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1. Introduction  

1.1 Helicobacter pylori pathogenesis 

Helicobacter pylori is a gram-negative, slow-growing, microaerophilic, spiral bacterium. It is 
one of the most common human gastrointestinal pathogens, infecting almost 50% of the 
world’s population [1]. Peptic ulcer disease is now approached as an infectious disease, and 
H. pylori is responsible for the majority of duodenal and gastric ulcers [2]. There is strong 
evidence that H. pylori infection increases the risk of gastric cancer [3], the second most 
frequent cause of cancer-related death. H. pylori infections are acquired by oral ingestion and 
is mainly transmitted within families in early childhood [2]. Once colonized, the host can be 
chronically infected for life, unless H. pylori is eradicated by treatment with antibiotics.  
H. pylori is highly adapted to its ecologic niche, the human gastric mucosa. The pathogenesis 
of H. pylori relies on its persistence in surviving a harsh environment, including acidity, 
peristalsis, and attack by phagocyte cells and their released reactive oxygen species [4]. H. 
pylori has a unique array of features that permit entry into the mucus, attachment to 
epithelial cells, evasion of the immune response, and as a result, persistent colonization and 
transmission. Numerous virulence factors in H. pylori have been extensively studied, 
including urease, flagella, BabA adhesin, the vacuolating cytotoxin (VacA), and the cag 
pathogenicity island (cag-PAI) [5]. In addition to its clinical importance, H. pylori has 
become a model system for persistent host-associated microorganisms [6]. How H. pylori can 
adapt to, and persist in, the human stomach has become a problem of general interest in 
both microbial physiology and in pathogenesis areas. 

1.2 Genetic diversity of H. pylori 

H. pylori displays exceptional genetic variability and intra-species diversity [7]. Allelic 
diversity is obvious as almost every unrelated isolate of H. pylori has a unique sequence 
when a sequenced fragment of only several hundred base pairs is compared among strains 
for either housekeeping or virulence genes [8-10]. Approximately 5% nucleotide divergence 
is commonly observed at the majority of gene loci between pairs of unrelated H. pylori 
strains [11]. H. pylori strains also differ considerably in their gene contents, the genetic 
macro-diversity. The two sequenced strains 26695 and J99 share only 94% of their genes, 
whereas approximately 7% of the genes are unique for each strain [12, 13]. Supporting 
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studies using whole-genome microarray detected numerous genomic changes in the paired 
sequential isolates of H. pylori from the same patient [14, 15].  
Mechanisms proposed to account for the observed genetic variability include mainly the 
high inherent mutation rate and high frequency of recombination [16]. The spontaneous 
mutation rate of the majority of H. pylori strains lies between 10-5 and 10-7 [17]. This is several 
orders of magnitude higher than the average mutation rate of Escherichia coli, and similar to 
that of E. coli strains defective in mismatch repair functions (mutator strains) [18]. While 
mutation is essential for introducing sequence diversity into the species, a key role in 
generating diversity is played by recombination.  
H. pylori is naturally competent for DNA transformation, and has a highly efficient system 
for recombination of short-fragment involving multiple recombination events within a 
single locus [19, 20]. A special apparatus homologous to type IV secretion system (T4SS, 
encoded by comB locus) is dedicated to a DNA uptake role [21, 22] and a composite system 
involving proteins at the comB locus and ComEC mediates two-step DNA uptake in H. pylori 
[23]. T4SS systems are known to transport DNA and proteins in other bacteria, but H. pylori 
is the only species known to use a T4SS for natural competence [24]. Unlike several other 
bacterial species, H. pylori does not require specific DNA sequences for uptake of related 
DNA [25]. Instead, numerous and efficient restriction modification systems take over the 
function as a barrier to horizontal gene transfer from foreign sources [26, 27].  
Population genetic analyses of unrelated isolates of H. pylori indicated that recombination 
was extremely frequent in H. pylori [9, 28]. There is evidence that humans are occasionally 
infected with multiple genetically distinct isolates and that recombination between H. pylori 
strains can occur in humans [29, 30]. Using mathematical modeling approaches on sequence 
data from 24 pairs of sequential H. pylori isolates, Falush et al. [31] estimated that the mean 
size of imported fragments was only 417 bp, much shorter than that observed for other 
bacteria. The recombination rate per nucleotide was estimated as 6.9 x 10-5, indicating that 
every pair of strains differed on average by 114 recombination events. Compared to other 
bacteria studied in this way [32-34], the recombination frequency within H. pylori is 
extraordinarily high. The H. pylori genome also has extensive repetitive DNA sequences that 
are targets for intragenomic recombination [35]. 

2. Overview of DNA repair in H. pylori 

Oxidative DNA damage represents a major form of DNA damage. Among the many 
oxidized bases in DNA, 8-oxo-guanine is a ubiquitous biomarker of DNA oxidation [36]. In 
addition, acid (low pH) conditions may result in DNA damage via depurination [37]. H. 
pylori survives on the surface of the stomach lining for the lifetime of its host and causes a 
chronic inflammatory response. Several lines of evidence suggest that H. pylori is exposed to 
oxidative damage soon after infection [38, 39]. Under physiological conditions, H. pylori is 
thought to frequently suffer oxidative and acid stress [40, 41]. In addition to diverse oxidant 
detoxification enzymes (e.g. superoxide dismutase, catalse, and peroxiredoxins) [42] and 
potent acid avoidance mechanisms (mainly urease) [43], efficient DNA repair systems are 
required for H. pylori to survive in the host.  

2.1 DNA repair systems in H. pylori 

The whole genome sequences of H. pylori revealed it contains several DNA repair pathways 
that are common to many bacterial species, while it lacks other repair pathways or contains 
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only portions of them. H. pylori encodes the homologues of all four members of the 
nucleotide excision repair (NER) pathway; these are UvrA, UvrB, UvrC, and UvrD, all of 
which are well conserved in bacteria. NER deals with DNA-distorting lesions, in which an 
excinuclease removes a 12- to 13- nucleotide segment from a single strand centered around 
the lesion; the resulting gap is then filled in by repair synthesis [44]. Loss of uvrB in H. pylori 
was shown to confer sensitivity to UV light, alkylating agents and low pH, suggesting that 
the H. pylori NER pathway is functional in repairing a diverse array of DNA lesions [45]. H. 
pylori UvrD was shown to play a role in repairing DNA damage and limiting DNA 
recombination, indicating it functions to ultimately maintain genome integrity [46].  
The methyl-directed mismatch repair system (MMR), consisting of MutS1, MutH, and MutL, is 
conserved in many bacteria and eukaryotes, and it plays a major role in maintaining genetic 
stability. MMR can liberate up to 1000 nucleotides from one strand during its function to 
correct a single mismatch arising during DNA replication [47]. Notably, MMR does not exist in 
H. pylori, contributing to the high mutation rates observed in H. pylori [17]. H. pylori has a MutS 
homologue that belongs to the MutS2 family. H. pylori MutS2 was shown to bind to DNA 
structures mimicking recombination intermediates and to inhibit DNA strand exchange, thus 
it may play a role in maintaining genome integrity by suppressing homologous and 
homeologous DNA recombination [48]. In addition, H. pylori MutS2 appears to play a role in 
repairing oxidative DNA damage, specifically 8-oxo-guanine [49].  
Damaged bases can be repaired by a variety of glycosylases that belong to the base excision 
repair (BER) pathway. All glycosylases can excise a damaged base resulting in an 
apurinic/apyrimidinic (AP) site, while some of them additionally nick the DNA 
deoxyribose-phosphate backbone (via an AP lyase activity). H. pylori harbors the glycosylase 
genes ung, mutY, nth, and magIII, whereas several other genes appear to be absent from the 
H. pylori genome, e.g. tag, alkA, and mutM. The H. pylori endonuclease III (nth gene product), 
which removes oxidized pyrimidine bases, was shown to be important in establishing long-
term colonization in the host [50]. The H. pylori MutY glycosylase is functional in removing 
adenine from 8-oxoG:A mispair, and the loss of MutY leads to attenuation of the 
colonization ability [51-53].  
To repair DNA double strand breaks and blocked replication forks, H. pylori is equipped 
with an efficient system of DNA recombinational repair, which is the main focus of this 
review (See section 4).  

2.2 H. pylori response to DNA damage 

Many bacteria encode a genetic program for a coordinated response to DNA damage called 
the SOS response. The best known E. coli SOS response is triggered when RecA binds 
ssDNA, activating its co-protease activity towards LexA, a transcriptional repressor [54]. 
Cleavage of LexA results in transcriptional induction of genes involved in DNA repair, low-
fidelity polymerases, and cell cycle control. However, the H. pylori genome contains neither 
a gene for LexA homolog nor the genes for low-fidelity polymerases, and an SOS response 
pathway seems to be absent in H. pylori [12, 13]. 
To define pathways for an H. pylori DNA damage response, Dorer et al. [55] used cDNA 
based microarrays to measure transcriptional changes in cells undergoing DNA damage. In 
both ciprofloxacin treated cells and the ΔaddA (a major DNA recombination gene, see 
section 4.4 below) mutant cells, the same set of genes were induced which include genes 
required for energy metabolism, membrane proteins, fatty acid biosynthesis, cell division, 
and some translation factors, although the contribution of these genes to survival in the face 
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of DNA damage is not understood. No DNA repair genes, a hallmark of the SOS response, 
were induced in either the antibiotic-treated cells or the recombination gene deleted strain. 
Surprisingly, several genes involved in natural competence for DNA transformation (com 
T4SS components comB3, comB4 and comB9) were induced significantly. Indeed, natural 
transformation frequency was shown to be increased under DNA damage conditions. 
Another DNA damage-induced gene was a lysozyme-encoding gene. Experimental 
evidence was provided that a DNA damage-induced lysozyme may target susceptible cells 
in culture and provide a source of DNA for uptake [55]. Taken together, DNA damage 
(mainly DSBs in their experiments) induces the capacity for taking up DNA segments from 
the neighboring cells of the same strain (homologous) or co-colonizing strain (homeologous) 
that may be used for recombinational DNA repair.  

3. Mechanisms of DNA recombinational repair known in model bacteria 

Although the bulk of DNA damage affects one strand of a duplex DNA segment, 
occasionally both DNA strands opposite each other are damaged; the latter situation 
necessitates recombinational repair using an intact homologous DNA sequence [56, 57]. 
DNA double-strand breaks (DSB) occur as a result of a variety of physical or chemical 
insults that modify the DNA (e.g. DNA strands cross-links). In addition, if a replication 
fork meets damaged bases that cannot be replicated, the fork can collapse leading to a 
DSB. In E. coli, 20-50% of replication forks require recombinational repair to overcome 
damage [58].  
Homologous recombinational repair requires a large number of proteins that act at various 
stages of the process [56]. The first stage, pre-synapsis, is the generation of 3' single-
stranded (ss) DNA ends that can then be used for annealing with the homologous sequence 
on the sister chromosome. In E. coli, the two types of two-strand lesions (double strand end 
and daughter strand gap) are repaired by two separate pathways, RecBCD and RecFOR, 
respectively [57]. The second and most crucial step in DNA recombination is the 
introduction of the 3' DNA overhang into the homologous duplex of the sister chromosome, 
termed synapsis. This is performed by RecA in bacteria. RecA binds to ssDNA in an ATP-
dependent manner, and RecA-bound ssDNA (in a right-handed helix structure) can invade 
homologous duplex DNA and mediate strand annealing, accompanied by extrusion of the 
other strand that can pair with the remaining 5' overhang of the DSB (called D-loop 
formation). 
During DNA recombination, the single stranded DNA (ssDNA) is always coated (protected) 
by ssDNA-binding protein (SSB), which has a higher affinity to ssDNA than RecA. RecA 
needs to be loaded (during pre-synapsis stage), either by RecBCD or RecFOR, onto the 
generated ssDNA that is coated with SSB. During the third step in recombination, post-
synapsis, RecA-promoted strand transfer produces a four-stranded exchange, or Holliday 
junctions (HJ) [59]. The RecG and RuvAB helicases are two pathways that process the 
branch migration of HJ. Finally, RuvC resolves HJ in an orientation determined by RuvB, 
and the remaining nicks are sealed by DNA ligase.  
Several other genes (recJ, recQ, recN) are also required for recombination, although their 
functions are unclear [60, 61]. Single stranded exonuclease RecJ and RecQ helicase are 
sometimes needed to enlarge the gap for RecFOR to act [62]. RecN, RecO, and RecF were 
found to be localized to distinct foci on the DNA in Bacillus subtilis cells after induction of 
DSBs [63]. These proteins form active repair centers at DSBs and recruit RecA, initiating 
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homologous recombination. RecN was shown to play an important role in repairing DSBs, 
probably coordinating alignment of the broken segments with intact duplexes to facilitate 
recombination [64].  

4. DNA recombinational repair factors in H. pylori 

While some genes that are predicted to be involved in DNA recombinational repair, 
including recA, recG, recJ, recR, recN, and ruvABC, were annotated from the published H. 
pylori genome sequences, many genes coding for the components that are involved in the 
pre-synapsis stage, such as RecBCD, RecF, RecO, and RecQ, were missing. Considering 
that H. pylori is highly genetic diverse with a high recombination frequency, this has been 
a big puzzle over the past decade. Recent studies revealed the existence of both pathways, 
AddAB (RecBCD-like) and RecRO, for initiation of DNA recombinational repair in H. 
pylori. In the following sections we will summarize the current understanding of DNA 
recombinational repair in H. pylori by reviewing the literature accumulated in recent 
years.  

4.1 The central recombination protein RecA 

The RecA protein is a central component of the homologous recombination machinery and 
of the SOS system in most bacteria. The relatively small RecA protein contains many 
functional domains including different DNA-binding sites and an ATP-binding site. E. coli 
RecA has also coprotease activities for the LexA repressor and other factors involved in SOS 
response. However, H. pylori genome does not contain a LexA homolog and an SOS 
response pathway is likewise absent in H. pylori. Thus, a coprotease activity may be 
dispensable for the H. pylori RecA protein. Nevertheless, RecA is required for DNA damage 
response observed in H. pylori, although the underlying mechanism is unclear [55]. 
Before the genome era, the roles of H. pylori RecA in DNA recombination and repair have 
been studied genetically [65, 66]. H. pylori RecA (37.6 kDa protein) is highly similar to 
known bacterial RecA proteins.  The H. pylori recA mutants were severely impaired in their 
ability to survive treatment with DNA damaging agents such as UV light, methyl 
methanesulfonate, ciprofloxacin, and metronidazole. H. pylori RecA also played a role in 
survival at low pH in a mechanism distinct from that mediated by urease [66]. Disruption of 
recA in H. pylori abolished general homologous recombination [65]. Interestingly, H. pylori 
RecA protein is subject to posttranslational modifications that result in a slight shift in its 
electrophoretic mobility [67]. One putative mechanism for RecA modification is protein 
glycosylation. H. pylori RecA protein was shown to be membrane associated, but this 
association is not dependent on the posttranslational modification. The RecA modification is 
required for full activity of DNA repair [67].   
In recent years, the phenotypes of H. pylori recA mutants have been further characterized in 
comparison with other mutants. Among the mutants of DNA recombination and repair 
genes, recA mutants displayed the most severe phenotypes. For example, recA mutants were 
much more sensitive to UV or Gamma radiation than the recB or recO single mutants, and 
were similar to the recBO double mutant [68-70]. The recA mutants completely lost the 
ability to undergo natural transformation [68-70]. The intra-genomic recombination 
frequency of the recA mutant was also much lower than that of the recR or recB single 
mutants [68, 71]. Finally, the recA mutants completely lost the ability to colonize mouse 
stomachs [69]. In competition experiments (mixed infection with wild type and mutant 
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strains), recA mutant bacteria were never recovered, while some addA or addB mutant 
bacteria were recovered from mouse stomachs. 

4.2 Post-synapsis proteins RuvABC and RecG 

In addition to the synapsis protein RecA, the genes for post-synapsis proteins (RuvABC and 
RecG) are also well conserved among bacteria [72]. Genes for RuvABC proteins are present 
in H. pylori, thus H. pylori seems to be able to restore Holliday Junctions in a similar way to 
E. coli. RuvC is a Holliday junction endonuclease that resolves recombinant joints into 
nicked duplex products. A ruvC mutant of H. pylori was more sensitive (compared to the 
wild type) to oxidative stress and other DNA damaging agents including UV light, 
mitomycin C, levofloxacin and metronidazole [73]. As Macrophage cells are known to 
produce an oxidative burst to kill bacterial pathogens, the survival of H. pylori ruvC mutant 
within macrophages was shown to be 100-fold lower than that of the wild type strain [73]. 
Furthermore, mouse model experiments revealed that the 50% infective dose of the ruvC 
mutant was approximately 100-fold higher than that of the wild-type strain. Although the 
ruvC mutant was able to establish colonization at early time points, infection was 
spontaneously cleared from the murine gastric mucosa over long periods (36 to 67 days) 
[73]. This was the first experimental evidence that DNA recombination processes are 
important for establishing and maintaining long-term H. pylori infection. Further studies 
suggested that RuvC function and, by inference, recombination facilitate bacterial immune 
evasion by altering the adaptive immune response [74], although the underlying 
mechanisms remain obscure. 
RuvAB proteins are involved in the branch migration of Holliday junctions. The annotated 
H. pylori RuvB (HP1059) showed extensive homology (52% sequence identity) to E. coli 
RuvB, particularly within the helicase domains. However, unlike in E. coli, ruvA, ruvB, and 
ruvC are located in separate regions of the H. pylori chromosome, which may predict 
possible functional differences. In contrast to E. coli ruvB mutants, which have moderate 
susceptibility to DNA damage, the H. pylori ruvB mutant has intense susceptibility to UV, 
similar to that of a recA mutant [75]. Similarly, the H. pylori ruvB mutant has a significantly 
diminished MIC (minimal inhibitory concentration) for ciprofloxacin, an agent that blocks 
DNA replication fork progression, to the same extent as the recA mutant. In agreement with 
these repair phenotypes, the ruvB mutant has almost completely lost the ability of natural 
transformation of exogenous DNA (frequency of <10−8), similar to the recA mutant. In an 
assay measuring the intra-genomic recombination (deletion frequency between direct 
repeats), the ruvB mutants displayed significantly (four- to sevenfold) lower deletion 
frequencies than the background level. All four phenotypes of the ruvB mutant suggested 
that H. pylori RuvAB is the predominant pathway for branch migration in DNA 
recombinational repair [75]. 
In E. coli, an alternative pathway processing branch migration of Holliday junctions is the 
RecG helicase. In marked contrast to E. coli, H. pylori recG mutants do not have defective 
DNA repair, as measured by UV-light sensitivity and ciprofloxacin susceptibility [76]. 
Furthermore, H. pylori recG mutants have increased frequencies of intergenomic 
recombination and deletion, suggesting that branch migration and Holliday junction 
resolution are more efficient in the absence of RecG function [75, 76]. Thus, the effect of H. 
pylori RecG seems to be opposite to that of the RuvAB helicase. In the RuvABC pathway, the 
RuvC endonuclease nicks DNA, catalyzing Holliday junction resolution into double-
stranded DNA. Although the resolvase in the RecG pathway has not been completely 
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elucidated, it has been hypothesized that RusA may serve this function in E. coli [77]. By 
introducing E. coli rusA into H. pylori ruvB mutants, the wild-type phenotypes for DNA 
repair and recombination were restored [75]. A hypothesis was proposed that RecG 
competes with RuvABC for DNA substrates but initiates an incomplete repair pathway (due 
to the absence of the RecG resolvase RusA) in H. pylori, interfering with the RuvABC repair 
pathway [75].  

4.3 H. pylori RecN  

Bacterial RecN is related to the SMC (structure maintenance of chromosome) family of 
proteins in eukaryotes, which are key players in a variety of chromosome dynamics, from 

chromosome condensation and cohesion to transcriptional repression and DNA repair [78]. 
SMC family proteins have a structural characteristic of an extensive coiled-coil domain 

located between globular domains at the N- and C-termini that bring together Walker A and 
B motifs associated with ATP-binding [79].  E. coli RecN is strongly induced during the SOS 

response and was shown to be involved in RecA-mediated recombinational repair of DSBs 
[64]. In Bacillus subtilis, RecN was shown to be recruited to DSBs at an early time point 

during repair [63, 80, 81]. In vitro, RecN was shown to bind and protect 3’ ssDNA ends in 
the presence of ATP [82].  

In the published H. pylori genome sequence [12], HP1393 was annotated as a recN gene 

homolog. The H. pylori recN mutant is much more sensitive to mitomycin C, an agent that 

predominantly causes DNA DSBs, indicating RecN plays an important role in DSB repair in 

H. pylori [83]. In normal laboratory growth conditions, an H. pylori recN mutant does not 

show a growth defect, but its survival is greatly reduced under oxidative stress which 

resembles the in vivo stress condition. While very little fragmented DNA was observed in 

either wild type or recN mutant strain when cells were cultured under normal microaerobic 

conditions; after oxidative stress treatment the recN mutant cells had a significantly higher 

proportion of the DNA as fragmented DNA than did the wild type [83]. Similar roles of 

RecN in protection against oxidative damage have been demonstrated in Neisseria 

gonorrhoeae [84, 85]. In addition, the H. pylori recN mutant is much more sensitive to low pH 

than the wild type strain, suggesting that RecN is also involved in repair of acid-induced 

DNA damage [83]. This could be relevant to its physiological condition, as H. pylori appears 

to colonize an acidic niche on the gastric surface [41].  

As mentioned in the sections above, loss of H. pylori RecA, RuvB or RuvC functions results 

in a great decrease of DNA recombination frequency. Similarly, the H. pylori recN mutant 

has a significant decrease of DNA recombination frequency, suggesting that RecN is a 

critical factor in DNA recombinational repair [83]. In contrast, loss of UvrD or MutS2 in H. 

pylori resulted in an increase of DNA recombination frequency [46, 48]. Suppression of DNA 

recombination by UvrD or MutS2, and facilitation of DNA recombination by RecN, may 

play a role in coordinating DNA repair pathways. Recombinational repair could be 

mutagenic due to homeologous recombination or cause rearrangement due to 

recombination with direct repeat sequences. In addition, recombinational repair systems are 

much more complex and require more energy to operate, compared to nucleotide excision 

repair (NER) and base excision repair (BER) systems. Thus UvrD, as a component of NER, 

and MutS2 as a likely component of a BER (8-oxoG glycosylase) system [49], both suppress 

DNA recombination. Both NER and BER systems would be expected to continuously 

function in low stress conditions. Under a severe stress condition when large amounts of 
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DSBs are formed, RecN perhaps recognizes DSBs and recruits proteins required for 

initiation of DNA recombination. 

The role of H. pylori RecN in vivo has been demonstrated, as the recN-disrupted H. pylori 
cells are less able to colonize hosts than wild type cells [83]. However, the mouse 
colonization phenotype of the recN strain seems to be less severe than those observed for the 
recA or ruvC mutants. In contrast to RecA or RuvC which are major components of DNA 
recombination machinery, RecN is a protein specific for repairing DSBs by linking DSB 
recognition and DNA recombination initiation. It was proposed that the attenuated ability 
to colonize mouse stomachs by recN cells was mainly due to the strain’s failure to repair 
DSBs through a DNA recombinational repair pathway. 

4.4 AddAB helicase-nuclease  

DNA helicases play key roles in many cellular processes by promoting unwinding of the 
DNA double helix [86]. Bacterial genomes encode a set of helicases of the DExx family 
that fulfill several, sometimes overlapping functions. Based on the sequence homology, 
bacterial RecB, UvrD, Rep, and PcrA were classified as superfamily I (SF1) helicases [86-
88]. In the well-studied E. coli, RecBCD form a multi-functional enzyme complex that 
processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase 
that splits the duplex into its component strands and digests them until encountering a 
recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD 
loads RecA onto the 3' tail of the DNA [89]. Another bacterial enzyme complex AddAB, 
extensively studied in Bacillus subtilis, has both nuclease and helicase activities similar to 
those of RecBCD enzyme [90, 91].  
The genes for RecBCD or AddAB were missing in the published H. pylori genome [12, 13]. 
However, HP1553 from strain 26695 was annotated as a gene encoding a putative helicase 
[12], and the corresponding gene from strain J99 was annotated as pcrA [13]. Amino acid 
sequence alignment of HP1553 to E. coli RecB (or to B. subtilis AddA) revealed 24% 
identity (to both heterologous systems) at the N-terminal half (helicase domain), and no 
significant homology at the C-terminal half (including nuclease domain). Thus, HP1553 
could be a RecB (or AddA)-like helicase [69, 92]. Furthermore, by using the highly 
conserved AddB nuclease motif “GRIDRID” in BLAST search, HP1089 was identified as 
the putative AddB homolog [69]. Now it is accepted that HP1553 and HP1089 are termed 
addA and addB respectively in H. pylori with a reminder that previous recB [20, 68, 70, 92] 
was the equivalent of addA [69, 71, 93]. Both genes addA and addB are present in 56 H. 
pylori clinical isolates from around the world [94]; thus they are considered core genes that 
are not strain variable.  
The biochemical activities of H. pylori AddAB helicase-nuclease have been demonstrated 
[69]. Cytosolic extracts from wild-type H. pylori showed detectable ATP-dependent nuclease 
activity with ds DNA substrate, while the addA and addB mutants lack this activity. Cloned 
H. pylori addA and addB genes express ATP-dependent exonuclease in E. coli cells. These 
genes also conferred ATP-dependent DNA unwinding (helicase) activity to an E. coli recBCD 
deletion mutant, indicating that they are the structural genes for this enzyme [69]. The roles 
of individual (helicase, exonuclease) activity of the AddA and AddB in DNA repair, 
recombination, and mouse infection have been further studied by site-directed mutagenesis 
approach [93]. 
H. pylori addA and addB mutant strains showed heightened sensitivity to mitomycin C and 

the DNA gyrase inhibitor ciprofloxacin, both of which lead to DNA ds breaks [69, 92]. The 
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level of sensitivity was similar to that seen for a recA mutant, but more severe than for the 

recN mutant. It is thus concluded that AddAB plays a major role in the repair of DNA ds 

breaks [69, 92]. On the other hand, the addA and addB mutants were markedly less sensitive 

to UV irradiation than a recA mutant, suggesting that AddAB does not play a major role in 

repair of UV damage in H. pylori [69]. AddA was shown to be important for H. pylori 

protection against oxidative stress-induced damage, as the addA mutant cells were 

significantly more sensitive to oxidative stress and contained a large amount of fragmented 

DNA [92]. Furthermore, loss of AddA resulted in reduced frequencies of apparent gene 

conversion between homologous genes encoding outer membrane proteins (babA to babB) 

[69]. Finally, it was shown that the addA and addB mutant strains display a significantly 

attenuated ability to colonize mouse stomachs, in both competition experiments and during 

single-strain infections [69, 92].  
While addA and addB are adjacent in the chromosome in most bacteria, including other 
epsilon Proteobacteria, this is not the case in H. pylori. However, the phenotypes of H. 
pylori addA and addB mutants are indistinguishable. Thus, it was proposed [69] that the 
AddA and AddB act together in a complex, as do the RecBCD polypeptides and AddAB 
polypeptides of other bacteria. If so, the control of the unlinked H. pylori addA and addB 
genes to maintain the proper stoichiometry of the two polypeptides remains an 
interesting question. 
Regarding the role of H. pylori AddA in DNA recombination during natural 
transformation, conflicting results were reported from different studies. The addA (note: it 
was named recB in certain references) mutant showed enhanced [68, 70], decreased [20, 71, 
92], or no change [27, 69] in transformation frequency. Indeed, a high degree of variability 
(>100-fold) in transformation frequency in H. pylori was observed between different 
strains and different experiments. The use of different assay systems may partly explain 
the discrepancy in transformation results. For example, the total genomic DNA from 
antibiotic-resistant strain was used for the transformation assay in certain studies, while 
in others the defined linear DNA fragments of small size [92]. Use of the transformation 
frequency as an indicator of DNA recombination frequency is based on the assumption 
that the wild type H. pylori and its isogenic rec strains are equally competent for DNA 
uptake. However, it is now known that this assumption is not valid because DNA damage 
triggers genetic exchange in H. pylori [55]. H. pylori addA mutant cells suffered more DNA 
damage [92], and have an enhanced competence for DNA uptake [55]. Thus, the 
accumulation of unrepaired DNA damage and subsequent poor growth, as well as 
unknown strain differences, could be the main cause of the high degree of variability in 
H. pylori transformation frequency [27].  

4.5 H. pylori RecRO pathway 

RecFOR is a highly conserved DNA recombination pathway in bacteria, and is mainly used 

for ssDNA gap repair [72]. In the published H. pylori genome sequences, only the recR gene 

was annotated [12, 13]. Although RecF historically served as a reference for RecFOR 

pathway, it is absent from genomes of many bacteria including H. pylori [72]. By 

bioinformatics analysis, Marsin et al [68] identified HP0951 as a novel RecO orthologue, 

although its sequence identity with the E. coli protein is lower than 15%. Recent studies in E. 

coli indicated that RecOR in the absence of RecF can perform recombination by loading 

RecA [95, 96]. Whereas the RecO protein can displace ssDNA-binding protein (SSB) and 
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bind to ssDNA, RecR is the key component for loading RecA onto ssDNA [95, 97]. Likely, 

the RecRO pathway (with no RecF) is present in H. pylori. 

The recR and recO mutants showed marked sensitivity to DNA damaging agents 

metronidazole and UV light, indicating roles of RecR and RecO in DNA repair. Unlike the 
addA (recB) mutant, the recR and recO mutants did not show significant sensitivity to 

ionizing radiation (IR) and to mitomycin C [68, 71], suggesting that RecRO pathway is not 
responsible for repairing DNA damage induced by these agents, most likely double 

strand breaks. This is in contrast to E. coli where the RecFOR pathway sometimes 
substitutes for the RecBCD pathway and in Deinococcus radiodurance where the RecFOR 

pathway plays a major role in double strand break repair [98, 99]. On the other hand, H. 

pylori recR and recO mutants were shown to be much more sensitive to oxidative stress 

and to acid stress than the wild type strain [71], indicating that H. pylori RecRO pathway 
is involved in repairing DNA damage induced by these stress conditions. The addA recO 

double mutant (deficient in both AddAB and RecRO pathways) was significantly more 
sensitive to atmospheric oxygen than the recO single mutant, indicating that both RecRO 

and AddAB pathways are important for survival of oxidative damage. Similar roles of the 
RecBCD and the RecFOR pathways for survival of oxidative damage were also observed 

in E. coli [57, 100] and in Neisseria gonorrhoeae [84]. In those bacteria, however, the RecBCD 
appeared to be the predominant (over the RecFOR) repair pathway for oxidative damage. 

Our results suggest that the two pathways in H. pylori play similarly important roles in 
repairing oxidative stress-derived DNA damage [71]. In accordance with the sensitivity  

to oxidative and acid stress in vitro, H. pylori recR and recO mutants were shown to be less 
able to colonize mouse stomachs [71]. Furthermore, the mouse colonization ability of  

the addA recO double mutant was significantly lower than that of the addA or recO single 
mutant. Therefore, both AddAB- and RecRO-mediated DNA recombinational repair in  

H. pylori play an important role in bacterial survival and persistent colonization in  
the host. 

Although differing results regarding the effect of addA gene on transformation frequency 
were reported by different research groups, it was agreed that the RecRO-pathway is not 

involved in recombination of exogenous DNA into the H. pylori genome in the process of 

transformation [68, 71]. The RecRO pathway is known to have a major role in intragenomic 
recombination at repeat sequences [101]. Using an assay to assess the deletion frequency 

resulting from recombination on direct repeat sequences (358 bp long), Marsin et al [68] 
showed that the recR and recO mutants exhibited a statistically significantly lower deletion 

frequency than the wild type strain, suggesting a role of RecRO in intragenomic 
recombination. Recently we adopted a similar assay using DNA constructs (deletion 

cassettes) that contain identical repeat sequences of different length (IDS100 and IDS350) 
[71]. The results indicated that the intra-genomic recombination of 100 bp-long direct repeat 

sequences in H. pylori is partially dependent on RecR and RecA, yet a large portion of the 
recombination event is RecA-independent. This is basically in agreement (with small 

variance) with the results of Aras et al [35] who reported that the repeat sequences of 100 bp 
or shorter recombined through a RecA-independent pathway. For the deletion cassette 

containing repeat sequences of 350 bp in length, inactivation of recR or recA resulted in a 
significant 4-fold or 35-fold decrease respectively in deletion frequency, indicating that RecR 

plays a significant role in recombination of IDS350, while this recombination was highly 
dependent on RecA.  
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5. Concluding remarks and perspectives 

Severe Helicobacter pylori-mediated gastric diseases are associated with the bacterium’s 
persistence in the host and its adaptability to host differences, which in turn is associated 
with its remarkable genetic variability. DNA recombination is an extraordinarily frequent 
event in H. pylori, and this manifests itself into a bacterium with unusual flexibility in stress-
combating enzymes, repair mechanisms, and other adaptability characteristics. Nearly every 
H. pylori recombination-related gene studied thus far by a gene directed mutant analysis 
approach has documented they are individually important in stomach colonization ability; 
this underscores the importance of these recombination repair processes in bacterial survival 
in the host. It is well recognized that homologous DNA recombination is a special system in 
bacteria for repairing stalled replication forks and double strand breaks, while generating 
genetic diversity as an advantageous byproduct [102]. H. pylori may be an especially fruitful 
organism in which to learn the ultimate boundaries in roles of recombination repair 
enzymes, as H. pylori is subject to intense and prolonged host mediated stress and it displays 
an enormous genetic diversity. 
Substantial progress has been made recently in unraveling the complex systems of DNA 
recombinational repair in H. pylori. As expected, whole genome sequencing has been a 
powerful tool to aid in identifying recombination-related proteins in H. pylori. For 
example, recA, recR, recN, and ruvABC were identified and confirmed to play important 
roles in H. pylori as could be expected from results for other bacteria. Some 
recombination-related proteins (e.g. MutS2, RecG), however, play unique roles in H. 
pylori. Most of the genes for the major components of the two pre-synapsis pathways 
(RecBCD and RecFOR) were not annotated from H. pylori genome sequences, which drove 
researchers’ interest to search for additional novel systems required for H. pylori DNA 
recombinational repair. Recent studies revealed the existence of both pathways, AddAB 
and RecRO, in H. pylori. Although they display a limited level of sequence homology to 
the known recombination enzymes, both AddAB and RecRO were shown to play 
important roles in H. pylori DNA recombinational repair, conferring resistance to 
oxidative and acid stress.  
The major components of DNA recombinational repair machinery in H. pylori are listed in 

Table 1. H. pylori RecN protein may recognize DNA double strand breaks and recruits 

AddAB helicase-nuclease complex for further processing. While not being involved in repair 

of DNA double strand breaks, H. pylori RecRO proteins play a major role in intra-genomic 

recombination at repeat sequences. Both pre-synapsis pathways (AddAB and RecRO) 

require RecA for catalyzing DNA strand exchange (synapsis) and H. pylori RuvABC is the 

predominant pathway for DNA branch migration and Holliday Junction resolution (post-

synapsis). Although the major functions of these components are similar to those observed 

in model bacteria, some novel attributes of these components have been discovered, which 

may be related to the highly-specific lifestyle of H. pylori. Additional new components that 

work synergistically with these pathways could be found in this unique bacterium via 

future biochemical and genetic approaches.  

6. Acknowledgements 

The work on H. pylori DNA repair in our laboratory was supported by NIH grant 
R21AI076569 and by the University of Georgia Foundation.   

www.intechopen.com



 
DNA Repair 

 

14

Gene HP # (a) Activity / function Main phenotypes of mutant (b) reference 

recN 1393 
Initiates DSB-induced 
recombination. 

Sensitive to DSB damage; 
Sensitive to oxidative stress; 
Attenuated mouse colonization. 

[83] 

recJ  0348 5’-3’ ssDNA exonuclease. Not studied experimently.  

addA 1553 AddAB Helicase-nuclease; 
Initiates DSB-induced 
recombination. 

Sensitive to DSB damage; 
Sensitive to oxidative stress; 
Attenuated mouse colonization. 

[69, 92] 
addB 1089 

recR 0925 
RecRO recombination pathway;
Initiates ssDNA gap repair. 

Not sensitive to DSB damage; 
Sensitive to oxidative stress; 
Attenuated mouse colonization. 

[68, 71] 
recO 0951 

recA 0153 
DNA recombinase;  
Catalyzes DNA pairing and 
strand exchange. 

Sensitive to DNA damaging agents;  
Decreased recombination frequency; 
Defective mouse colonization. 

[65, 66, 
69] 

recG 1523 Holiday junction helicase. 
Not sensitive to DNA damaging agents;  
Increased recombination frequency. 

[76] 

ruvA 0883 Holliday junction recognition. Not studied experimently.  

ruvB 1059 Holiday junction helicase. 
Sensitive to DNA damaging agents;  
Decreased recombination frequency. 

[75] 

ruvC 0877 Holliday junction resolvase. 
Sensitive to DNA damaging agents; 
Decreased recombination frequency; 
Attenuated mouse colonization. 

[73] 

(a) HP# refers to the gene number in the genome sequence of strain 26695 [12]. 
(b) DSB (double strand breaks) damage refers to those damages caused e.g. by ionizing radiation, 
mitomycin C, or ciprofloxacin. 

Table 1. H. pylori genes involved in DNA recombinational repair 
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