shaft (a) and stator windings (b)

In electrical motors both radial and axial vibration modes are of major concern, because they
limit the speed at which the motor can be run and also shorten the lifetime of certain parts
of the motor. The fundamental vibration forces are typically excited at discrete frequencies
(critical frequencies), which depend on the electrodynamics of the rotor and stator (Inman,
2006). In some machines the critical frequency can be passed by accelerating the rotor speed
fast beyond it, but specifically in larger machines that is not possible. Hence these machines
must be run at subcritical frequencies. It would be a good idea to construct an actuator, which
would create a separate magnetic field in the airgap between the stator and rotor. That would
cause a counterforce, which would attenuate the vibration mode of the rotor. Running the
rotor at critical speeds and beyond will need a stable and robust vibration control system,
because at different speeds different vibration modes also wake.
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In Fig.1 a 30 kW induction machine is presented, provided with such a new actuator, which
is a coil mounted in the stator slots of the machine (b). The electromechanical actuator is an
extra winding, which, due to the controlled current, produces the required counter force to
damp the rotor vibrations. The actuator is designed such that the interaction with the normal
operation of the machine is minimal. More on the design and modelling of the actuator can
be found in (Laiho et al., 2008).
Some of the machine parameters are listed in Table 1. The vibration of the rotor is continuously
measured in two dimensions and the control algorithm is used to calculate the control current
fed into the coil. The schema of the control arrangement is shown in Fig.2. The idea is to

 

Fig. 2. Rotor vibration control by a built-in new actuator

generate a control force to the rotor through a new actuator consisting of extra windings
mounted in the stator slots. An adaptive model-based algorithm controls the currents to
the actuator thus generating a magnetic field that induces a force negating the disturbance
force exited by the mass imbalance of the rotor. The configuration in the figure includes an
excitation force (disturbance) consisting of rotation harmonics and harmonics stemming from

the induction machine dynamics. The control force and the disturbance exert a force to the
rotor, which results in a rotor center displacement. If the dynamic compensation signal is
chosen cleverly, the rotor vibrations can be effectively reduced.
In practical testing the setup shown in Fig.3 has been used. The displacement of the rotor in
two dimensions (xy) is measured at one point with displacement transducers, which give a
voltage signal proportional to the distance from sensor to the shaft. A digital tachometer at the
end of the rotor measures the rotational frequency. The control algorithms were programmed
in Matlab/Simulink model and the dSpace interface system and the Real-Time Workshop
were used to control the current fed to the actuator winding.

2.2 An industrial rolling process

The second tests were made by a rolling process consisting of a reel, hydraulic actuator and
force sensor. The natural frequency of the process was 39 Hz, and the hydraulic actuator acts
both as the source of control forces and as a support for the reel. The actuator is connected to
the support structures through a force sensor, thus providing information on the forces acting
on the reel. The test setup is shown in Fig.4 and the control schema is presented in Fig.5.

293Robust Attenuation of Frequency Varying Disturbances
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Parameter Value Unit

supply frequency 50 Hz
rated voltage 400 V
connection delta -

rated current 50 A
rated power 30 kW

number of phases 3 -
number of poles 2 -

rated slip 1 %
rotor mass 55.8 kg

rotor shaft length 1560 mm
critical speed 37.5 Hz

width of the air-gap 1 mm

Table 1. Main parameters of the test motor
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3. Modeling and identification

Starting from the first principles of electromagnetics (Chiasson, 2005; Fuller et al., 1995) and

structure mechanics, the vibration model can for a two-pole cage induction machine be
written in the form (Laiho et al., 2008)

q̇ = Aq + Bv + G fex

urc = Cq
(1)

where q denotes the states (real and complex) of the system, v is the control signal of the
actuator, fex is the sinusoidal disturbance causing the vibration at the critical frequency, and

urc is the radial rotor movement in two dimensions. The matrices A, B, G and C are constant.
The constant parameter values can be identified by the well-known methods
(Holopainen et al., 2004; Laiho et al., 2008; Repo & Arkkio, 2006). The results obtained
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by using finite-element (FE) model as the "real" process have been good and accurate
(Laiho et al., 2007), when both prediction error method (PEM) and subspace identification
(SUB) have been used. Since the running speed of the motor was considered to be below
60 Hz, the sampling rate was chosen to be 1 kHz. A 12th order state-space model was used
as the model structure (four inputs and two outputs corresponding to the control voltages,
rotor displacements and produced control forces in two dimensions). The model order was

chosen based on the frequency response calculated from the measurement data, from which
the approximate number of poles and zeros were estimated.
In identification a pseudo random (PSR) control signal was used in control inputs. That
excites rotor dynamics on a wide frequency range, which in limited only by the sampling
rate. However, because the second control input corresponds to the rotor position and has a
big influence on the produced force a pure white noise signal cannot be used here. Therefore
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the model output of the rotor position added with a small PSR signal to prevent correlation
was used as the second control input. After identification the model was validated by using
independent validation data. The fit was larger than 80 per cent, which was considered to be
adequate for control purposes. The results have later been confirmed by tests carried out by
using the real test machine data, and the results were found to be equally good.
The model structure is then as shown in Fig.6, where the actuator model and electromechanic
model of the rotor have been separated, and the sinusoidal disturbance term is used to model
the force that causes the radial vibration of the rotor. In Fig.6a the models of the actuator
and rotor have been separated and the disturbance is modelled to enter at the input of the
rotor model. The internal feedback shown is caused by the unbalanced magnetic pull (UMP),
which means that the rotor when moved from the center position in the airgap causes an
extra distortion in the magnetic field. That causes an extra force, which can be taken into
consideration in the actuator model. However, in practical tests it is impossible to separate the
models of the actuator and rotor dynamics, and therefore the model in Fig.6b has been used
in identification. Because the models are approximated by linear dynamics, the sinusoidal

disturbance signal can be moved to the process output, and the actuator and rotor models can
be combined.
In Fig. 6a the 4-state dynamical (Jeffcott) model for the radial rotor dynamics is

ẋr(t) = Arx(t) + Brur(t)
yr(t) = Crx(t)

(2)

where yr is the 2-dimensional rotor displacement from the center axis in xy-coordinates, and
ur is the sum of the actuator and disturbance forces. The actuator model is

ẋa(t) = Aaxa(t) +
[

Ba1 Ba2

]
[

yr(t)
u(t)

]

ya(t) = Caxa(t)
(3)

where ya are the forces generated by the actuator, and u are the control voltages fed into the
windings. The self-excited sinusoidal disturbance signal is generated by (given here in two
dimensions)

ẋd(t) = Adxd(t) =

⎡

⎢
⎢
⎣

0 1 0 0

−ω2
d 0 0 0

0 0 0 1

0 0 −ω2
d 0

⎤

⎥
⎥
⎦

xd(t)

d(t) = Cdxd(t) =

[
1 0 0 0
0 0 1 0

]

xd(t)

(4)

where ωd is the angular frequency of the disturbance and d(t) denotes the disturbance forces
in xy-directions. The initial values of the state are chosen such that the disturbance consists of
two sinusoidal signals with 90 degree phase shift (sine and cosine waves). The initial values
are then

xd(0) =

[
xsin(0)
xcos(0)

]

=

⎡

⎢
⎢
⎣

0
Aωd

A
0

⎤

⎥
⎥
⎦
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where A is the amplitude of the disturbance. The models of the actuator, rotor and disturbance
can be combined into one state-space representation

ẋp(t) = Apxp(t) + Bpu(t) =

⎡

⎣

Ar BrCa BrCd

Ba1Cr Aa 0
0 0 Ad

⎤

⎦ xp(t) +

⎡

⎣

0
Ba2

0

⎤

⎦ u(t)

yr(t) = Cpxp(t) =
[

Cr 0 0
]

xp(t)

(5)

with

xp =

⎡

⎣

xr

xa

xd

⎤

⎦

As mentioned, the actuator and rotor model can be combined and the disturbance can
be moved to enter at the output of the process (according to Fig. 6b). The state-space

representation of the actuator-rotor model is then

ẋar(t) = Aarxar(t) + Baru(t)
yar(t) = Carxar(t)

(6)

where u is a vector of applied control voltages and yar is vector of rotor displacements. The
whole system can be modeled as

ẋp(t) = Apxp(t) + Bpup(t) =

[
Aar 0
0 Ad

]

xp(t) +

[
Bar

0

]

u(t)

yr(t) = Cpxp(t) =
[

Car Cd

]
xp(t)

(7)

with

xp(t) =

[
xar(t)
xd(t)

]

The process was identified with a sampling frequency of 1 kHz, which was considered

adequate since the running speed of the motor was about 60 Hz and therefore well below
100 Hz. Pseudorandom signals were used as control forces in both channels separately, and
the prediction error method (PEM) was used (Ljung, 1999) to identify a 12th order state-space
representation of the system.
The identified process model is compared to real process data, and the results are shown in
Figs.7 and 8, respectively. The fit in x and y directions were calculated as 72.5 % and 80.08 %,
which is considered to be appropriate. From the frequency domain result it is seen that for
lower frequency the model agrees well with response obtained form measured data, but in
higher frequencies there is a clear difference. That is because the physical model used behind
the identification is only valid up to a certain frequency, and above that there exist unmodelled
dynamics.

4. Control design

In the following sections different control methods are presented for vibration control of single
or multiple disturbances with a constant or varying disturbance frequencies. Two of the
methods are based on the linear quadratic gaussian (LQ) control, and one belongs to the class
of higher harmonic control algorithms (HHC), which is also known as convergent control. If the
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Fig. 7. Validation of the actuator-rotor model in time domain

 

Fig. 8. Validation of the actuator-rotor model in frequency domain
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sinusoidal disturbance frequency signal varies in frequency, the algorithms must be modified
by combining them and using direct frequency measurement or frequency tracking.

4.1 Direct optimal feedback design

In this method the suppressing of tonal disturbance is posed as a dynamic optimization
problem, which can be solved by the well-known LQ theory. The idea is again that the model
generating the disturbance is embedded in the process model, and that information is then
automatically used when minimizing the design criterion. That leads to a control algorithm
which inputs a signal of the same amplitude but opposite phase to the system thus canceling
the disturbance. The problem can be defined in several scenarios, e.g. the disturbance can be
modelled to enter at the process input or output, the signal to be minimized can vary etc.
Starting from the generic model

ẋ(t) = Ax(t) + Bu(t) =

[
Ap 0
0 Ad

]

x(t) +

[
Bp

0

]

u(t)

y(t) =
[

Cp Cd

]
x(t)

(8)

the control criterion is set

J =

∞∫

0

(

zT(τ)Qz(τ) + uT(τ)Ru(τ)
)

dτ (9)

where z is a freely chosen performance variable and Q ≥ 0, R > 0 are the weighing matrices
for the performance variable and control effort. By inserting z(t) = Czx(t) the criterion
changes into the standard LQ form

J =

∞∫

0

(

xT(τ)CT
z QCzx(τ) + uT(τ)Ru(τ)

)

dτ (10)

The disturbance dynamics can be modelled as

ẋd(t) = Adxd(t) =

⎡

⎢
⎢
⎢
⎣

Ad1 · · · 0 0
...

. . .
...

...
0 · · · Adn 0

0 · · · 0 −ǫ

⎤

⎥
⎥
⎥
⎦

xdn(t)

d(t) = Cdxd(t) =
[

Cd1 · · · Cdn 0
]

xdn(t)

(11)

where

Adn =

[
0 1

−ω2
dn −ε

]

, i = 1, 2, ..., n

and the initial values
x(0) =

[
xT

d1(0) · · · xT
dn(0) b

]T

According to the formalism a sum of n sinusoidal disturbance components (angular
frequencies ωdn) enter the system. The very small number ǫ is added in order the augmented
system to be stabilizable, which is needed for the solution to exist. The damping of the
resulting sinusoidal is so low that it does not affect the practical use of the optimal controller.

299Robust Attenuation of Frequency Varying Disturbances
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The constant b can be used for a constant bias term in the disturbance. Compare the
disturbance modelling also to that presented in equations (4) and (5).
To minimize of sinusoidal disturbances the following performance variable can be chosen

z(t) =

[

Cp

...
[

Cd1 · · · Cdn 0
]

]

x(t) =

[

Cp

... Cd

]

x(t) = Czx(t) (12)

which leads to the cost function (10)
The solution of the LQ problem can now be obtained by standard techniques
(Anderson & Moore, 1989) as

u(t) = −Lx(t) = −R−1BTSx(t) (13)

where S is the solution of the algebraic Riccati equation

ATS + SA − SBR−1BTS + Q = 0 (14)

It is also possible to choose simply z(t) = x(t) in (9). To force the states approach zero it is in
this case necessary to introduce augmented states

xaug(t) =

t∫

0

(yar(τ) + d(τ)) dτ =
[

Car Cd

]
t∫

0

([
xar(τ)

T xd(τ)
T
]T

)

dτ (15)

The system to which the LQ design is used is then

ẋ(t) =

[
ẋp(t)

ẋaug(t)

]

=

⎡

⎢
⎢
⎢
⎢
⎣

Ap

... 0

· · ·
... · · ·

[
Car Cd

] ... 0

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Aaug

x(t) +

⎡

⎣

Bp

· · ·

0

⎤

⎦

︸ ︷︷ ︸

Baug

u(t)

yr(t) =
[

Cp 0
]

︸ ︷︷ ︸

Caug

x(t)

(16)

In this design the weights in Q corresponding to the augmented states should be set to
considerably high values, e.g. values like 105 have been used.
Usually a state observer must be used to implement the control law. For example, in the
configuration shown in Fig.6a (see also equation (5)) that has the form

˙̂x(t) = Ap x̂(t) + Bpu(t) + K (yr(t)− ŷr(t))
yobs = x̂(t)

(17)

The gain in the estimator can be chosen based on the duality between the LQ optimal
controller and the estimator. The state error dynamics x̃(t) = x(t)− x̂(t) follows the dynamics

˙̃x(t) =
(

Ap − KCp
)

x̃(t) (18)
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which is similar to
ẋN(t) = ANxN(t) + BNuN(t) (19)

with AN = AT
p , BN = CT

p , KN = KT and uN(t) = −KNxN(t). The weighting matrix KN can
be determined by minimizing

Jobs =

∞∫

0

(

xN(t)TQobsxN(t) + uN(t)
TRobsuN(t)

)

dt (20)

where the matrices Qobs and Robs contain the weights for the relative state estimation error
and its convergence rate.
The optimal control law (13) can now be combined with the observer model (17). Including
the augmented states (15) the control law can be stated as

ẋLQ(t) =

[
˙̂x(t)

˙̂xaug(t)

]

=

([
Ap − KCp 0

Cp 0

]

−

[
Bp

0

]

L

)

︸ ︷︷ ︸

ALQ

xLQ(t) +

[
K
0

]

︸ ︷︷ ︸

BLQ

yr(t)

uLQ(t) = −L
︸︷︷︸

CLQ

xLQ(t)

(21)

where yr is the rotor displacement, uLQ is the optimal control signal, and ALQ, BLQ and CLQ

are the parameters of the controller.

4.2 Convergent controller

The convergent control (CC) algorithm (also known as instantaneous harmonic control
(IHC) is a feedforward control method to compensate a disturbance at a certain frequency
(Daley et al., 2008). It is somewhat similar to the well-known least means squares compensator
(LMS), (Fuller et al., 1995; Knospe et al., 1994) which has traditionally been used in many
frequency compensating methods in signal processing. A basic schema is presented in Fig.9.
The term r is a periodic signal of the same frequency as d, but possibly with a different

 

0

( )
N

i

ì

h r k i
=

−∑ +

( )r k

( )d k

( )e k( )u k

Fig. 9. Feedforward compensation of a disturbance signal

amplitude and phase. The idea is to change the filter parameters hi such that the signal u
compensates the disturbance d. The standard LMS algorithm that minimizes the squared
error can be derived to be as

hi(k + 1) = hi(k)− αr(k − i)e(k) (22)

301Robust Attenuation of Frequency Varying Disturbances
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where α is a tuning parameter (Fuller et al., 1995; Tammi, 2007). In the CC algorithm the
process dynamics is presented by means of the Fourier coefficients as

EF(k) = GFUF(k) + DF(k) (23)

where GF is the complex frequency response of the system and the symbols EF, UF and DF

are the Fourier coefficients of the error, control and disturbance signals. For example

Eωn
F =

1

N

N−1

∑
k=0

e(k)e−2iπkn/N
≈ e(k)e−iωnt

where N is the number of samples in one signal period, and n is the number of the spectral
line of the corresponding frequency. If the sampling time is Ts, then t = kTs.
The criterion to be minimized is J = E∗

FEF which gives

UF = − (G∗
FGF)

−1 G∗
FDF = −AFDF (24)

where ∗ denotes the complex transpose. The pseudoinverse is used if necessary when
calculating the inverse matrix. In terms of Fourier coefficients the Convergent Control
Algorithm can be written as

UF(k + 1) = βUF(k)− αAFEF(k) (25)

where α and β are tuning parameters. It can be shown (Daley et al., 2008; Tammi, 2007) that

the control algorithm can be presented in the form of a linear time-invariant pulse transfer
function

Gcc(z) =
U(z)

Y(z)
= β

Re

(

GF

(

eiωk

)−1
)

z2 − αRe

(

GF

(

eiωk

)−1
e−iωkTs

)

z

z2 − 2α cos (ωkTs) z + α2
(26)

where Y(z) is the sampled plant output and U(z) is the sampled control signal.
The convergent controller can operate like an LMS controller in series with the plant, by using
a reference signal r proportional to the disturbance signal to be compensated. The ’plant’

can here mean also the process controlled by a wide-frequency band controller like the LQ
controller for instance.

Process

Feedback control

Convergent control
( )ry t( )extu t( )r t

( )LQu t

( )u t
+

Adaptation

signal

Fig. 10. Convergent controller in series with a controlled plant
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Alternatively, the CC controller can be connected in parallel with the LQ-controller, then
having the plant output as the input signal. Several CC controllers (tuned for different
frequencies) can also be connected in parallel in this configuration, see Fig.11.

Process

LQ-controller

( )CCu k

( )LQu k

( )ry k( )u k

+ +

CC-controller

Fig. 11. Convergent controller connected in parallel with the LQ controller

4.3 Simulations and test runs

The controller performance was tested in two phases. Firstly, extensive simulations by using a
finite element (FE) model of the electrical machine and actuator were carried out. Secondly, the
control algorithms were implemented in the test machine discussed in Section 2.1 by using a
dSpace system as the program-machine interface. The disturbance frequency was 49.5 Hz, and

the controller was discretized with the sampling frequency 1 kHz. Time domain simulations
are shown in Figs. 12 and 13. The damping is observed to be about 97 per cent, which is a
good result.

 

Fig. 12. Simulation result in time domain (rotor vibration in x-direction)

The critical frequency of the 30 kW test motor was 37.7 Hz. However, due to vibrations the
rotor could not be driven at this speed in open loop, and both the identification and initial
control tests were performed at 32 Hz rotation frequency. In the control tests the LQ controller

was used alone first, after which the CC controller was connected, in order to verify the
performance of these two control configurations. Both controllers were discretized at 5 kHz
sampling rate.

303Robust Attenuation of Frequency Varying Disturbances
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Fig. 13. Simulated rotor vibration in xy-plot

The test results are shown in Figs. 14-17. In Fig.14 the control signal and rotor vibration
amplitude are shown, when the machine was driven at 32.5 Hz. The LQ controller was
used first alone, and then the CC controller was connected. It is seen that the CC controller
improves the performance somewhat, and generally the vibration damping is good and well

comparable to the results obtained by simulations. The same can be noticed from the xy-plot
shown in Fig.15.

Fig. 14. Test machine runs at 32 Hz speed: Control voltage and rotor displacement in
x-direction

Next, the operation speed was increased to the critical frequency 37.5 Hz. Controller(s) tuned
for this frequency could be driven without any problems at this speed. Similar results as
above are shown in Figs.16 and 17. It is remarkable that now connecting the CC controller on
improved the results more than before. So far there is no clear explanation to this behaviour.

4.4 Nonlinear controller

If the frequency of the disturbance signal is varying, the performance of a controller with

constant coefficients deteriorates considerably. An immediate solution to the problem
involves the use of continuous gain scheduling, in which the controller coefficients are
modified according to the current disturbance frequency. To this end the disturbance
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Fig. 15. Test machine runs at 32 Hz speed: xy-plot

 

Fig. 16. Test machine runs at 37.5 Hz critical speed: Control voltage and rotor displacement
in x-direction

 

Fig. 17. Test machine runs at 37.5 Hz critical speed: xy-plot
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frequency (usually the rotating frequency) has to be measured of tracked (Orivuori & Zenger,
2010; Orivuori et al., 2010). The state estimator can be written in the form

˙̂x(t, ωhz) = (A (ωhz)− K (ωhz)C) x̂(t, ωhz) + Bu(t) + K(ωhz)y(t) (27)

where it has been assumed that the model topology is as in Fig.6b and the disturbance model
is included in the system matrix A. The matrix K changes as a function of frequency as

K(ωhz) =
[

f1(ωhz) f2(ωhz) · · · fn(ωhz)
]T

(28)

where fi are suitable functions of frequency. Solving the linear optimal control problem in a
frequency grid gives the values of K, which can be presented like in Fig.18 The functions fi

Fig. 18. Projections of the hypersurface to the elements of K

can be chosen to be polynomials, so that the feedback gain has the form

K(ωhz) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

uω(ωhz) (29)
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where aij are the polynomial coefficients and

uω(ωhz) =
[

ωm−1
hz · · · ω2

hz ωhz 1
]T

(30)

The optimal control gain L(ωhz) can be computed similarly.
The controller was tested with the industrial rolling process presented in Section 2.2. A
sinusoidal sweep disturbance signal was used, which corresponds to a varying rotational
speed of the reel with constant width. The rotation frequency ranged over the frequency
range 5 Hz..50 Hz. Before the practical tests the theoretical performance of the controller was
analyzed. The result is shown in Fig.19, which shows a neat damping of the vibration near
the critical frequency 39 Hz. Simulation and practical test results are shown in Figs.20 and

 

Fig. 19. Theoretical damping achieved with the nonlinear controller

21, respectively. The controller turns out to be effective over the whole frequency range the
damping ratio being 99 per cent in simulation and about 90 per cent in practical tests. The
result of the good performance of the nonlinear controller is further verified by the output
spectrum of the process obtained with and without control. The result is shown in Fig.22.

 

Fig. 20. Simulated performance of the nonlinear controller
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Fig. 21. Real performance of the nonlinear controller

 

Fig. 22. Frequency spectra of the process output with and without control

5. Conclusion

Vibration control in rotating machinery is an important topic of research both from theoretical
and practical viewpoints. Generic methods which are suitable for a large class of such
processes are needed in order to make the analysis and controller design transparent and
straightforward. LQ control theory offers a good and easy to learn model-based control
technique, which is effective and easily implemented for industrial processes. The control
algorithm can be extended to the nonlinear case covering systems with varying disturbance
frequencies. The performance of such an algorithm has been studied in the paper, and the
performance has been verified by analysis, simulation and practical tests of two different
processes. The vibration control results have been excellent. In future research it is
investigated, how the developed methods can be modified to be used is semi-active vibration
control. That is important, because active control has its risks, and all industrial users are not

willing to use active control methods.
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