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1. Introduction 

Stability analysis and controller design for uncertain nonlinear systems is open problem 

now(Vidyasagar, 1986). So far numerous design methodologies exist for the controller 

design of nonlinear systems(Kokotovic & Arcak, 2001). These include any of a huge number 

of linear design techniques(Anderson & More, 1990; Horowitz, 1991) used in conjuction 

with gain scheduling(Rugh & Shamma, 200); nonlinear design methodologies such as 

Lyapunov function approach(Vidyasagar, 1986; Kokotovic & Arcak, 2001; Cai et al., 2008; 

Gutman, 1979; Slotine & Li, 1991; Khalil, 1996), feedback linearization method(Hunt et al., 

1987; Isidori, 1989; Slotine & Li, 1991), dynamics inversion(Slotine & Li, 1991),  

backstepping(Lijun & Chengkand, 2008), adaptive technique which encompass both linear 

adaptive(Narendra, 1994) and nonlinear adaptive control(Zheng & Wu, 2009), sliding mode 

control(SMC)(Utkin, 1978; Decarlo etal., 1988; Young et al., 1996; Drazenovic, 1969; Toledo & 

Linares, 1995; Bartolini & Ferrara, 1995; Lu & Spurgeon, 1997), and etc(Hu & Martin, 1999; 

Sun, 2009; Chen, 2003). 

The sliding mode control can provide the effective means to the problem of controlling 

uncertain nonlinear systems under parameter variations and external disturbances(Utkin, 

1978; Decarlo et. al., 1988; Young et al., 1996). One of its essential advantages is the 

robustness of the controlled system to variations of parameters and external disturbances in 

the sliding mode on the predetermined sliding surface, s=0(Drazenovic, 1969). In the VSS, 

there are the two main problems, i.e., the reaching phase at the initial stage(Lee & Youn, 

1994) and chattering of the input (Chern & Wu, 1992). To remove the reaching phase, the 

two requirements are needed, i.e., the sliding surface must be determined from an any given 

initial state to the origin( (0)  & t 0( )| 0x xs x = = = ) and the control input must satisfy the existence 

condition of the sliding mode on the pre-selected sliding surface for all time from the initial 

to the final time( 0,    for  0Ts s t< ≥$ ). 
In (Toledo & Linares, 1995), the sliding mode approach is applied to nonlinear output 

regulator schemes. The underlying concept is that of designing sliding submanifold which 

contains the zero tracking error sub-manifold. The convergence to a sliding manifold can be 

attained relying on a control strategy based on a simplex of control vectors for multi input 

uncertain nonlinear systems(Bartolini & Ferrara, 1995). A nonlinear optimal integral variable 
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structure controller with an arbitrary sliding surface without the reaching phase was 

proposed for uncertain linear plants(Lee, 1995). (Lu and Spurgeon, 1997) considered the 

robustness of dynamic sliding mode control of nonlinear system, which is in differential 

input-output form with additive uncertainties in the model. The discrete-time 

implementation of a second-order sliding mode control scheme is analyzed for uncertain 

nonlinear system in (Bartolini et al., 2001). (Adamy & Flemming, 2004) surveyed so called 

soft variable structure controls, compared them to others. The tracker control problem that 

is the regulation control problem from an arbitrary initial state to an arbitrary final state 

without the reaching phase is handled and solved for uncertain SISO linear plants in (Lee, 

2004). For 2nd order uncertain nonlinear system with mismatched uncertainties, a switching 

control law between a first order sliding mode control and a second order sliding mode 

control is proposed to obtain the globally or locally asymptotic stability(Wang et al., 2007). 

The optimal SMC for nonlinear system with time-delay is suggested(Tang et al., 2008). The 

nonlinear time varying sliding sector is designed for continuous control of a single input 

nonlinear time varying input affine system which can be represented in the form of state 

dependent linear time variant systems with matched uncertainties(Pan et al., 2009). For 

uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance, 

the systematic design of the SMC is reported(Lee, 2010a). The two clear proofs of the 

existence condition of the sliding mode with respect to the two transformations i.e., the two 

diagonalization methods are given for multi-input uncertain linear plants(Lee 2010b), while 

(Utkin, 1978) and (Decarlo et al., 1988) proved unclearly for uncertain nonlinear plants. 

Until now, the integral action is not introduced to the variable structure system for uncertain 
nonlinear system with mismatched uncertainties and matched disturbance to improve the 
output performance by means of removing the reaching phase problems. And a nonlinear 
output feedback controller design for uncertain nonlinear systems with mismatched 
uncertainties and matched disturbance is not presented.  
In this chapter, a systematic general design of new integral nonlinear full-state(output) 
feedback variable structure controllers based on state dependent nonlinear form is 
presented for the control of uncertain affine nonlinear systems with mismatched 
uncertainties and matched disturbances. After an affine uncertain nonlinear system is 
represented in the form of state dependent nonlinear system, a systematic design of a new 
nonlinear full-state(output) feedback variable structure controller is presented. To be linear 
in the closed loop resultant dynamics, full-state(output) feedback (transformed) integral 
linear sliding surfaces are applied in order to remove the reaching phase, those are stemmed 
from the studys by (Lee & Youn, 1994; Lee, 2010b) which is the first time work of removing 
the reaching phase with the idea of introducing the initial condition for the integral state. 
The corresponding discontinuous (transformed) control inputs are proposed to satisfy the 
closed loop exponential stability and the existence condition of the sliding mode on the full-
state(output) feedback integral sliding surfaces, which will be investigated in Theorem 1 and 
Theorem 2. For practical application to the real plant by means of removing the chattering 
problems, the implementation of the continuous approximation is essentially needed 
instead of the discontinuous input as the inherent property of the VSS. Using the saturation 
function, the different form from that of (Chern & Wu, 1992) for the continuous 
approximation is suggested. The two main problems of the VSS are removed and solved. 
Through the design examples and simulation studies, the usefulness of the proposed 
practical integral nonlinear VSS controller is verified.  

www.intechopen.com



 
New Practical Integral Variable Structure Controllers for Uncertain Nonlinear Systems 

 

223 

2.  Practical integral nonlinear variable structure systems 

2.1 Descriptions of plants 

Consider an affine uncertain nonlinear system 

 '( , ) ( , ) ( , ),        (0)x f x t g x t u d x t x= + +$  (1) 

 ,        (0) (0)y C x y C x= ⋅ = ⋅  (2) 

where nx R∈  is the state, (0)x  is its initial condition for the state, ,  qy R q n∈ ≤  is the output, 

(0)y  is an initial condition of the output, 1u R∈  is the control to be determined, mismatched 

uncertainty '( , ) kf x t C∈ and matched uncertainty ( , ) ,   1kg x t C k∈ ≥ , 

( , ) 0  for   all  ng x t x R≠ ∈ and for all 0t ≥  are of suitable dimensions, and ( , )d x t  implies 

bounded matched external disturbances.  
Assumption (Pan et al., 2009) 

A1: '( , ) kf x t C∈ is continuously differentiable and '(0, ) 0f t = for all 0t ≥ . 
Then, uncertain nonlinear system (1) can be represented in more affine nonlinear system of 

state dependent coefficient form(Pan et al., 2009; Hu & Martin, 1999; Sun, 2009) 

 
0 0

0 0

( , ) ( , ) ( , ),        (0)

  [ ( , ) ( , )] [ ( , ) ( , )] ( , )

   ( , ) ( , ) ( , )

x f x t x g x t u d x t x

f x t f x t x g x t g x t u d x t

f x t x g x t u d x t

= + +

= + Δ + + Δ +
= + +

$

 (3) 

 ,        y C x= ⋅  (4) 

 ( , ) ( , ) ( , ) ( , )d x t f x t x g x t u d x t= Δ + Δ +  (5) 

 

where 
0
( , )f x t  and 

0
( , )g x t  is each nominal value such that 

0
'( , ) [ ( , ) ( , )]f x t f x t f x t x= + Δ and 

0
( , ) [ ( , ) ( , )]g x t g x t g x t= + Δ , respectively, ( , )f x tΔ and ( , )g x tΔ  are mismatched or matched 

uncertainties, and ( , )d x t  is the mismatched lumped uncertainty.  
Assumption: 

A2: The pair 
0 0

( ( , ), ( , ))f x t g x t  is controllable and 
0

( ( , ), )f x t C is observable for all nx R∈  and 

all 0t ≥ (Sun, 2009). 

A3: The lumped uncertainty ( , )d x t is bounded.  

A4: x$$  is bounded if u$  and ( , )d x t$ is bounded.  

2.2 Full sate feedback practical integral variable structure controller 
2.2.1 Full-state feedback integral sliding surface 

For use later, the integral term of the full-state is augmented as  

 
0

0 0
0 0

( ) ( ) ( ) (0)
t t

x x d x d x d xτ τ τ τ τ τ
−∞

= + = +∫ ∫ ∫  (6) 

To control uncertain nonlinear system (1) or (3) with a linear closed loop dynamics and 

without reaching phase, the full-state feedback integral sliding surface used in this design is 

as follows:  
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 [ ]1 1 0 1 0

0

( 0)
f

x
S L x L x L L

x

⎡ ⎤
= + = ⋅ =⎢ ⎥

⎣ ⎦
 (7) 

where  

 0 0 1(0) (0)x L L x−= −  (7a) 

and 1

0 0 0 0( )T TL L WL L W− −= , which is stemmed from the work by (Lee & Youn, 1994). At 0t = , 

the full-state feedback integral sliding surface is zero, Hence, the one of the two 

requirements is satisfied. Without the initial condition of the integral state, the reaching 

phase is not removed except the exact initial state on the sliding surface. With the initial 

condition (7a) for the integral state, the work on removing the reaching phase was reported 

by (Lee & Youn, 1994) for the first time, which is applied to the VSS for uncertain linear 

plants. In (7), 
1

L  is a non zero element as the design parameter such that the following 

assumption is satisfied.  
Assumption  

A5: 1
( , )L g x t  and 1 0

( , )L g x t  have the full rank, i.e. those are invertible  

A6: [ ] 1

1 1 0
( , ) ( , )L g x t L g x t I

−
Δ = Δ  and | | 1I ξΔ ≤ < . 

In (7), the design parameters 
1

L  and 
0

L  satisfy the following relationship  

 [ ]1 0 0 0( , ) ( , ) ( ) 0L f x t g x t K x L− + =  (8a) 

 [ ]0 1 0 0 1( , ) ( , ) ( ) ( , )
c

L L f x t g x t K x L f x t= − − = −  (8b) 

 [ ]0 0
( , ) ( , ) ( , ) ( )

c
f x t f x t g x t K x= −  (8c) 

The equivalent control input is obtained using 0
f

S =$  as(Decarlo et al., 1998)  

 [ ] [ ] [ ] [ ]1 1 1

1 1 0 0 1 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

eq
u L g x t L f x t L x L g x t f x t x L g x t d x t

− − −
= − + − Δ −  (9) 

This control input can not be implemented because of the uncertainties, but used to 
obtaining the ideal sliding dynamics. The ideal sliding mode dynamics of the sliding surface 
(7) can be derived by the equivalent control approach(Lee, 2010a) as 

 [ ] { }1

0 0 1 1 0 0
( , ) ( , ) ( , ) ( , ) ,           (0) (0)

s s s s s s s
x f x t g x t L g x t L f x t L x x x

−⎡ ⎤= − + =⎣ ⎦$  (10) 

 [ ]0 0
( , ) ( , ) ( ) ( , ) ,           (0) (0)

s s s s s c s s s
x f x t g x t K x x f x t x x x= − = =$  (11) 

 [ ] { }1

1 1 0 0
( ) ( , ) ( , )

s s s
K x L g x t L f x t L

−
= +  (12) 

The solution of (10) or (11) identically defines the integral sliding surface. Hence to design 
the sliding surface as stable, this ideal sliding dynamics is designed to be stable, the reverse 
argument also holds. To choose the stable gain based on the Lyapunov stability theory, the 
ideal sliding dynamics (10) or (11) is represented by the nominal plant of (3) as  

 0 0

0 0

( , ) ( , ) ,            ( )

   ( , ) ,                              ( , ) ( , ) ( , ) ( )
c c

x f x t x g x t u u K x x

f x t x f x t f x t g x t K x

= + = −
= = −

$
 (13) 
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To select the stable gain, take a Lyapunov function candidate as  

 ( ) ,           0TV x x Px P= >  (14) 

The derivative of (14) becomes  

 
0 0 0 0

( ) ( , ) ( , ) ( , ) ( , )T T T T TV x x f x t P Pf x t x u g x t Px x Pg x t u= + + +⎡ ⎤⎣ ⎦$  (15) 

By the Lyapunov control theory(Slotine & Li, 1991), take the control input as  

 
0
( , )Tu g x t Px= −  (16) 

and ( , ) 0Q x t >  and ( , ) 0
c

Q x t >  for all nx R∈  and all 0t ≥  is  

 
0 0

( , ) ( , ) ( , )Tf x t P Pf x t Q x t+ = −  (17) 

 ( , ) ( , ) ( , )T

c c c
f x t P Pf x t Q x t+ = −  (18) 

then 

 

{ }

0 0

0 0

2

min

( ) ( , ) 2 ( , ) ( , )

        [ ( , ) 2 ( , ) ( , ) ]

         [ ( , ) ( , )]

         ( , )

         ( , ) || ||

T T T

T T

T T

c c

T

c

c

V x x Q x t x x Pg x t g x t Px

x Q x t Pg x t g x t P x

x f x t P Pf x t x

x Q x t x

Q x t xλ

= − −

= − +

= − +

= −

≤ −

$

 (19) 

where { }min
( , )

c
Q x tλ means the minimum eigenvalue of ( , )

c
Q x t . Therefore the stable static 

nonlinear feedback gain is chosen as  

 [ ] { }1

0 1 0 1 0 0
( ) ( , )    or   ( , ) ( , )TK x g x t P L g x t L f x t L

−
= = +  (20) 

2.2.2 Full-state feedback transformed discontinuous control input 

The corresponding control input with the transformed gains is proposed as follows:  

 
1 2

( ) ( )
f f f

u K x x Kx K S K sign S= − − Δ − −  (21) 

where ( )K x  is a static nonlinear feedback gain, KΔ is a discontinuous switching gain, 
1

K  is 

a static feedback gain of the sliding surface itself, and 
2

K  is a discontinuous switching gain, 

respectively as  

 [ ] 1

1 0
( , ) [ ]         1,...,

i
K L g x t k i n

−
Δ = Δ =  (22) 

 

{ }
{ }

{ }
{ }

1 1

1 1

max ( . ) ( , ) ( )
      ( ) 0

min
     

min ( . ) ( , ) ( )
        ( ) 0

min

i

f i

i

i

f i

L f x t L g x t K x
sign S x

I I
k

L f x t L g x t K x
sign S x

I I

⎧ Δ − Δ
≥ >⎪

+ Δ⎪Δ = ⎨
Δ − Δ⎪≤ <⎪ + Δ⎩

 (23) 
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 [ ] 1

1 1 1 1
( , ) ',             ' 0K L g x t K K

−
= >  (24) 

 [ ] { }1 1

2 1 2 2

max | ( , )|
( , ) ',             '

min{ }

L d x t
K L g x t K K

I I

−
= =

+ Δ
 (25) 

which is transformed for easy proof of the existence condition of the sliding mode on the 
chosen sliding surface as the works of (Utkin, 1978; Decarlo et al., 1988; Lee, 2010b). The real 
sliding dynamics by the proposed control with the linear integral sliding surface is obtained 
as follows:  

 

{ }

1 0

1 0 0

1 0 1 2 0

1 0 1 0 0 1 1

[ ]

    [ ( , ) ( , ) ( , ) ( , )]

    ( , ) ( , ) ( , ) ( ) ( ) ( , )

    ( , ) ( , ) ( ) ( , ) ( , ) ( )

        

f

f

f f

S L x L x

L f x t x f x t x g x t u d x t L x

L f x t x f x t x g x t K x x Kx K S K sign S d x t L x

L f x t x L g x t K x x L x L f x t x L g x t K x x

= +

= + Δ + + +

⎡ ⎤= + Δ + − − Δ − − + +⎣ ⎦
= − + + Δ − Δ

$ $

1 1 1 1 1 2

1 1 1 0 1 0 1

1 1 0 2

 ( , ) ( , ) ( , ) ( , ) ( )

    ( , ) ( , ) ( ) [ ] ( , ) [ ] ( , )

         ( , ) [ ] ( , ) ( )

f f

f

f

L g x t Kx L g x t K S L d x t L g x t K sign S

L f x t x L g x t K x x I I L g x t Kx I I L g x t K S

L d x t I I L g x t K sign S

− Δ − + −

= Δ − Δ − + Δ Δ − + Δ

+ − + Δ

 (26) 

The closed loop stability by the proposed control input with sliding surface together with 
the existence condition of the sliding mode will be investigated in next Theorem 1.  

Theorem 1: If the sliding surface (7) is designed in the stable, i.e. stable design of ( )K x , the proposed 

input (21) with Assumption A1-A6 satisfies the existence condition of the sliding mode on the 
integral sliding surface and exponential stability.  
Proof(Lee, 2010b); Take a Lyapunov function candidate as  

 
1

( )
2

T

f f
V x S S=  (27) 

Differentiating (27) with respect to time leads to and substituting (26) into (28)  

 

1 1 1 0

1 0 1 1 1 0 2

2

1

( )

         ( , ) ( , ) ( ) [ ] ( , )

         [ ] ( , ) ( , ) [ ] ( , ) ( )

         '|| || ,           min{|| ||}

    

T

f f

T T T

f f f

T T T

f f f f f

f

V x S S

S L f x t x S L g x t K x x S I I L g x t Kx

S I I L g x t K S S L d x t S I I L g x t K sign S

K S I Iε ε

=

= Δ − Δ − + Δ Δ

− + Δ + − + Δ

≤ − = + Δ

$$

1

1

    '

        2 ' ( )

T

f f
K S S

K V x

ε
ε

= −

= −

 (28) 

The second requirement to remove the reaching phase is satisfied. Therefore, the reaching 
phase is completely removed. There are no reaching phase problems. As a result, the real 
output dynamics can be exactly predetermined by the ideal sliding output with the matched 
uncertainty. From (28), the following equations are obtained as  

 
1

( ) 2 ' ( ) 0V x K V xε+ ≤$  (29) 
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 12( ( )) ( (0)) K tV x t V x e ε−≤  (30) 

And the second order derivative of ( )V x becomes  

 2

1 0
( ) || || ( )T T

f f f f f f
V x S S S S S S L Cx L x= + = + + < ∞$ $ $$ $$$ $$ $  (31) 

and by Assumption A5 ( )V x$$  is bounded, which completes the proof of Theorem 1. 

2.2.3 Continuous approximation of full sate feedback discontinuous control input 

The discontinuous control input (21) with (7) chatters from the beginning without reaching 

phase. The chattering of the discontinuous control input (21) may be harmful to the real 

dynamic plant. Hence using the saturation function for a suitable 
f

δ , one make the input be 

continuous for practical application as  

 
1 2

( ) { ( )}
| |

f

fc f f

f f

S
u K x x K S Kx K sign S

S δ
= − − − Δ +

+
 (32) 

which is different from that of (Chern & Wu, 1992) continuous approximation. For a first 
order system, this approximation is the same as that of (Chern & Wu, 1992) continuous 
approximation, but for a higher order system more than the first one, continuous 
approximation can be effectively made. The discontinuity of the control input can be 
dramatically improved without severe output performance deterioration.  

2.3 Practical output feedback integral variable structure controller 
For the implementation of the output feedback when full-state is not available, some 
additional assumptions are made  

A7: The nominal input matrix 0
( , )g x t  is constant, i.e, 0

( , )g x t B=  

A8: The unmatched ( , )f x tΔ , matched ( , )g x tΔ , and matched ( , )d x t  are unknown and 

bounded and satisfied by the following conditions: 

 ( , ) '( , ) ''( , )Tf x t f x t C C f x t CΔ = Δ = Δ  (33a) 

 ( , ) '( , ) ,     0 | | 1Tg x t BB g x t B I I pΔ = Δ = Δ ≤ Δ ≤ <  (33b) 

 ( , ) '( , ) ''( , )Td x t BB d x t Bd x t= =  (33c) 

2.3.1 Transformed output feedback integral sliding surface 
Now, the integral of the output is augmented as follows:  

 
0 0 0
( ) ( ),             (0)y t A y t y= ⋅$  (34a) 

 
0 0 0

0

( ) ( )  (0)
t

y t A y d yτ τ= ⋅ +∫  (34b) 

where 
0
( ) ,   ry t R r q∈ ≤  is the integral of the output and 0

(0)y  is the initial condition of the 

integral state determined later, and 
0

A is appropriately dimensioned without loss of 

generality, 
0

A I= . 
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Assumption  

A9: 
1

( )H CB  has the inverse for some non zero row vector 
1

H .  
Now, a transformed output feedback integral sliding surface is suggested be  

 1

0 1 1 0 0
( ) ( )( 0)S H CB H y H y−= ⋅ ⋅ + ⋅ =  (35) 

 
0 0 1
(0) (0)y H H y−= − ⋅  (36) 

where 1

0 0 0 0
( )T TH H WH H W− −= , which is transformed for easy proof of the existence condition 

of the sliding mode on the sliding surface as the works of (Decarlo et al., 1988) and (Lee, 

2010b). In (35), non zero row vector 
0

H  and 
1

H  are the design parameters satisfying the 

following relationship  

 
1 0 0 1 0 0

[ ( , ) ( ) ] ( , ) 0
c

H C f x t BG y C H C H Cf x t H C− + = + =  (37) 

where 
0 0

( , ) ( , ) ( )
c

f x t f x t BG y C= −  is a closed loop system matrix and ( )G y is an output 

feedback gain. At 0t = , this output feedback integral sliding surface is zero so that there 

will be no reaching phase(Lee & Youn, 1994). In (35), 
0

H  and 
1

H  are  the non zero row 

vectors as the design parameters such that the following assumption is satisfied.  
Assumption 

A10: 
1

( , )H Cg x t  has the full rank and is invertible  
The equivalent control input is obtained using as  

 1 1

1 1 0 0 1 1
[ ( , )] [ ( , ) ( )] [ ( , )] [ ( , ) ( , )]

eq
u H Cg x t H Cf x t x H y t H Cg x t H C f x t d x t− −= − + − Δ +  (38) 

This control input can not be implemented because of the uncertainties and disturbances. 

The ideal sliding mode dynamics of the output feedback integral sliding surface (35) can be 

derived by the equivalent control approach as (Decarlo et al., 1998)  

 1 1

0 1 1 0 1 0
[ ( , ) ( ) ( , ) ( ) ] ,       (0) (0)

s s s s s
x f x t B H CB H Cf x t B H CB H C x x x− −= − − =$  (39) 

 
s s

y C x= ⋅  (40) 

and from 
0

0S =$ , the another ideal sliding mode dynamics is obtained as(Lee, 2010a) 

 
1 0

,       (0)
s s s

y H H y y−= −$  (41) 

where 1

1 1 1 1
( )T TH H WH H W− −= . The solution of (39) or (41) identically defines the output 

feedback integral sliding surface. Hence to design the output feedback integral sliding 

surface as stable, this ideal sliding dynamics (39) is designed to be stable. To choose the 

stable gain based on the Lyapunov stability theory, the ideal sliding dynamics (39) is 

represented by the nominal plant of (3) as  

 
0 0

0

( , ) ( , ) ,           ( )

   ( , )                                
c

x f x t x g x t u u G y y

f x t x

= + = −
=

$
 (42) 

To select the stable gain, take a Lyapunov function candidate as  
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 ( ) ,           0TV x x Px P= >  (43) 

The derivative of (43) becomes  

 
0 0 0 0

( ) [ ( , ) ( , )] ( , ) ( , )T T T T TV x x f x t P Pf x t x u g x t Px x Pg x t u= + + +$  (44) 

By means of the Lyapunov control theory(Khalil, 1996), take the control input as 

 
0
( , )T Tu g x t Py B Py= − = −  (45) 

and ( , ) 0Q x t >  and ( , ) 0
c

Q x t >  for all nx R∈  and all 0t ≥  is  

 
0 0

( , ) ( , ) ( , )Tf x t P Pf x t Q x t+ = −  (46) 

 
0 0

( , ) ( , ) ( , )T

c c c
f x t P Pf x t Q x t+ = −  (47) 

then 

 

{ }

0 0

min

( ) ( , )

         [ ( , ) ]

         [ ( , ) ( , )]

         ( , )

         ( , )

T T T T T T

T T T T

T T

c c

T

c

c

V x x Q x t x x C PBB Px x PBB PCx

x Q x t C PBB P PBB PC x

x f x t P Pf x t x

x Q x t x

Q x t xλ

= − − −

= − + +

= − +

= −

≤ −

$

 (48) 

Therefore the stable gain is chosen as  

 1

1 1 0
( )    or   ( ) ( , )TG y B P H CB H Cf x t−= =  (49) 

2.3.2 Output feedback discontinuous control input 

A corresponding output feedback discontinuous control input is proposed as follows:  

 
0 1 0 2 0

( ) ( )u G y y Gy G S G sign S= − − Δ − −  (50) 

where ( )G y  is a nonlinear output feedback gain satisfying the relationship (37) and (49), 

GΔ  is a switching gain of the state, 1
G  is a feedback gain of the output feedback integral 

sliding surface, and 2
G  is a switching gain, respectively as  

 [ ]         1,...,
i

G g i qΔ = Δ =  (51) 

 

{ }
{ }

{ }
{ }

1 1

1 1 1 1 0

0

1 1

1 1 1 1 0

0

max ( ) ''( . ) ( ) ( , )
      ( ) 0

min
      

min ( ) ''( . ) ( ) ( , )
        ( ) 0

min

i

i

i

i

i

H CB H C f x t I H CB H f x t
sign S y

I I
g

H CB H C f x t I H CB H f x t
sign S y

I I

− −

− −

⎧ Δ + Δ
≥ >⎪

+ Δ⎪Δ = ⎨
Δ + Δ⎪≤ <⎪ + Δ⎩

 (52) 

 1
0G >  (53) 
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{ }

2

max | ''( , )|

min{ }

d x t
G

I I
=

+ Δ
 (55) 

The real sliding dynamics by the proposed control (50) with the output feedback integral 
sliding surface (35) is obtained as follows:  

 

1

0 1 1 0

1

1 1 0 1 1 1 0

1

1 1 0 1 0

1

1 1 1

1

1 1

( ) [ ]

    ( ) [ ( , ) ( , ) ( ( , )) ( , ) ]

    ( ) [ ( , ) ( ) ]

          ( ) [ ( , ) ( , ) ( ) ]

          ( ) [

S H CB H y H y

H CB H Cf x t x H C f x t H C B g x t u H Cd x t H y

H CB H Cf x t x H CBG y y H y

H CB H C f x t H C g x t K y y

H CB H C

−

−

−

−

−

= +

= + Δ + + Δ + +

= − +

+ Δ + Δ

+

$ $

1 0 2 0 1

1

1 1 1

1 0 2 0

1 1

1 1 1 1 0

( ( , ))( ( ) ( , )]

    ( ) [ ''( , ) ( , ) ( ) ] ( ) ( )

         [( )( ( )) ''( , )]

    ( ) ''( , ) ( ) ( , ) ( )

B g x t Gy G S G sign S H Cd x t

H CB H C f x t Cx H C g x t G y y I I G y y

I I G S G sign S d x t

H CB H C f x t y I H CB H f x t y I I

−

− −

+ Δ −Δ − − +

= Δ + Δ − + Δ Δ
+ + Δ − − +

= Δ + Δ − + Δ

1 0 2 0

( )

         ( )( ( )) ''( , )

G y y

I I G S G sign S d x t

Δ
+ + Δ − − +

 (56) 

The closed loop stability by the proposed control input with the output feedback integral 
sliding surface together with the existence condition of the sliding mode will be investigated 
in next Theorem 1.  
Theorem 2: If the output feedback integral sliding surface (35) is designed to be stable, i.e. stable 

design of ( )G y , the proposed control input (50) with Assumption A1-A10 satisfies the existence 

condition of the sliding mode on the output feedback integral sliding surface and closed loop 

exponential stability.  

Proof; Take a Lyapunov function candidate as  

 
0 0

1
( )

2
TV y S S=  (57) 

Differentiating (57) with respect to time leads to and substituting (56) into (58)  

 

0 0

1 1

0 1 1 1 1 0 0

0 1 0 2 0 0

2

1 0

1 0

( )

         [( ) ''( , ) ( ) ( , )] ( ) ( )

            ( )( ( )) ''( , )

         || || ,           min{|| ||}

        

T

T T

T T

T

V y S S

S H CB H C f x t I H CB H f x t y S I I G y y

S I I G S G sign S S d x t

G S I I

G S S

ε ε
ε

− −

=

= Δ + Δ − + Δ Δ

+ + Δ − − +

≤ − = + Δ

= −

$$

0

1
        2 ( )G V yε= −

 (58)  

From (58), the second requirement to get rid of the reaching phase is satisfied. Therefore, the 

reaching phase is clearly removed. There are no reaching phase problems. As a result, the 

real output dynamics can be exactly predetermined by the ideal sliding output with the 

matched uncertainty. Moreover from (58), the following equations are obtained as  

 
1

( ) 2 ( ) 0V y G V yε+ ≤$  (59) 
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 12( ( )) ( (0)) G tV y t V y e ε−≤  (60) 

And the second order derivative of ( )V x becomes  

 2 1

0 0 0 0 0 0 1 1 0
( ) || || ( ) ( )T TV y S S S S S S H CB H Cx H Cx−= + = + + < ∞$ $ $$ $$$ $$ $  (61) 

and by Assumption A5 ( )V x$$  is bounded, which completes the proof of Theorem 2.  

2.3.3 Continuous approximation of output feedback discontinuous control input 

Also, the control input (50) with (35) chatters from the beginning without reaching phase. 

The chattering of the discontinuous control input may be harmful to the real dynamic plant 

so it must be removed. Hence using the saturation function for a suitable 0
δ , one make the 

part of the discontinuous input be continuous effectively for practical application as  

 0

0 1 0 2 0

0 0

( ) { ( )}
| |

c

S
u G y y G S Gy G sign S

S δ
= − − − Δ +

+
 (62) 

The discontinuity of control input of can be dramatically improved without severe output 

performance deterioration.  

3.  Design examples and simulation studies 

3.1 Example 1: Full-state feedback practical integral variable structure controller 

Consider a second order affine uncertain nonlinear system with mismatched uncertainties 

and matched disturbance  

2

1 1 1 1 2 1
0.1 sin ( ) 0.02sin(2.0 )x x x x x x u= − + + +$  

 2

2 2 2 2
sin ( ) (2.0 0.5sin(2.0 )) ( , )x x x x t u d x t= + + + +$  (63) 

 2 2

1 2 1 2
( , ) 0.7 sin( ) 0.8sin( ) 0.2( ) 2.0sin(5.0 ) 3.0d x t x x x x t= − + + + +  (64) 

Since (63) satisfy the Assumption A1, (63) is represented in state dependent coefficient form 

as  

 
2

1 1 11

2

2 22

00.02sin( )1 0.1sin ( ) 1

2.0 0.5sin(2.0 )0 1 sin ( ) ( , )

x x xx
u

x x tx d x t

⎡ ⎤− +⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅ + + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥++⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$
$

 (65) 

where the nominal parameter 
0
( , )f x t  and 

0
( , )g x t  and mismatched uncertainties ( , )f x tΔ  

and ( , )g x tΔ are  

 

2

1

0 0 2

2

1

1 1 0 0.1sin ( ) 0
( , ) ,  ( , ) ,  ( , )

0 1 2.0 0 sin ( )

0.02sin( )
( , )

0.2sin(2.0 )

x
f x t g x t f x t

x

x
g x t

t

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= = Δ = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

Δ = ⎢ ⎥
⎣ ⎦

 (66) 
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To design the full-state feedback integral sliding surface, ( , )
c

f x t  is selected as  

 
0 0

1 1
( , ) ( , ) ( , ) ( )

70 21c
f x t f x t g x t K x

−⎡ ⎤
= − = ⎢ ⎥− −⎣ ⎦

 (67) 

in order to assign the two poles at 16.4772−  and 5.5228− . Hence, the feedback gain 

( )K x becomes  

 [ ]( ) 35 11K x =  (68) 

The P in (14) is chosen as  

 
100 17.5

0
17.5 5.5

P
⎡ ⎤

= >⎢ ⎥
⎣ ⎦

 (69) 

so as to be  

 
2650 670

( , ) ( , ) 0
670 196

T

c c
f x t P Pf x t

− −⎡ ⎤
+ = <⎢ ⎥− −⎣ ⎦

 (70) 

Hence, the continuous static feedback gain is chosen as  

 [ ]0
( ) ( , ) 35 11TK x g x t P= =  (71) 

Therefore, the coefficient of the sliding surface is determined as  

 [ ] [ ]1 11 12
10 1L L L= =  (72) 

Then, to satisfy the relationship (8a) and from (8b), 0
L  is selected as  

 [ ] [ ] [ ]0 1 0 0 1 11 12 11 12
( , ) ( , ) ( ) ( , ) 70 21 80 11

c
L L f x t g x t K x L f x t L L L L= − − = − = + − + =  (73) 

The selected gains in the control input (21), (23)-(25) are as follows:  

 
1

1

1

4.0   if   0

4.0   if   0
f

f

S x
k

S x

+ >⎧⎪Δ = ⎨− <⎪⎩
 (74a) 

 
2

2

2

5.0   if   0

5.0   if   0
f

f

S x
k

S x

+ >⎧⎪Δ = ⎨− <⎪⎩
 (74b) 

 
1

400.0K =  (74c) 

 2 2

2 1 2
2.8 0.2( )K x x= + +  (74d) 

The simulation is carried out under 1[msec] sampling time and with [ ](0) 10 5
T

x =  initial 

state. Fig. 1 shows four case 
1

x  and 
2

x  time trajectories (i)ideal sliding output, (ii) no 

uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched 
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uncertainty and matched disturbance. The three case output responses except the case (iv) 

are almost identical to each other. The four phase trajectories (i)ideal sliding trajectory, (ii)no 

uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched 

uncertainty and matched disturbance are depicted in Fig. 2. As can be seen, the sliding 

surface is exactly defined from a given initial condition to the origin, so there is no reaching 

phase, only the sliding exists from the initial condition. The one of the two main problems of 

the VSS is removed and solved. The unmatched uncertainties influence on the ideal sliding 

dynamics as in the case (iv). The sliding surface ( )
f

S t  (i) unmatched uncertainty and 

matched disturbance is shown in Fig. 3. The control input (i) unmatched uncertainty and 

matched disturbance is depicted in Fig. 4. For practical application, the discontinuous input 

is made be continuous by the saturation function with a new form as in (32) for a 

positive 0.8
f

δ = . The output responses of the continuous input by (32) are shown in Fig. 5 

for the four cases (i)ideal sliding output, (ii)no uncertainty and no disturbance (iii)matched 

uncertainty/disturbance, and (iv)unmatched uncertainty and matched disturbance. There is 

no chattering in output states. The four case trajectories (i)ideal sliding time trajectory, (ii)no 

uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched 

uncertainty and matched disturbance are depicted in Fig. 6. As can be seen, the trajectories 

are continuous. The four case sliding surfaces are shown in fig. 7, those are continuous. The 

three case continuously implemented control inputs instead of the discontinuous input in 

Fig. 4 are shown in Fig. 8 without the severe performance degrade, which means that the 

continuous VSS algorithm is practically applicable. The another of the two main problems of 

the VSS is improved effectively and removed. 
From the simulation studies, the usefulness of the proposed SMC is proven.  
 

 

Fig. 1. Four case 
1

x  and 
2

x  time trajectories (i)ideal sliding output, (ii) no uncertainty and 

no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 

matched disturbance 
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Fig. 2. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance 

 
 

 
 

Fig. 3. Sliding surface ( )
f

S t  (i) unmatched uncertainty and matched disturbance 
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Fig. 4. Discontinuous control input (i) unmatched uncertainty and matched disturbance 

 
 
 

 
 

Fig. 5. Four case 1
x  and 2

x  time trajectories (i)ideal sliding output, (ii) no uncertainty and 

no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 

matched disturbance by the continuously approximated input for a positive 0.8
f

δ =  
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Fig. 6. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance by the continuously approximated input 

 
 

 
 

Fig. 7. Four sliding surfaces (i)ideal sliding surface, (ii)no uncertainty and no disturbance 

(iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and matched 

disturbance by the continuously approximated input 

www.intechopen.com



 
New Practical Integral Variable Structure Controllers for Uncertain Nonlinear Systems 

 

237 

 

 

 

Fig. 8. Three case continuous control inputs 
fc

u  (i)no uncertainty and no disturbance 

(ii)matched uncertainty/disturbance, and (iii) unmatched uncertainty and matched 

3.2 Example 2: Output feedback practical integral variable structure controller 

Consider a third order uncertain affine nonlinear system with unmatched system matrix 

uncertainties and matched input matrix uncertainties and disturbance  

 

2

1 1 1

2 2

2 2

3 2 3 3 1

3 3sin ( ) 1 0 0 0

0 1 1 0 0

1 0.5sin ( ) 0 2 0.4sin ( ) 2 0.3sin(2 ) ( , )

x x x

x x u

x x x x t d x t

⎡ ⎤− −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$
$
$

 (75) 

 
1

2

3

1 0 0

0 0 1

x

y x

x

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (76) 

 2 2

1 1 2 1 3
( , ) 0.7 sin( ) 0.8sin( ) 0.2( ) 1.5sin(2 ) 1.5d x t x x x x t= − + + + +  (77) 

where the nominal matrices 
0
( , )f x t , 

0
( , )g x t B=  and C , the unmatched system matrix 

uncertainties and matched input matrix uncertainties and matched disturbance are  

2

1

0

2 2

2 3

3 1 0 0 3sin ( ) 0 0
1 0 0

( , ) 0 1 1 ,   0 ,    C ,   0 0 0
0 0 1

1 0 2 2 0.5sin ( ) 0 0.4sin ( )

x

f x t B f

x x

− −⎡ ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − = = Δ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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1

0 0

( , ) 0 ,      ( , ) 0

0.3sin(2 ) ( , )

g x t d x t

t d x t

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥Δ = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

. (78) 

The eigenvalues of the open loop system matrix 0( , )f x t  are -2.6920, -2.3569, and 2.0489, 

hence 0( , )f x t  is unstable. The unmatched system matrix uncertainties and matched input 

matrix uncertainties and matched disturbance satisfy the assumption A3 and A8 as  

 

2
1

1

2 2
2 3

3sin ( ) 0
1

 " 0                 0 ,     0.15sin(2 ) 0.15 1,    "( , ) ( , )
2

0.5sin ( ) 0.4sin ( )

x

f I t d x t d x t

x x

⎡ ⎤−
⎢ ⎥

Δ = Δ = ≤ < =⎢ ⎥
⎢ ⎥
⎣ ⎦

 (79) 

disturbance by the continuously approximated input for a positive 0.8fδ =  

To design the output feedback integral sliding surface, ( , )cf x t  is designed as  

 0 0

3 1 0

( , ) ( , ) ( ) 0 1 1

19 0 30
cf x t f x t BG y C

−⎡ ⎤
⎢ ⎥= − = −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (80) 

 

in order to assign the three stable pole to ( , )cf x t  at 30.0251−  and 2.4875 0.6636i− ± . The 

constant feedback gain is designed as  

 [ ]{ }1( ) 2 [1 0 2] 19 0 30G y C −= − −  (81) 

 [ ]( ) 10 16G y∴ =  (82) 

Then, one find [ ]1 11 12H h h=  and [ ]0 01 02H h h=  which satisfy the relationship (37) as  

 11 01 12 02 120,        19 ,         30h h h h h= = =  (83) 

 

One select 12 1h = , 01 19h = , and 02 30h = . Hence 1 122 2H CB h= =  is a non zero satisfying 

A4. The resultant output feedback integral sliding surface becomes  

 [ ] [ ]1 01
0

2 02

1
0 1 19 30

2

y y
S

y y

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (84) 

where 

 01 10
( )

t
y y dτ τ= ∫  (85) 

 02 2 20
( ) (0) / 30

t
y y d yτ τ= −∫  (86) 

 

The output feedback control gains in (50), (51)-(55) are selected as follows:  
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 0 1
1

0 1

1.6   if   0

1.6   if   0

S y
g

S y

+ >⎧
Δ = ⎨− <⎩

 (87a) 

 0 2
2

0 2

1.7   if   0

1.7   if   0

S y
g

S y

+ >⎧
Δ = ⎨− <⎩

 (87b) 

 1 500.0G =  (87c) 

 2 2

2 1 2
3.2 0.2( )G y y= + +  (87d) 

The simulation is carried out under 1[msec] sampling time and with [ ](0) 10 0.0 5
T

x =  

initial state. Fig. 9 shows the four case two output responses of 1
y  and 2

y  (i)ideal sliding 

output, (ii) with no uncertainty and no disturbance, (iii)with matched uncertainty and 

matched disturbance, and (iv) with ummatched uncertainty and matched disturbance. The 

each two output is insensitive to the matched uncertainty and matched disturbance, hence is 

almost equal, so that the output can be predicted. The four case phase trajectories (i)ideal 

sliding trajectory, (ii) with no uncertainty and no disturbance, (iii)with matched uncertainty 

and matched disturbance, and (iv) with ummatched uncertainty and matched disturbance 

are shown in Fig. 10. There is no reaching phase and each phase trajectory except the case 

(iv) with ummatched uncertainty and matched disturbance is almost identical also. The 

sliding surface is exactly defined from a given initial condition to the origin. The output 

feedback integral sliding surfaces (i) with ummatched uncertainty and matched disturbance 

is depicted in Fig. 11. Fig. 12 shows the control inputs (i)with unmatched uncertainty and 

matched disturbance. For practical implementation, the discontinuous input can be made 

continuous by the saturation function with a new form as in (32) for a positive 0
0.02δ = . The 

output responses by the continuous input of (62) are shown in Fig. 13 for the four cases 

(i)ideal sliding output, (ii)no uncertainty and no disturbance (iii)matched 

uncertainty/disturbance, and (iv)unmatched uncertainty and matched disturbance. There is 

no chattering in output responses. The four case trajectories (i)ideal sliding time trajectory, 

(ii)no uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) 

unmatched uncertainty and matched disturbance are depicted in Fig. 14. As can be seen, the 

trajectories are continuous. The four case sliding surfaces are shown in fig. 15, those are 

continuous also. The three case continuously implemented control inputs instead of the 

discontinuous input in Fig. 12 are shown in Fig. 16 without the severe performance loss, 

which means that the chattering of the control input is removed and the continuous VSS 

algorithm is practically applicable to the real dynamic plants. From the above simulation 

studies, the proposed algorithm has superior performance in view of the no reaching phase, 

complete robustness, predetermined output dynamics, the prediction of the output, and 

practical application. The effectiveness of the proposed output feedback integral nonlinear 

SMC is proven. 

Through design examples and simulation studies, the usefulness of the proposed practical 

integral nonlinear variable structure controllers is verified. The continuous approximation 

VSS controllers without the reaching phase in this chapter can be practically applicable to 

the real dynamic plants.  
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Fig. 9. Four case two output responses of 1y  and 2y  (i)ideal sliding output, (ii) with no 

uncertainty and no disturbance, (iii)with matched uncertainty and matched disturbance, 

and (iv) with ummatched uncertainty and matched disturbance 

 

 
 

Fig. 10. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 

disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 

matched disturbance 
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Fig. 11. Sliding surface 
0
( )S t  (i) unmatched uncertainty and matched disturbance 

 
 

 
 

Fig. 12. Discontinuous control input (i) unmatched uncertainty and matched disturbance 
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Fig. 13. Four case 
1

y  and 
2

y  time trajectories (i)ideal sliding output, (ii) no uncertainty and 

no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 

matched disturbance by the continuously approximated input for a positive 0
0.02δ =  

 

 

Fig. 14. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance by the continuously approximated input 
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Fig. 15. Four sliding surfaces (i)ideal sliding surface , (ii)no uncertainty and no disturbance 
(iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and matched 
disturbance by the continuously approximated input 

 

 

Fig. 16. Three case continuous control inputs 0c
u  (i)no uncertainty and no disturbance 

(ii)matched uncertainty/disturbance, and (iii) unmatched uncertainty and matched 

disturbance by the continuously approximated input for a positive 0
0.02δ =  
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4. Conclusion 

In this chapter, a new practical robust full-state(output) feedback nonlinear integral variable 

structure controllers with the full-state(output) feedback integral sliding surfaces are 

presented based on state dependent nonlinear form for the control of uncertain more affine 

nonlinear systems with mismatched uncertainties and matched disturbance. After an affine 

uncertain nonlinear system is represented in the form of state dependent nonlinear system, a 

systematic design of the new robust integral nonlinear variable structure controllers with 

the full-state(output) feedback (transformed) integral sliding surfaces are suggested for 

removing the reaching phase. The corresponding (transformed) control inputs are proposed. 

The closed loop stabilities by the proposed control inputs with full-state(output) feedback 

integral sliding surface together with the existence condition of the sliding mode on the 

selected sliding surface are investigated in Theorem 1 and Theorem 2 for all mismatched 

uncertainties and matched disturbance. For practical application of the continuous 

discontinuous VSS, the continuous approximation being different from that of (Chern & 

Wu, 1992) is suggested without severe performance degrade. The two practical algorithms, 

i.e., practical full-state feedback integral nonlinear variable structure controller with the full-

state feedback transformed input and the full-state feedback sliding surface and practical 

output feedback integral nonlinear variable structure controller with the output feedback 

input and the output feedback transformed sliding surface are proposed. The outputs by the 

proposed inputs with the suggested sliding surfaces are insensitive to only the matched 

uncertainty and disturbance. The unmatched uncertainties can influence on the ideal sliding 

dynamics, but the exponential stability is satisfied. The two main problems of the VSS, i.e., 

the reaching phase at the beginning and the chattering of the input are removed and solved. 
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