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1. Introduction 

In control engineering, robust control is an area that explicitly deals with uncertainty in its 

approach to the design of the system controller [7,10,24]. The methods of robust control are 

designed to operate properly as long as disturbances or uncertain parameters are within a 

compact set, where robust methods aim to accomplish robust performance and/or stability 

in the presence of bounded modeling errors. A robust control policy is static in contrast to 

the adaptive (dynamic) control policy where, rather than adapting to measurements of 

variations, the system controller is designed to function assuming that certain variables will 

be unknown but, for example, bounded. An early example of a robust control method is the 

high-gain feedback control where the effect of any parameter variations will be negligible 

with using sufficiently high gain. 

The overall goal of a control system is to cause the output variable of a dynamic process to 

follow a desired reference variable accurately. This complex objective can be achieved based 

on a number of steps. A major one is to develop a mathematical description, called 

dynamical model, of the process to be controlled [7,10,24]. This dynamical model is usually 

accomplished using a set of differential equations that describe the dynamic behavior of the 

system, which can be further represented in state-space using system matrices or in 

transform-space using transfer functions [7,10,24].   

In system modeling, sometimes it is required to identify some of the system parameters. 

This objective maybe achieved by the use of artificial neural networks (ANN), which are 

considered as the new generation of information processing networks [5,15,17,28,29]. 

Artificial neural systems can be defined as physical cellular systems which have the 

capability of acquiring, storing and utilizing experiential knowledge [15,29], where an ANN 

consists of an interconnected group of basic processing elements called neurons that 

perform summing operations and nonlinear function computations. Neurons are usually 

organized in layers and forward connections, and computations are performed in a parallel 

mode at all nodes and connections. Each connection is expressed by a numerical value 

called the weight, where the conducted learning process of a neuron corresponds to the 

changing of its corresponding weights.  
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When dealing with system modeling and control analysis, there exist equations and 

inequalities that require optimized solutions. An important expression which is used in 

robust control is called linear matrix inequality (LMI) which is used to express specific 

convex optimization problems for which there exist powerful numerical solvers [1,2,6].    

The important LMI optimization technique was started by the Lyapunov theory showing 

that the differential equation ( ) ( )x t Ax t=$  is stable if and only if there exists a positive 

definite matrix [P] such that 0TA P PA+ <  [6]. The requirement of { 0P > , 0TA P PA+ < } is 

known as the Lyapunov inequality on [P] which is a special case of an LMI. By picking any 

0TQ Q= >  and then solving the linear equation TA P PA Q+ = − for the matrix [P], it is 

guaranteed to be positive-definite if the given system is stable. The linear matrix inequalities 

that arise in system and control theory can be generally formulated as convex optimization 

problems that are amenable to computer solutions and can be solved using algorithms such 

as the ellipsoid algorithm [6].  
In practical control design problems, the first step is to obtain a proper mathematical model 

in order to examine the behavior of the system for the purpose of designing an appropriate 

controller [1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,19,20,21,22,24,25,26,27]. Sometimes, this 

mathematical description involves a certain small parameter (i.e., perturbation). Neglecting 

this small parameter results in simplifying the order of the designed controller by reducing 

the order of the corresponding system [1,3,4,5,8,9,11,12,13,14,17,19,20,21,22,25,26]. A reduced 

model can be obtained by neglecting the fast dynamics (i.e., non-dominant eigenvalues) of 

the system and focusing on the slow dynamics (i.e., dominant eigenvalues). This 

simplification and reduction of system modeling leads to controller cost minimization 

[7,10,13]. An example is the modern integrated circuits (ICs), where increasing package 

density forces developers to include side effects. Knowing that these ICs are often modeled 

by complex RLC-based circuits and systems, this would be very demanding 

computationally due to the detailed modeling of the original system [16]. In control system, 

due to the fact that feedback controllers don't usually consider all of the dynamics of the 

functioning system, model reduction is an important issue [4,5,17]. 

The main results in this research include the introduction of a new layered method of 

intelligent control, that can be used to robustly control the required system dynamics, where 

the new control hierarchy uses recurrent supervised neural network to identify certain 

parameters of the transformed system matrix [ #A ], and the corresponding LMI is used to 

determine the permutation matrix [P] so that a complete system transformation {[ #B ], [ #C ], 

[ #D ]} is performed. The transformed model is then reduced using the method of singular 

perturbation and various feedback control schemes are applied to enhance the 

corresponding system performance, where it is shown that the new hierarchical control 

method simplifies the model of the dynamical systems and therefore uses simpler 

controllers that produce the needed system response for specific performance 

enhancements. Figure 1 illustrates the layout of the utilized new control method. Layer 1 

shows the continuous modeling of the dynamical system. Layer 2 shows the discrete system 

model. Layer 3 illustrates the neural network identification step. Layer 4 presents the 

undiscretization of the transformed system model. Layer 5 includes the steps for model 

order reduction with and without using LMI. Finally, Layer 6 presents various feedback 

control methods that are used in this research.  
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Fig. 1. The newly utilized hierarchical control method. 

While similar hierarchical method of ANN-based identification and LMI-based 
transformation has been previously utilized within several applications such as for the 
reduced-order electronic Buck switching-mode power converter [1] and for the reduced-
order quantum computation systems [2] with relatively simple state feedback controller 
implementations, the presented method in this work further shows the successful wide 
applicability of the introduced intelligent control technique for dynamical systems using 
various spectrum of control methods such as (a) PID-based control, (b) state feedback 
control using (1) pole placement-based control and (2) linear quadratic regulator (LQR) 
optimal control, and (c) output feedback control.   
Section 2 presents background on recurrent supervised neural networks, linear matrix 

inequality, system model transformation using neural identification, and model order 

reduction. Section 3 presents a detailed illustration of the recurrent neural network 

identification with the LMI optimization techniques for system model order reduction. A 

practical implementation of the neural network identification and the associated 

comparative results with and without the use of LMI optimization to the dynamical system 

model order reduction is presented in Section 4. Section 5 presents the application of the 

feedback control on the reduced model using PID control, state feedback control using pole 

assignment, state feedback control using LQR optimal control, and output feedback control. 

Conclusions and future work are presented in Section 6.    
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2. Background  

The following sub-sections provide an important background on the artificial supervised 
recurrent neural networks, system transformation without using LMI, state transformation 
using LMI, and model order reduction, which can be used for the robust control of dynamic 
systems, and will be used in the later Sections 3-5.  

2.1 Artificial recurrent supervised neural networks 

The ANN is an emulation of the biological neural system [15,29]. The basic model of the 
neuron is established emulating the functionality of a biological neuron which is the basic 
signaling unit of the nervous system. The internal process of a neuron maybe 
mathematically modeled as shown in Figure 2 [15,29]. 
 

 

 

Fig. 2. A mathematical model of the artificial neuron. 

As seen in Figure 2, the internal activity of the neuron is produced as: 

 
1

p

k kj j
j

v w x
=

=∑  (1) 

In supervised learning, it is assumed that at each instant of time when the input is applied, the 
desired response of the system is available [15,29]. The difference between the actual and the 
desired response represents an error measure which is used to correct the network parameters 
externally. Since the adjustable weights are initially assumed, the error measure may be used 
to adapt the network's weight matrix [W]. A set of input and output patterns, called a training 
set, is required for this learning mode, where the usually used training algorithm identifies 
directions of the negative error gradient and reduces the error accordingly [15,29]. 
The supervised recurrent neural network used for the identification in this research is based 
on an approximation of the method of steepest descent [15,28,29]. The network tries to 
match the output of certain neurons to the desired values of the system output at a specific 
instant of time. Consider a network consisting of a total of N neurons with M external input 
connections, as shown in Figure 3, for a 2nd order system with two neurons and one external 
input. The variable g(k) denotes the (M x 1) external input vector which is applied to the 
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network at discrete time k, the variable y(k + 1) denotes the corresponding (N x 1) vector of 
individual neuron outputs produced one step later at time (k + 1), and the input vector g(k) 
and one-step delayed output vector y(k) are concatenated to form the ((M + N) x 1) vector 
u(k) whose ith element is denoted by ui(k). For Λ denotes the set of indices i for which gi(k) is 
an  external  input, and ǃ denotes the  set of indices i for which  ui(k)  is the output  of a 
neuron (which is yi(k)), the following equation is provided: 

if ( )
( )

if ( )
i

i
i

g  i Λ k ,
k  = u

y  i   k , β
∈⎧⎪

⎨ ∈⎪⎩
 

 

 

Fig. 3. The utilized 2nd order recurrent neural network architecture, where the identified 

matrices are given by { 11 12 11

21 22 21

,d d

A A B
A B

A A B

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

# # } and that [ ] [ ]W ⎡ ⎤= ⎣ ⎦
# #

d d
A B .  

The (N x (M + N)) recurrent weight matrix of the network is represented by the variable [W]. 
The net internal activity of neuron j at time k is given by: 
 

 

( ) = ( ) ( )j ji i
i Λ

v k w k u k
β∈ ∪

∑  

 

where Λ ∪ ß is the union of sets Λ and ß . At the next time step (k + 1), the output of the 

neuron j is computed by passing vj(k) through the nonlinearity (.)ϕ , thus obtaining: 
 

( 1) = ( ( ))j jy k v kϕ+  

The derivation of the recurrent algorithm can be started by using dj(k) to denote the desired 

(target) response of neuron j  at time k, and ς(k)  to denote the set of neurons that are chosen 

to provide externally reachable outputs. A time-varying (N x 1) error vector e(k) is defined 

whose jth element is given by the following relationship: 
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( ) - ( ),  if   ( )
( ) = 

0,               otherwise

j j
j

d k y k j k
e k

ς∈⎧⎪
⎨
⎪⎩

 

The objective is to minimize the cost function Etotal which is obtained by: 

total = ( )
k

E E k∑ , where 
 

21
( ) =  ( )

2
j

j

E k e k
ς∈
∑  

To accomplish this objective, the method of steepest descent which requires knowledge of 
the gradient matrix is used: 

 
total

total
( )

=  =  =  ( )
k k

E E k
E E k

∂ ∂
∇ ∇

∂∂ ∑ ∑W W
WW

 

where ( )E k∇
W

 is the gradient of E(k) with respect to the weight matrix [W]. In order to train 

the recurrent network in real time, the instantaneous estimate of the gradient is used 

( )( )E k∇
W

.  For the case of a particular weight mw ` (k), the incremental change mwΔ ` (k) 

made at k is defined as 
( )

( ) = - 
( )

m
m

E k
w k

w k
η ∂

Δ
∂`

`
 where ǈ is the learning-rate parameter. 

Therefore:   

  ( ) ( )( )
 = ( ) = - ( )

( ) ( ) ( )
  j i

j j
m m mj j

e k y kE k
e k e k

w k w k w kς ς∈ ∈

∂ ∂∂
∂ ∂ ∂∑ ∑

` ` `

 

 

To determine the partial derivative ( )/ ( )j my k w k∂ ∂ ` , the network dynamics are derived. This 

derivation is obtained by using the chain rule which provides the following equation: 

( + 1) ( + 1) ( ) ( )
 =  = ( ( ))

( ) ( ) ( ) ( )

j j j j
j

m j m m

y k y k v k v k
v k

w k v k w k w k
ϕ

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂` ` `
$ , where 

( ( ))
( ( )) = 

( )

j
j

j

v k
v k

v k

ϕ
ϕ

∂

∂
$ . 

Differentiating the net internal activity of neuron j with respect to mw ` (k) yields: 

  ( ) ( )( ( ) ( )) ( )
=  = ( )  + ( )

( )( ) ( ) ( )

j jiji i i
ji i

mm m mi Λ i Λ

v k w kw k u k u k
w k u k

w kw k w k w kβ β∈ ∪ ∈ ∪

∂ ∂∂ ⎡ ⎤∂
⎢ ⎥

∂∂ ∂ ∂⎢ ⎥⎣ ⎦
∑ ∑

`` ` `

 

where ( )( )/ ( )ji mw k w k∂ ∂ `  equals "1" only when j = m and i = ` , and "0" otherwise. Thus: 

 ( )
 = ( )

( )

j i
mjji

m mi Λ

v k (k)u
w k u (k)ǅ

w k w (k)β∈ ∪

∂ ∂
+

∂ ∂∑ `
` `

 

where mjδ  is a Kronecker delta equals to "1" when j = m and "0" otherwise, and: 

   0,            if  
( )

 = ( )
  ,    if ( )

( )

i
i

m
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i Λ
u k

y k
iw k

w k
β

∈⎧
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Having those equations provides that: 

 ( + 1) ( )
= ( ( ))  ( ) ( )

( ) ( )
 j i

mj ji
m mi

y k y k
v k w k u k

w k w kβ
ϕ δ

∈

⎡ ⎤∂ ∂
+⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ ` `

` `
$  

The initial state of the network at time (k = 0) is assumed to be zero as follows:  

(0)
= 0

(0)
i

m

y

w

∂
∂ `

, for {j∈ ß , m∈ ß , ` ∈ Λ β∪ }. 

The dynamical system is described by the following triply-indexed set of variables ( j
mπ ` ):  

( )
( ) = 

( )

jj
m

m

y k
k

w k
π

∂

∂`
`

 

For every time step k and all appropriate j, m and ` , system dynamics are controlled by: 

 

( + 1) = ( ( ))  ( ) ( ) ( )j i
mjj ji mm

i

k k w k k u kv
β

π ϕ π δ
∈

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ` `` $ , with (0) = 0j

mπ ` . 

The values of ( ) j
m kπ ` and the error signal ej(k) are used to compute the corresponding 

weight changes: 

 
 

( ) =   ( ) ( )j
m j m

j

k e k kw
ς

η π
∈

Δ ∑` `  (2) 

Using the weight changes, the updated weight mw ` (k + 1) is calculated as follows: 

 ( + 1) = ( ) + ( )m m mw k w k w kΔ` ` `  (3) 

Repeating this computation procedure provides the minimization of the cost function and 

thus the objective is achieved. With the many advantages that the neural network has, it is 

used for the important step of parameter identification in model transformation for the 

purpose of model order reduction as will be shown in the following section. 

2.2 Model transformation and linear matrix inequality  

In this section, the detailed illustration of system transformation using LMI optimization 
will be presented. Consider the dynamical system:  
 

 ( ) ( ) ( )x t Ax t Bu t= +$  (4) 

 ( ) ( ) ( )y t Cx t Du t= +  (5) 

The state space system representation of Equations (4) - (5) may be described by the block 
diagram shown in Figure 4. 
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Fig. 4. Block diagram for the state-space system representation. 

In order to determine the transformed [A] matrix, which is [ #A ], the discrete zero input 
response is obtained. This is achieved by providing the system with some initial state values 
and setting the system input to zero (u(k) = 0). Hence, the discrete system of Equations 

(4) - (5), with the initial condition 0 (0)x x= , becomes:  

 ( 1) ( )dx k A x k+ =  (6) 

 ( ) ( )y k x k=  (7) 

We need x(k) as an ANN target to train the network to obtain the needed parameters in 

[ #
d

A ] such that the system output will be the same for [Ad] and [ #
d

A ]. Hence, simulating this 

system provides the state response corresponding to their initial values with only the [Ad] 

matrix is being used. Once the input-output data is obtained, transforming the [Ad] matrix is 

achieved using the ANN training, as will be explained in Section 3. The identified 

transformed [ #
d

A ] matrix is then converted back to the continuous form which in general 

(with all real eigenvalues) takes the following form: 

 
0

r c

o

A A
A

A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

#  →  

1 12 1

2 20

0

0 0

n

n

n

A A

A
A

λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

# #A
#A#

B D B
A

 (8) 

where λi represents the system eigenvalues. This is an upper triangular matrix that 

preserves the eigenvalues by (1) placing the original eigenvalues on the diagonal and (2) 

finding the elements #
ijA  in the upper triangular. This upper triangular matrix form is used 

to produce the same eigenvalues for the purpose of eliminating the fast dynamics and 

sustaining the slow dynamics eigenvalues through model order reduction as will be shown 

in later sections.   

Having the [A] and [ #A ] matrices, the permutation [P] matrix is determined using the LMI 
optimization technique, as will be illustrated in later sections. The complete system 

transformation can be achieved as follows where, assuming that 1x P x−=# , the system of 

Equations (4) - (5) can be re-written as: 

( ) ( ) ( )P x t AP x t Bu t= +$# # , ( ) ( ) ( )y t CP x t Du t= +# # , where ( ) ( )y t y t=# . 

B ∫  C 

D 

A 

+ 
+ 

+ 

y(t) u(t) )(tx$  )(tx  

+ 
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Pre-multiplying the first equation above by [P-1], one obtains: 

1 1 1( ) ( ) ( )P P x t P AP x t P Bu t− − −= +$# # , ( ) ( ) ( )y t CP x t Du t= +# #         

which yields the following transformed model: 

 ( ) ( ) ( )x t Ax t Bu t= +$ # ## #  (9) 

 ( ) ( ) ( )y t Cx t Du t= +# ## #  (10)  

where the transformed system matrices are given by: 

 1A P AP−=#  (11) 

 1B P B−=#  (12) 

 C CP=#  (13) 

 D D=#  (14) 

Transforming the system matrix [A] into the form shown in Equation (8) can be achieved 
based on the following definition [18]. 

Definition. A matrix nA M∈ is called reducible if either: 

a. n = 1 and A = 0; or 

b. n ≥ 2, there is a permutation matrix nP M∈ , and there is some integer r with 

1 1r n≤ ≤ −  such that:  

 1 X Y
P AP

Z
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦0

 (15) 

where ,r rX M∈ , ,n r n rZ M − −∈ , ,r n rY M −∈ , and 0 ,n r rM −∈  is a zero matrix. 

The attractive features of the permutation matrix [P] such as being (1) orthogonal and (2) 

invertible have made this transformation easy to carry out. However, the permutation 

matrix structure narrows the applicability of this method to a limited category of 

applications. A form of a similarity transformation can be used to correct this problem for 

{ : n n n nf R R× ×→ } where f  is a linear operator defined by 1( )f A P AP−=  [18]. Hence, based 

on [A] and [ #A ], the corresponding LMI is used to obtain the transformation matrix [P], and 

thus the optimization problem will be casted as follows: 

 1min o
P

P P Subject to P AP A ε−− − <#  (16) 

which can be written in an LMI equivalent form as: 

 
2 1
1

1

min ( ) 0
( )

                                         0
( )

o

T
S o

T

S P P
trace S Subject to

P P I

I P AP A

P AP A I

ε −

−

−⎡ ⎤
>⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡ ⎤−

>⎢ ⎥
−⎢ ⎥⎣ ⎦

#

#

 (17) 
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where S is a symmetric slack matrix [6]. 

2.3 System transformation using neural identification 

A different transformation can be performed based on the use of the recurrent ANN while 

preserving the eigenvalues to be a subset of the original system. To achieve this goal, the 

upper triangular block structure produced by the permutation matrix, as shown in Equation 

(15), is used. However, based on the implementation of the ANN, finding the permutation 

matrix [P] does not have to be performed, but instead [X] and [Z] in Equation (15) will 

contain the system eigenvalues and [Y] in Equation (15) will be estimated directly using the 

corresponding ANN techniques. Hence, the transformation is obtained and the reduction is 

then achieved. Therefore, another way to obtain a transformed model that preserves the 

eigenvalues of the reduced model as a subset of the original system is by using ANN 

training without the LMI optimization technique. This may be achieved based on the 

assumption that the states are reachable and measurable. Hence, the recurrent ANN can 

identify the [ dÂ ] and [ dB̂ ] matrices for a given input signal as illustrated in Figure 3. The 

ANN identification would lead to the following [ dÂ ] and [ dB̂ ] transformations which (in 

the case of all real eigenvalues) construct the weight matrix [W] as follows: 

11 12 1

22 2

ˆˆ ˆ

ˆˆ0ˆ ˆˆ ˆ[ ] [ ]          ,     
0

ˆ0 0

n

n
d d

n n

bA A

bA
W A B A B

b

λ

λ

λ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤= → = = ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

A

A
BB D B

A

 

where the eigenvalues are selected as a subset of the original system eigenvalues.   

2.4 Model order reduction  

Linear time-invariant (LTI) models of many physical systems have fast and slow dynamics, 
which may be referred to as singularly perturbed systems [19]. Neglecting the fast dynamics 
of a singularly perturbed system provides a reduced (i.e., slow) model. This gives the 
advantage of designing simpler lower-dimensionality reduced-order controllers that are 
based on the reduced-model information.  
To show the formulation of a reduced order system model, consider the singularly 
perturbed system [9]: 

 11 12 1 0  ( ) ( ) ( ) ( ) ,     0x t A x t A t B u t x( ) xξ= + + =$  (18) 

 21 22 2 0( ) ( ) ( ) ( ) ,    (0t A x t A t B u t )εξ ξ ξ ξ= + + =$  (19) 

 1 2y( )  ( ) ( )t C x t C tξ= +  (20) 

where 1  mx∈ℜ and 2mξ ∈ℜ  are the slow and fast state variables, respectively, 1  nu∈ℜ and 

2ny∈ℜ are the input and output vectors, respectively, { [ ]
ii

A , [
i

B ], [
i

C ]} are constant 

matrices of appropriate dimensions with {1, 2}i∈ , and ε  is a small positive constant. The 

singularly perturbed system in Equations (18)-(20) is simplified by setting 0ε =  [3,14,27]. In 
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doing so, we are neglecting the fast dynamics of the system and assuming that the state 

variablesξ  have reached the quasi-steady state. Hence, setting 0ε =  in Equation (19), with 

the assumption that [
22

A ] is nonsingular, produces:  

 1 1
22 21 22 1( ) ( ) ( )rt A A x t A B u tξ − −= − −  (21) 

where the index r denotes the remained or reduced model. Substituting Equation (21) in 
Equations (18)-(20) yields the following reduced order model:  

 ( )  ( ) ( )     r r r rx t A x t B u t= +$  (22) 

 ( ) ( ) ( )r r ry t C x t D u t= +  (23) 

where { 1
11 12 22 21rA A A A A−= − , 1

1 12 22 2rB B A A B−= − , 1
1 2 22 21rC C C A A−= − , 1

2 22 2rD C A B−= − }.  

3. Neural network identification with lmi optimization for the system model 
order reduction  

In this work, it is our objective to search for a similarity transformation that can be used to 
decouple a pre-selected eigenvalue set from the system matrix [A]. To achieve this objective, 

training the neural network to identify the transformed discrete system matrix [ #
d

A ] is 

performed [1,2,15,29]. For the system of Equations (18)-(20), the discrete model of the 
dynamical system is obtained as: 

 ( 1) ( ) ( )d dx k A x k B u k+ = +  (24) 

 ( ) ( ) ( )d dy k C x k D u k= +  (25) 

The identified discrete model can be written in a detailed form (as was shown in Figure 3) as 
follows: 

 1 11 12 1 11

2 21 22 2 21

( 1) ( )
( )

( 1) ( )

x k A A x k B
u k

x k A A x k B

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# #
# #

 (26) 

 1

2

( )
( )

( )

x k
y k

x k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

#
#

#
 (27) 

where k is the time index, and the detailed matrix elements of Equations (26)-(27) were 

shown in Figure 3 in the previous section.  

The recurrent ANN presented in Section 2.1 can be summarized by defining Λ as the set of 

indices i for which ( )ig k is an external input, defining ß as the set of indices i for which 

( )iy k is an internal input or a neuron output, and defining ( )iu k as the combination of the 

internal and external inputs for which i ß∈ ∪ Λ. Using this setting, training the ANN 

depends on the internal activity of each neuron which is given by:  

 ( ) ( ) ( )j ji i
i Λ

v k w k u k
β∈ ∪

= ∑  (28) 
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where wji is the weight representing an element in the system matrix or input matrix for 

j ß∈  and i ß∈ ∪ Λ such that [ ] [ ]W ⎡ ⎤= ⎣ ⎦
# #

d d
A B . At the next time step (k +1), the output 

(internal input) of the neuron j is computed by passing the activity through the nonlinearity 
φ(.) as follows: 

 ( 1) ( ( ))j jx k v kϕ+ =  (29)   

With these equations, based on an approximation of the method of steepest descent, the 
ANN identifies the system matrix [Ad] as illustrated in Equation (6) for the zero input 
response. That is, an error can be obtained by matching a true state output with a neuron 
output as follows: 

( ) ( ) ( )j j je k x k x k= − #   

Now, the objective is to minimize the cost function given by: 

total ( )
k

E E k=∑  and 21
2

( ) ( )j
j

E k e k
ς∈

= ∑  

where ς denotes the set of indices j for the output of the neuron structure. This cost 

function is minimized by estimating the instantaneous gradient of E(k) with respect to the 
weight matrix [W] and then updating [W] in the negative direction of this  gradient  [15,29]. 
In steps, this may be proceeded as follows: 
- Initialize the weights [W] by a set of uniformly distributed random numbers. Starting at 

the instant (k = 0), use Equations (28) - (29) to compute the output values of the N 

neurons (where N ß= ).  

- For every time step k and all ,j ß∈  m ß∈  and ß∈ ∪` Λ, compute the dynamics of the 

system which are governed by the triply-indexed set of variables:  

( 1) ( ( )) ( ) ( ) ( )j i
j ji m mjm

i ß

k v k w k k u kπ ϕ π δ
∈

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ` `` $  

with initial conditions (0) 0j
mπ =`  and mjδ  is given by ( )( ) ( )ji mw k w k∂ ∂ ` , which is  equal 

to "1" only when {j = m, i = ` } and otherwise it is "0". Notice that, for the special case of 

a sigmoidal nonlinearity in the form of a logistic function, the derivative ( )ϕ ⋅$  is given 

by ( ( )) ( 1)[1 ( 1)]j j jv k y k y kϕ = + − +$ .    

- Compute the weight changes corresponding to the error signal and system dynamics:  

 ( ) ( ) ( )j
m j m

j

w k e k k
ς

η π
∈

Δ = ∑` `  (30) 

- Update the weights in accordance with: 

 ( 1) ( ) ( )m m mw k w k w k+ = + Δ` ` `  (31) 

- Repeat the computation until the desired identification is achieved. 
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As illustrated in Equations (6) - (7), for the purpose of estimating only the transformed 

system matrix [ #
d

A ], the training is based on the zero input response. Once the training is 

completed, the obtained weight matrix [W] will be the discrete identified transformed 

system matrix [ #
d

A ]. Transforming the identified system back to the continuous form yields 

the desired continuous transformed system matrix [ #A ]. Using the LMI optimization 

technique, which was illustrated in Section 2.2, the permutation matrix [P] is then determined. 

Hence, a complete system transformation, as shown in Equations (9) - (10), will be achieved. 

For the model order reduction, the system in Equations (9) - (10) can be written as: 

 
( ) ( )

( )
0 ( )( )

r r c r r

o o oo

x t A A x t B
u t

A x t Bx t

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

$# #
$ ##

 (32) 

 [ ]( ) ( )
( )

( ) ( )
r r r

r o
o o o

y t x t D
C C u t

y t x t D

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# #
# #

 (33) 

The following system transformation enables us to decouple the original system into 
retained (r) and omitted (o) eigenvalues. The retained eigenvalues are the dominant 
eigenvalues that produce the slow dynamics and the omitted eigenvalues are the non-
dominant eigenvalues that produce the fast dynamics. Equation (32) maybe written as: 

( ) ( ) ( ) ( )r r r c o rx t A x t A x t B u t= + +$# # #  and ( ) ( ) ( )o o o ox t A x t B u t= +$# #      

The coupling term ( )c oA x t#  maybe compensated for by solving for ( )ox t#  in the second 

equation above by setting ( )ox t$#  to zero using the singular perturbation method (by 

setting 0ε = ). By performing this, the following equation is obtained: 

 1( ) ( )o o ox t A B u t−= −#  (34) 

Using ( )ox t# , we get the reduced order model given by:  

 1( ) ( ) [ ] ( )r r r c o o rx t A x t A A B B u t−= + − +$# #  (35) 

 1( ) ( ) [ ] ( )r r o o oy t C x t C A B D u t−= + − +#  (36) 

Hence, the overall reduced order model may be represented by: 

 ( )  ( ) ( )     r or r orx t A x t B u t= +$# #  (37) 

 ( ) ( ) ( )or r ory t C x t D u t= +#  (38) 

where the details of the {[
or

A ], [
or

B ], [
or

C ], [
or

D ]} overall reduced matrices were shown in 

Equations (35) - (36), respectively. 

4. Examples for the dynamic system order reduction using neural 
identification  

The following subsections present the implementation of the new proposed method of 
system modeling using supervised ANN, with and without using LMI, and using model 
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order reduction, that can be directly utilized for the robust control of dynamic systems. The 
presented simulations were tested on a PC platform with hardware specifications of Intel 
Pentium 4 CPU 2.40 GHz, and 504 MB of RAM, and software specifications of MS Windows 
XP 2002 OS and Matlab 6.5 simulator. 

4.1 Model reduction using neural-based state transformation and lmi-based 
complete system transformation 

The following example illustrates the idea of dynamic system model order reduction using 
LMI with comparison to the model order reduction without using LMI. Let us consider the 
system of a high-performance tape transport which is illustrated in Figure 5. As seen in 
Figure 5, the system is designed with a small capstan to pull the tape past the read/write 
heads with the take-up reels turned by DC motors [10].  
 

 

(a) 

 

(b) 

Fig. 5. The used tape drive system: (a) a front view of a typical tape drive mechanism, and 
(b) a schematic control model.   
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As can be shown, in static equilibrium, the tape tension equals the vacuum force ( oT F= ) 

and the torque from the motor equals the torque on the capstan ( 1t o oK i r T= ) where To is the 

tape tension at the read/write head at equilibrium, F is the constant force (i.e., tape tension 

for vacuum column), K is the motor torque constant, io is the equilibrium motor current, and 

r1 is the radius of the capstan take-up wheel. 
The system variables are defined as deviations from this equilibrium, and the system 
equations of motion are given as follows: 

1
1 1 1 1 t

d
J r T K i

dt

ω β ω= + − + , 1 1 1x r ω=$  

1e

di
L Ri K e

dt
ω+ = ,  2 2 2x r ω=$  

2
2 2 2 2 0

d
J r T

dt

ω β ω+ + =  

1 3 1 1 3 1( ) ( )T K x x D x x= − + −$ $  

2 2 3 2 2 3( ) ( )T K x x D x x= − + −$ $  

1 1 1x r θ= ,  2 2 2x r θ= ,  1 2
3

2

x x
x

−
=  

where 1,2D  is the damping in the tape-stretch motion, e is the applied input voltage (V), i is 

the current into capstan motor, J1 is the combined inertia of the wheel and take-up motor, J2 

is the inertia of the idler, K1,2 is the spring constant in the tape-stretch motion, Ke is the 

electric constant of the motor, Kt is the torque constant of the motor, L is the armature 

inductance, R is the armature resistance, r1 is the radius of the take-up wheel, r2 is the radius 

of the tape on the idler,  T is the tape tension at the read/write head, x3 is the position of the 

tape at the head, 3x$  is the velocity of the tape at the head, ǃ1 is the viscous friction at take-

up wheel, ǃ2 is the viscous friction at the wheel, ǉ1 is the angular displacement of the 

capstan, ǉ2 is the tachometer shaft angle, ω1 is the speed of the drive wheel 1θ$ , and ω2 is the 

output speed measured by the tachometer output 2θ$ .  
The state space form is derived from the system equations, where there is one input, which 
is the applied voltage, three outputs which are (1) tape position at the head, (2) tape tension, 
and (3) tape position at the wheel, and five states which are (1) tape position at the air 
bearing, (2) drive wheel speed, (3) tape position at the wheel, (4) tachometer output speed, 
and (5) capstan motor speed. The following sub-sections will present the simulation results 
for the investigation of different system cases using transformations with and without 
utilizing the LMI optimization technique.    

4.1.1 System transformation using neural identification without utilizing linear matrix 
inequality 
This sub-section presents simulation results for system transformation using ANN-based 
identification and without using LMI.  
Case #1. Let us consider the following case of the tape transport: 

0 2 0 0 0 0

-1.1 -1.35 1.1 3.1 0.75 0

0 0 0 5 0 0( ) ( ) ( )

1.35 1.4 -2.4 -11.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$ , 
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0 0 1 0 0

( ) 0.5 0 0.5 0 0 ( )

0.2 0.2 0.2 0.2 0

y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The five eigenvalues are {-10.5772, -9.999, -0.9814, -0.5962 ± j0.8702}, where two eigenvalues 

are complex and three are real, and thus since (1) not all the eigenvalues are complex and (2) 

the existing real eigenvalues produce the fast dynamics that we need to eliminate, model 

order reduction can be applied. As can be seen, two real eigenvalues produce fast dynamics 

{-10.5772, -9.999} and one real eigenvalue produce slow dynamics {-0.9814}. In order to 

obtain the reduced model, the reduction based on the identification of the input matrix [ B̂ ] 

and the transformed system matrix [ Â ] was performed. This identification is achieved 

utilizing the recurrent ANN.  

By discretizing the above system with a sampling time Ts = 0.1 sec., using a step input with 

learning time Tl = 300 sec., and then training the ANN for the input/output data with a 

learning rate ǈ = 0.005 and with initial weights w = [[ dÂ ] [ dB̂ ]] given as: 

-0.0059 -0.0360 0.0003 -0.0204 -0.0307 0.0499

-0.0283 0.0243 0.0445 -0.0302 -0.0257 -0.0482

0.0359 0.0222 0.0309 0.0294 -0.0405 0.0088

-0.0058 0.0212 -0.0225 -0.0273 0.0079 0.0152

0.0295 -0.0235 -0.0474 -0.0373 -0.0158 -0.016

w =

8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

produces the transformed model for the system and input matrices, ˆ[ ]A  and ˆ[ ]B , as follows: 
 

-0.5967 0.8701 -0.1041 -0.2710 -0.4114 0.1414

-0.8701 -0.5967 0.8034 -0.4520 -0.3375 0.0974

0 0 -0.9809 0.4962 -0.4680 0.1307( ) ( ) ( )

0 0 0 -9.9985  0.0146 -0.0011

0 0 0 0 -10.5764 1.0107

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$  

0 0 1 0 0

( ) 0.5 0 0.5 0 0 ( )

0.2 0.2 0.2 0.2 0

y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

As observed, all of the system eigenvalues have been preserved in this transformed model 
with a little difference due to discretization. Using the singular perturbation technique, the 
following reduced 3rd order model is obtained as follows: 

-0.5967 0.8701 -0.1041 0.1021

( ) -0.8701 -0.5967 0.8034 ( ) 0.0652 ( )

0 0 -0.9809 0.0860

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$  

0 0 1 0

( ) 0.5 0 0.5 ( ) 0 ( )

0.2 0.2 0.2 0

y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
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It is also observed in the above model that the reduced order model has preserved all of its 
eigenvalues {-0.9809, -0.5967 ± j0.8701} which are a subset of the original system, while the 
reduced order model obtained using the singular perturbation without system 
transformation has provided different eigenvalues {-0.8283, -0.5980 ± j0.9304}. 
Evaluations of the reduced order models (transformed and non-transformed) were obtained 
by simulating both systems for a step input. Simulation results are shown in Figure 6. 
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Fig. 6. Reduced 3rd order models (.… transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced model ( ____ original) 5th order system output 
response. 

Based on Figure 6, it is seen that the non-transformed reduced model provides a response 
which is better than the transformed reduced model. The cause of this is that the 
transformation at this point is performed only for the [A] and [B] system matrices leaving 
the [C] matrix unchanged. Therefore, the system transformation is further considered for 
complete system transformation using LMI (for {[A], [B], [D]}) as will be seen in subsection 
4.1.2, where LMI-based transformation will produce better reduction-based response results 
than both the non-transformed and transformed without LMI.   
  

Case #2. Consider now the following case: 

0 2 0 0 0 0

-1.1 -1.35 0.1 0.1 0.75 0

0 0 0 2 0 0( ) ( ) ( )

0.35 0.4 -0.4 -2.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$ , 

0 0 1 0 0

( ) 0.5 0 0.5 0 0 ( )

0.2 0.2 0.2 0.2 0

y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The five eigenvalues are {-9.9973, -2.0002, -0.3696, -0.6912 ± j1.3082}, where two eigenvalues 
are complex, three are real, and only one eigenvalue is considered to produce fast dynamics 
{-9.9973}. Using the discretized model with Ts = 0.071 sec. for a step input with learning time 
Tl = 70 sec., and through training the ANN for the input/output data with ǈ = 3.5 x 10-5 and 
initial weight matrix given by: 
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-0.0195 0.0194 -0.0130 0.0071 -0.0048 0.0029

-0.0189 0.0055 0.0196 -0.0025 -0.0053 0.0120

-0.0091 0.0168 0.0031 0.0031 0.0134 -0.0038

-0.0061 0.0068 0.0193 0.0145 0.0038 -0.0139

-0.0150 0.0204 -0.0073 0.0180 -0.0085 -0.0161

w

⎡
⎢
⎢

=

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

and by applying the singular perturbation reduction technique, a reduced 4th order model is 
obtained as follows: 

-0.6912 1.3081 -0.4606 0.0114 0.0837

-1.3081 -0.6912 0.6916 -0.0781 0.0520
( ) ( ) ( )

0 0 -0.3696 0.0113 0.0240

0 0 0 -2.0002 -0.0014

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

$  

 

0 0 1 0

( ) 0.5 0 0.5 0 ( )

0.2 0.2 0.2 0.2

y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

where all the eigenvalues {-2.0002, -0.3696, -0.6912 ± j1.3081} are preserved as a subset of the 
original system. This reduced 4th order model is simulated for a step input and then 
compared to both of the reduced model without transformation and the original system 
response. Simulation results are shown in Figure 7 where again the non-transformed 
reduced order model provides a response that is better than the transformed reduced 
model. The reason for this follows closely the explanation provided for the previous case. 
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Fig. 7. Reduced 4th order models (…. transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced ( ____ original) 5th order system output response. 
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Case #3. Let us consider the following system: 

0 2 0 0 0 0

-0.1 -1.35 0.1 04.1 0.75 0

0 0 0 5 0 0( ) ( ) ( )

0.35 0.4 -1.4 -5.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$ , 

0 0 1 0 0

( ) 0.5 0 0.5 0 0 ( )

0.2 0.2 0.2 0.2 0

y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The eigenvalues are {-9.9973, -3.9702, -1.8992, -0.6778, -0.2055} which are all real. Utilizing 
the discretized model with Ts = 0.1 sec. for a step input with learning time Tl = 500 sec., and 
training the ANN for the input/output data with ǈ = 1.25 x 10-5, and initial weight matrix 
given by: 

    0.0014   -0.0662     0.0298   -0.0072   -0.0523   -0.0184

    0.0768     0.0653   -0.0770   -0.0858   -0.0968   -0.0609

    0.0231     0.0223   -0.0053     0.0162   -0.0231      0.0024

  -0.0907   

w =
  0.0695     0.0366     0.0132     0.0515      0.0427

    0.0904   -0.0772   -0.0733   -0.0490     0.0150      0.0735

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and then by applying the singular perturbation technique, the following reduced 3rd order 
model is obtained: 

-0.2051 -1.5131 0.6966 0.0341

( ) 0 -0.6782 -0.0329 ( ) 0.0078 ( )

0 0 -1.8986 0.4649

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$  

0 0 1 0

( ) 0.5 0 0.5 ( ) 0 ( )

0.2 0.2 0.2 0.0017

y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Again, it is seen here the preservation of the eigenvalues of the reduced-order model being 
as a subset of the original system. However, as shown before, the reduced model without 
system transformation provided different eigenvalues {-1.5165,-0.6223,-0.2060} from the 
transformed reduced order model. Simulating both systems for a step input provided the 
results shown in Figure 8.  
In Figure 8, it is also seen that the response of the non-transformed reduced model is better 
than the transformed reduced model, which is again caused by leaving the output [C] 
matrix without transformation.  

4.1.2 LMI-based state transformation using neural identification 

As observed in the previous subsection, the system transformation without using the LMI 
optimization method, where its objective was to preserve the system eigenvalues in the 
reduced model, didn't provide an acceptable response as compared with either the reduced 
non-transformed or the original responses.  
As was mentioned, this was due to the fact of not transforming the complete system (i.e., by 
neglecting the [C] matrix). In order to achieve better response, we will now perform a 

www.intechopen.com



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

78

complete system transformation utilizing the LMI optimization technique to obtain the 

permutation matrix [P] based on the transformed system matrix [ #A ] as resulted from the 
ANN-based identification, where the following presents simulations for the previously 
considered tape drive system cases.  
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Fig. 8. Reduced 3rd order models (…. transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced ( ____ original) 5th order system output response. 

Case #1. For the example of case #1 in subsection 4.1.1, the ANN identification is used now 

to identify only the  transformed [ #
d

A ] matrix. Discretizing the system with Ts = 0.1 sec., 

using a step input with learning time Tl = 15 sec., and training the ANN for the 

input/output data with ǈ = 0.001 and initial weights for the [ #
d

A ] matrix as follows: 

0.0286 0.0384 0.0444 0.0206 0.0191

0.0375  0.0440  0.0325 0.0398 0.0144

0.0016 0.0186 0.0307 0.0056 0.0304

0.0411 0.0226 0.0478 0.0287 0.0453

0.0327 0.0042 0.0239  0.0106  0.0002

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

produces the transformed system matrix:  

-0.5967 0.8701 -1.4633 -0.9860 0.0964

-0.8701 -0.5967 0.2276 0.6165 0.2114

0 0 -0.9809 0.1395 0.4934

0 0 0 -9.9985  1.0449

0 0 0 0 -10.5764

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#  

Based on this transformed matrix, using the LMI technique, the permutation matrix [P] was 
computed and then used for the complete system transformation. Therefore, the 

transformed {[ #B ], [ #C ], [ #D ]} matrices were then obtained. Performing model order 
reduction provided the following reduced 3rd order model: 
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-0.5967 0.8701 -1.4633 35.1670

( ) -0.8701 -0.5967 0.2276 ( ) -47.3374 ( )

0 0 -0.9809 -4.1652

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$  

-0.0019 0 -0.0139 -0.0025

( ) -0.0024 -0.0009 -0.0088 ( )  -0.0025 ( )

-0.0001  0.0004 -0.0021 0.0006

y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where the objective of eigenvalue preservation is clearly achieved. Investigating the 
performance of this new LMI-based reduced order model shows that the new completely 
transformed system is better than all the previous reduced models (transformed and non-
transformed). This is clearly shown in Figure 9 where the 3rd order reduced model, based on 
the LMI optimization transformation, provided a response that is almost the same as the 5th 
order original system response.  
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Fig. 9. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed, ---- 
transformed with LMI) output responses to a step input along with the non reduced ( ____ 
original) system output response. The LMI-transformed curve fits almost exactly on the 
original response.  

Case #2. For the example of case #2 in subsection 4.1.1, for Ts = 0.1 sec., 200 input/output 

data learning points, and ǈ = 0.0051 with initial weights for the [ #
d

A ] matrix as follows: 

  

 0.0332    0.0682    0.0476    0.0129   0.0439

 0.0317    0.0610    0.0575    0.0028   0.0691

 0.0745    0.0516    0.0040    0.0234   0.0247

 0.0459    0.0231    0.0086    0.0611   0.0154

 0.0706   

w =

0.0418    0.0633    0.0176    0.0273

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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the transformed [ #A ] was obtained and used to calculate the permutation matrix [P]. The 
complete system transformation was then performed and the reduction technique produced 
the following 3rd order reduced model: 

-0.6910 1.3088 -3.8578 -0.7621

( ) -1.3088 -0.6910 -1.5719 ( ) -0.1118 ( )

0 0 -0.3697  0.4466

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$  

 0.0061 0.0261 0.0111 0.0015

( ) -0.0459 0.0187 -0.0946 ( )  0.0015 ( )

0.0117  0.0155 -0.0080 0.0014

y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

with eigenvalues preserved as desired. Simulating this reduced order model to a step input, 
as done previously, provided the response shown in Figure 10. 
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Fig. 10. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed,                        
---- transformed with LMI) output responses to a step input along with the non reduced ( 
____ original) system output response. The LMI-transformed curve fits almost exactly on the 
original response. 

Here, the LMI-reduction-based technique has provided a response that is better than both of 
the reduced non-transformed and non-LMI-reduced transformed responses and is almost 
identical to the original system response. 
 

Case #3. Investigating the example of case #3 in subsection 4.1.1, for Ts = 0.1 sec., 200 

input/output data points, and ǈ = 1 x 10-4 with initial weights for [ ]#
d

A  given as:  
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  0.0048    0.0039    0.0009    0.0089   0.0168

  0.0072    0.0024    0.0048    0.0017   0.0040

  0.0176    0.0176    0.0136    0.0175   0.0034

  0.0055    0.0039    0.0078    0.0076   0.0051

  0.01

w =

02    0.0024    0.0091    0.0049    0.0121

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

the LMI-based transformation and then order reduction were performed. Simulation results 
of the reduced order models and the original system are shown in Figure 11. 
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Fig. 11. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed,                         
---- transformed with LMI) output responses to a step input along with the non reduced ( 
____ original) system output response. The LMI-transformed curve fits almost exactly on the 
original response. 

Again, the response of the reduced order model using the complete LMI-based 
transformation is the best as compared to the other reduction techniques.    
 

5. The application of closed-loop feedback control on the reduced models 

Utilizing the LMI-based reduced system models that were presented in the previous section, 

various control techniques – that can be utilized for the robust control of dynamic systems - 

are considered in this section to achieve the desired system performance. These control 

methods include (a) PID control, (b) state feedback control using (1) pole placement for the 

desired eigenvalue locations and (2) linear quadratic regulator (LQR) optimal control, and 

(c) output feedback control.   

5.1 Proportional–Integral–Derivative (PID) control 

A PID controller is a generic control loop feedback mechanism which is widely used in 
industrial control systems [7,10,24]. It attempts to correct the error between a measured 
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process variable (output) and a desired set-point (input) by calculating and then providing a 
corrective signal that can adjust the process accordingly as shown in Figure 12. 
 
 

 
 
 

Fig. 12. Closed-loop feedback single-input single-output (SISO) control using a PID 
controller. 

In the control design process, the three parameters of the PID controller {Kp, Ki, Kd} have to 

be calculated for some specific process requirements such as system overshoot and settling 

time. It is normal that once they are calculated and implemented, the response of the system 

is not actually as desired. Therefore, further tuning of these parameters is needed to provide 

the desired control action. 

Focusing on one output of the tape-drive machine, the PID controller using the reduced 
order model for the desired output was investigated. Hence, the identified reduced 3rd order 
model is now considered for the output of the tape position at the head which is given as: 

original 3 2

0.0801s 0.133
( )

2.1742s 2.2837s 1.0919
G s

s

+
=

+ + +
 

Searching for suitable values of the PID controller parameters, such that the system provides 
a faster response settling time and less overshoot, it is found that {Kp = 100, Ki = 80, Kd = 90} 
with a controlled system which is given by: 

3 2

controlled 4 3 2

7.209s 19.98s 19.71s 10.64
( )

s 9.383 22.26s 20.8s 10.64
G s

s

+ + +
=

+ + + +
 

Simulating the new PID-controlled system for a step input provided the results shown in 
Figure 13, where the settling time is almost 1.5 sec. while without the controller was greater 
than 6 sec. Also as observed, the overshoot has much decreased after using the PID 
controller. 
On the other hand, the other system outputs can be PID-controlled using the cascading of 

current process PID and new tuning-based PIDs for each output. For the PID-controlled 

output of the tachometer shaft angle, the controlling scheme would be as shown in Figure 

14. As seen in Figure 14, the output of interest (i.e., the 2nd output) is controlled as desired 

using the PID controller. However, this will affect the other outputs' performance and 

therefore a further PID-based tuning operation must be applied. 

www.intechopen.com



Robust Control Using LMI Transformation and Neural-Based Identification for 
Regulating Singularly-Perturbed Reduced Order Eigenvalue-Preserved Dynamic Systems 

 

83 

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Step Response

Time (sec)

A
m

p
lit

u
d
e

 

Fig. 13. Reduced 3rd order model PID controlled and uncontrolled step responses.  

 

 

  (a)      (b) 

Fig. 14. Closed-loop feedback single-input multiple-output (SIMO) system with a PID 
controller: (a) a generic SIMO diagram, and (b) a detailed SIMO diagram. 

As shown in Figure 14, the tuning process is accomplished using G1T and G3T. For example, 
for the 1st output: 

 1 1 1 2 1 1PID( )TY G G R Y   Y G R= − = =  (39) 

 ∴
1

2

 
PID( )

T

R
G    

R - Y
=  (40) 

where Y2 is the Laplace transform of the 2nd output. Similarly, G3T can be obtained. 

5.2 State feedback control  

In this section, we will investigate the state feedback control techniques of pole placement 

and the LQR optimal control for the enhancement of the system performance. 

5.2.1 Pole placement for the state feedback control  

For the reduced order model in the system of Equations (37) - (38), a simple pole placement-
based state feedback controller can be designed. For example, assuming that a controller is 
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needed to provide the system with an enhanced system performance by relocating the 
eigenvalues, the objective can be achieved using the control input given by: 

 ( ) ( ) ( )ru t Kx t r t= − +#  (41) 

where K is the state feedback gain designed based on the desired system eigenvalues. A 
state feedback control for pole placement can be illustrated by the block diagram shown in 
Figure 15.  
 

 

Fig. 15. Block diagram of a state feedback control with {[
or

A ], [
or

B ], [
or

C ], [
or

D ]} overall 

reduced order system matrices. 

Replacing the control input u(t) in Equations (37) - (38) by the above new control input in 
Equation (41) yields the following reduced system equations: 
 

 ( ) ( ) [ ( ) ( )]r or r or rx t A x t B Kx t r t= + − +$# # #  (42)  

 ( ) ( ) [ ( ) ( )]or r or ry t C x t D Kx t r t= + − +# #  (43)  

which can be re-written as:  

( ) ( ) ( ) ( )r or r or r orx t A x t B Kx t B r t= − +$# # #  ( ) [ ] ( ) ( )r or or r orx t A B K x t B r t→ = − +$# #   

( ) ( ) ( ) ( )or r or r ory t C x t D Kx t D r t= − +# #  ( ) [ ] ( ) ( )or or r ory t C D K x t D r t→ = − +#  

where this is illustrated in Figure 16.  

 

 

Fig. 16. Block diagram of the overall state feedback control for pole placement. 

orB ∫
+ 

+ 

+ 

y(t) 
u(t) )(~ txr

$ )(~ txr

 K 

- 

+ r(t) 

orA

orC

orD  

+ 

KBA oror −  

∫  
+ 

+ 

+ 

y(t) 
( )rx t$#  ( )rx t#  r(t) 

orB KDC oror −  

orD

+ 
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The overall closed-loop system model may then be written as:  

 ( ) ( ) ( )cl r clx t A x t B r t= +$# #  (44) 

 ( ) ( ) ( )cl r cly t C x t D r t= +#  (45) 

such that the closed loop system matrix [Acl] will provide the new desired system 
eigenvalues.  
For example, for the system of case #3, the state feedback was used to re-assign the 
eigenvalues with {-1.89, -1.5, -1}. The state feedback control was then found to be of K = [-
1.2098  0.3507  0.0184], which placed the eigenvalues as desired and enhanced the system 
performance as shown in Figure 17.  
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Fig. 17. Reduced 3rd order state feedback control (for pole placement) output step response                      
-.-.-.- compared with the original ____ full order system output step response. 

5.2.2 Linear-Quadratic Regulator (LQR) optimal control for the state feedback control  

Another method for designing a state feedback control for system performance 

enhancement may be achieved based on minimizing the cost function given by [10]: 

 ( )
0

T TJ x Qx u Ru dt
∞

= +∫  (46) 

which is defined for the system ( ) ( ) ( )x t Ax t Bu t= +$ , where Q and R are weight matrices for 

the states and input commands. This is known as the LQR problem, which has received 

much of a special attention due to the fact that it can be solved analytically and that the 

resulting optimal controller is expressed in an easy-to-implement state feedback control 

[7,10]. The feedback control law that minimizes the values of the cost is given by: 

 ( ) ( )u t Kx t= −  (47) 
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where K is the solution of 1 TK R B q−=  and [q] is found by solving the algebraic Riccati 

equation which is described by: 

 1 0T TA q qA qBR B q Q−+ − + =  (48) 

where [Q] is the state weighting matrix and [R] is the input weighting matrix. A direct 
solution for the optimal control gain maybe obtained using the MATLAB statement 

lqr( , , , )K A B Q R= , where in our example R = 1, and the [Q] matrix was found using the 

output [C] matrix such as TQ C C= . 

The LQR optimization technique is applied to the reduced 3rd order model in case #3 of 
subsection 4.1.2 for the system behavior enhancement. The state feedback optimal control 
gain was found K = [-0.0967 -0.0192 0.0027], which when simulating the complete system for 
a step input, provided the normalized output response (with a normalization factor Ǆ = 
1.934) as shown in Figure 18.  
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Fig. 18. Reduced 3rd order LQR state feedback control output step response -.-.-.- compared 
with the original ____ full order system output step response. 

As seen in Figure 18, the optimal state feedback control has enhanced the system 
performance, which is basically based on selecting new proper locations for the system 
eigenvalues.  

5.3 Output feedback control  

The output feedback control is another way of controlling the system for certain desired 
system performance as shown in Figure 19 where the feedback is directly taken from the 
output.  
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Fig. 19. Block diagram of an output feedback control. 

The control input is now given by ( ) ( ) ( )u t K y t r t= − + , where ( ) ( ) ( )or r ory t C x t D u t= +# . By 

applying this control to the considered system, the system equations become [7]: 

 

1 1

( ) ( ) [ ( ( ) ( )) ( )]

( ) ( ) ( ) ( )

[ ] ( ) ( ) ( )

       [ [ ] ] ( ) [ [ ] ] ( )

r or r or or r or

or r or or r or or or

or or or r or or or

or or or or r or or

x t A x t B K C x t D u t r t

A x t B KC x t B KD u t B r t

A B KC x t B KD u t B r t

A B K I D K C x t B I KD r t− −

= + − + +
= − − +
= − − +

= − + + +

$# # #
# #

#

#

 (49) 

 

1 1

( ) ( ) [ ( ) ( )]

( ) ( ) ( )

[[ ] ] ( ) [[ ] ] ( )

or r or

or r or or

or or r or or

y t C x t D K y t r t

C x t D Ky t D r t

I D K C x t I D K D r t− −

= + − +
= − +

= + + +

#
#

#
 (50) 

This leads to the overall block diagram as seen in Figure 20. 
 
 
 
 

  
 
 
 

Fig. 20. An overall block diagram of an output feedback control. 

Considering the reduced 3rd order model in case #3 of subsection 4.1.2 for system behavior 

enhancement using the output feedback control, the feedback control gain is found to be K = 

[0.5799  -2.6276  -11]. The normalized controlled system step response is shown in Figure 21, 

where one can observe that the system behavior is enhanced as desired.  

orB ∫  
+ 

+ 

+ 

y(t) 
u(t) ( )rx t$#  ( )rx t#  

 K 

- 

+ r(t) 

orA

orC

orD  

+ 

1[ ]or or or orA B K I D K C−− +  

∫  
+ 

+ 

+ 
y(t) 

( )rx t$#  ( )rx t#  

r(t) 

1[ ]or orB I KD −+  1[ ]or orI D K C−+

oror DKDI 1][ −+  

+ 
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Fig. 21. Reduced 3rd order output feedback controlled step response -.-.-.- compared with the 
original ____ full order system uncontrolled output step response. 

6. Conclusions and future work 

In control engineering, robust control is an area that explicitly deals with uncertainty in its 

approach to the design of the system controller. The methods of robust control are designed 

to operate properly as long as disturbances or uncertain parameters are within a compact 

set, where robust methods aim to accomplish robust performance and/or stability in the 

presence of bounded modeling errors. A robust control policy is static - in contrast to the 

adaptive (dynamic) control policy - where, rather than adapting to measurements of 

variations, the system controller is designed to function assuming that certain variables will 

be unknown but, for example, bounded. 

This research introduces a new method of hierarchical intelligent robust control for dynamic 

systems. In order to implement this control method, the order of the dynamic system was 

reduced. This reduction was performed by the implementation of a recurrent supervised 

neural network to identify certain elements [Ac] of the transformed system matrix [ #A ], 

while the other elements [Ar] and [Ao] are set based on the system eigenvalues such that [Ar] 

contains the dominant eigenvalues (i.e., slow dynamics) and [Ao] contains the non-dominant 

eigenvalues (i.e., fast dynamics). To obtain the transformed matrix [ #A ], the zero input 

response was used in order to obtain output data related to the state dynamics, based only 

on the system matrix [A]. After the transformed system matrix was obtained, the 

optimization algorithm of linear matrix inequality was utilized to determine the 

permutation matrix [P], which is required to complete the system transformation matrices 

{[ #B ], [ #C ], [ #D ]}. The reduction process was then applied using the singular perturbation 

method, which operates on neglecting the faster-dynamics eigenvalues and leaving the 

dominant slow-dynamics eigenvalues to control the system. The comparison simulation 

results show clearly that modeling and control of the dynamic system using LMI is superior 
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to that without using LMI. Simple feedback control methods using PID control, state 

feedback control utilizing (a) pole assignment and (b) LQR optimal control, and output 

feedback control were then implemented to the reduced model to obtain the desired 

enhanced response of the full order system.  
Future work will involve the application of new control techniques, utilizing the control 
hierarchy introduced in this research, such as using fuzzy logic and genetic algorithms. 
Future work will also involve the fundamental investigation of achieving model order 
reduction for dynamic systems with all eigenvalues being complex.    
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