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1. Introduction

Basic tendency in computational fluid dynamics (CFD) consists in development of black

box software for solving scientific and engineering problems. Numerical methods for

solving nonlinear partial differential equations in black box manner should satisfy to the

requirements:

a) the least number of the problem-dependent components

b) high computational efficiency

c) high parallelism

d) the least usage of the computer resources.

We continue with the 2D (N = 2) Navier–Stokes equations governing flow of a Newtonian,

incompressible viscous fluid. Let Ω ∈ R
N be a bounded, connected domain with a piecewise

smooth boundary ∂Ω. Given a boundary data, the problem is to find a nondimensional

velocity field and nondimensional pressure such that:

a) continuity equation
∂u

∂x
+

∂v

∂y
= 0 , (1)

b) X-momentum

∂u

∂t
+

∂(u2)

∂x
+

∂(vu)

∂y
= −

∂p

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

, (2)

c) Y-momentum
∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
= −

∂p

∂y
+

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

. (3)

Reynold number Re is defined as

Re =
ρusls

μ
,

where ρ and μ are density and viscosity, respectively. Choice of the velocity scale us and

geometric scale ls depends on the given problem.
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2 Will-be-set-by-IN-TECH

Equations (1)–(3) can be rewritten in the operator form

{

N (�V) +∇P = F

∇�V = G
, (4)

where N is nonlinear convection-diffusion operator, F and G are source terms, �V and P are

velocity and pressure, respectively. It is assumed that the operator N accounts boundary

conditions. Note that 2D and 3D Navier–Stokes equations can be written as equation (4),

where first and second equations abbreviate momentum and continuity equations.

Linearized discrete Navier–Stokes equations can be written in the matrix form

(

A BT

B 0

)(

α

β

)

=

(

f

g

)

(5)

in which α and β represent the discrete velocity and discrete pressure, respectively.

Here nonsymmetric A is a block diagonal matrix corresponding to the linearized discrete

convection-diffusion operator N . The rectangular matrix BT represents the discrete gradient

operator while B represents its adjoint, the divergence operator.

Large linear system of saddle point type (5) cannot be solved efficiently by standard methods

of computational algebra. Due to their indefiniteness and poor spectral properties, such

systems represent a significant challenge for solver developers Benzi et al. (2005).

Preconditioned Uzawa algorithm enjoys considerable popularity in computational fluid

dynamics. The iterations for solving the saddle point system (5) are given by

⎧

⎨

⎩

Aα(k+1) = −BT β(k) + f

Qβ(k+1) = Qβ(k) + (Bα(k+1) − g)

, (6)

where the matrix Q is some preconditioner.

Preconditioned Uzawa algorithm (6) defines the following way for improvement of the

solvers for the Navier–Stokes equations:

1) development of numerical methods for solving the boundary value problems.

Uzawa iterations require fast numerical inversion of the matrices A and Q. Now algebraic

and geometric multigrid methods are often used for the given purpose Wesseling (1991).

Multigrid methods give algorithms that solve sparse linear system of N unknowns with

O(N) computational complexity for large classes of problems. Variant of geometric multigrid

methods with the problem-independent transfer operators for black box or/and parallel

implementation is proposed in Martynenko (2006; 2010).

2) development of preconditioning.

Error vector in Uzawa iterations satisfies to the condition

∥

∥β − β(k+1)
∥

∥ �
∥

∥I − Q−1BA−1BT
∥

∥ ·
∥

∥β − β(k)
∥

∥,
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Convergence Acceleration of Iterative Algorithms for Solving Navier–Stokes Equations on Structured Grids 3

where β is an exact solution. Choice of the preconditioner Q so

∥

∥I − Q−1BA−1BT
∥

∥ � q < 1

guarantees geometric convergence rate of the Uzawa iterations

∥

∥β − β(k+1)
∥

∥ � qk+1
∥

∥β − β(0)
∥

∥.

Unfortunately the preconditioner Q is strongly problem-dependent component of the Uzawa

algorithm. Additional problem arises at formulation of the boundary conditions for Q. As a

rule, the preconditioner has some relaxation parameters and determination of their optimal

values is sufficiently difficult problem. Now construction of the preconditioner is subject of

intensive study Benzi et al. (2005).

3) development of new approaches for convergence acceleration of iterative algorithms for solving

saddle point problems.

The main obstacles to be overcome are execution time requirements and the generation of

computational grids in complex three-dimensional domains Benzi et al. (2005). Recently

convergence acceleration technique based on original pressure decomposition has been

proposed for structured grids Martynenko (2009). The technique can be used in black box

software. The chapter represents detailed description of the approach and its application for

benchmark and applied problems.

2. Remarks on solvers for simplified Navier–Stokes equations

Limited characteristics of the first computers and absence of efficient numerical methods put

difficulties for simulation of fluid flows based on the full Navier–Stokes equations. As a result,

computational fluid dynamics started from simulation of the simplest flows described by the

simplified Navier–Stokes equations.

As an example, we consider 2D laminar flow between parallel plates. Figure 1 represents

geometry of the problem. Assuming that the pressure is not changed across the flow (p′y = 0

in case of L ≫ 1), full Navier–Stokes equations can be reduced to the simplified form:

a) X-momentum and mass conservation equations

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂u

∂t
+

∂(u2)

∂x
+

∂(vu)

∂y
= −

∂p

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

1
∫

0

u(t, x, y) dy =

1
∫

0

u(t, 0, y) dy

, (7)

b) continuity equation (1).

Since the mass conservation equation follows from the continuity equation (1), system (7)

must be solved first. Solution of system (7) gives velocity components u and pressure p. After

that the continuity equation (1) is used for determination of v. The computations are repeated

until the convergent solution will be obtained.

Let us consider solution of system (7) in details. Assume that an uniform computational grid

(h = hx = hy) is generated. Linearized finite-differenced equations with block unknowns

177
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4 Will-be-set-by-IN-TECH

(a) Geometry of problem about the
flow between parallel plates

(b) Block ordering of unknowns

Fig. 1. Flow between parallel plates

ordering shown on Figure 1 are written as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

aju
(n+1)
ij−1 + bju

(n+1)
ij + cju

(n+1)
ij+1 = p

(n+1)
i + dj

Ny

∑
j=1

u
(n+1)
ij =

1

h
G0

, (8)

where

G0 =

1
∫

0

u(t, 0, y) dy

is the given inlet mass flow rate and superscript n denotes time layer. Missing the superscript

(n + 1), the system (8) can be rewritten in the matrix form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 c1 · · · 1

a2 b2 c2 · · · 1

a3 b3 c3 · · · 1

a4 b4 · · · 1

. . . . . . . . . . . . . . . . .

1 1 1 1 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ui1
ui2
ui3
ui4
· · ·
pi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1
d2
d3
d4
· · ·

h−1G0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

Comparison of systems (9) and (5) shows that solution of the simplified Navier–Stokes

equations (7) also is reduced to solution of the saddle point system. The principal difference

between systems (9) and (5) consists in size of zero block in the coefficient matrix. Since the

zero block in system (9) has the least size 1 × 1 because of the pressure is independent on y,

efficient iterative algorithms for solution of system (9) have been proposed and developed.

The most promising of them is secant method Briley (1974), where error of the mass

conservation equation

F(p
(n+1)
i ) =

Ny

∑
j=1

u
(n+1)
ij (p

(n+1)
i )−

1

h
G0

178 Hydrodynamics – Optimizing Methods and Tools
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Convergence Acceleration of Iterative Algorithms for Solving Navier–Stokes Equations on Structured Grids 5

is used for computation of pressure by the iterative method

p
(k+1)
i = p

(k)
i −

p
(k)
i − p

(k−1)
i

F
(k)
i − F

(k−1)
i

F
(k)
i , k = 1, 2, . . . ,

where superscript k denotes the secant method iterations. Note that the approach requires

two starting guesses p
(0)
i and p

(1)
i . First starting guess can be obtained by extrapolation. For

example, for uniform grid we obtain p
(0)
i = 2pi−1 − pi−2 and compute F(0). Second starting

guess can be given by perturbation of the first one, for example p
(1)
i = 1.001p

(0)
i . It gives F(1).

Function F depends almost linearly on p
(n+1)
i , but the secant method is direct solver for linear

problems. Usually it is required several secant iterations to reduce error of the discrete mass

conservation equation down to roundoff error.

Note that in 2D case the system (9) can be solved by direct methods, i.e. without the secant

iterations. However in 3D case the direct methods require unpractical computational efforts

due to five-diagonal structure of the coefficient matrix.

As contrasted to the Uzawa algorithm (6), the method does not require some

preconditioner(s), relaxation parameter(s), extra computer memory and has high convergence

rate. Unfortunately, basic assumption p = p(t, x) does not allow apply the method directly

for solving full Navier–Stokes equations (1)–(3). Accounting the attractive properties, the

algorithm for solving the simplified Navier–Stokes equations can be used for convergence

acceleration of the iterative methods intended for full Navier–Stokes equations.

Reduction of system (5) to the saddle point system with zero block of the least size is popular

approach in CFD. For example, similar reduction based on special unknown ordering is used

in Vanka smoother Vanka (1986).

3. Principle of formal decomposition of pressure

In order to apply the abovementioned approach for solving full Navier–Stokes equations, it is

necessary artificially extract «one-dimensional parts of pressure» from the pressure field. For

the given purpose, let add and subtract items px(t, x), py(t, y) and pz(t, z) depending only on

one spatial variable, i.e.

p(t, x, y, z) = px(t, x) + py(t, y) + pz(t, z)

+
(

−px(t, x)− py(t, y)− pz(t, z) + p(t, x, y, z)
)

,

where superscripts x, y and z denote dependence of the functions on the spatial variables. Let

us introduce a new function

pxyz(t, x, y, z) = −px(t, x)− py(t, y)− pz(t, z) + p(t, x, y, z).

Finally the pressure can be represented as

p(t, x, y, z) = px(t, x) + py(t, y) + pz(t, z) + pxyz(t, x, y, z). (10)
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Representation (10) will be called a principle of formal decomposition of pressure. Basic idea

of the method consists in application of the efficient numerical methods developed for the simplified

Navier–Stokes equations for determination of part of pressure (i.e. for px(t, x) + py(t, y) + pz(t, z)).
Fast computation of part of pressure results in reduction of total computational efforts needed

for full Navier–Stokes equations.

In spite of simplicity of the representation (10), it is necessary to comment the principle of

formal decomposition of pressure:

Remark 1. All items px(t, x), py(t, y), pz(t, z) and pxyz(t, x, y, z) have no physical meaning,

but physical meaning has their sum. In follows, the items px(t, x), py(t, y) and pz(t, z)
will be called as «one-dimensional components of the pressure», and pxyz(t, x, y, z) as

«multidimensional component». The quotes «» will indicate absence of the physical meaning

of the «pressure components».

Remark 2. In N-dimensional case (N = 2, 3) pressure is represented as sum of N + 1

«components», therefore the method requires N extra conditions for determination of the

«one-dimensional components». The convergence acceleration technique uses N mass

conservation equations as a priori information of physical nature.

Remark 3. In spite of representation of the pressure as sum of N + 1 «components», all

momentum equations have only two «pressure» gradients. For example, for X-momentum

we obtain

∂p

∂x
=

∂

∂x

(

px(t, x) + py(t, y) + pz(t, z) + pxyz(t, x, y, z)
)

=
∂px

∂x
+

∂pxyz

∂x
.

Remark 4. Efficiency of the acceleration technique depends strongly on the flow nature.

For directed fluid flows (for example, flows in nozzles, pipes etc.) gradient of one of

«one-dimensional component of pressure» px(t, x), py(t, y) or pz(t, z) is dominant. In this

case impressive reduction of computational work is expected as compared with traditional

algorithms (i.e. px(t, x) = py(t, y) = pz(t, z) = 0). However for rotated flows (for example,

flow in a driven cavity) the approach shows the least efficiency.

Remark 5. In 3D case the method will be more efficient than in 2D case.

Remark 6. Velocity components and corresponding «one-dimensional components»

in equation (10) are computed only in coupled manner. Velocity components and

«multidimensional component» pxyz(t, x, y, z) in equation (10) can be computed in decoupled

(segregated) or coupled manner.

Remark 7. Gradients of the «one-dimensional components» can be obtained in analytical

form for explicit schemes. Implicit schemes require formulation of an auxiliary problem for

determination of gradients of the «one-dimensional components».

4. Development of explicit schemes

First, consider modification of the explicit schemes using well-known benchmark problem

about rotated flow in a driven cavity (Figure 2). Let a staggered grid with grid spacing hx and

hy has been generated. Classical three-stage splitting scheme is represented as

180 Hydrodynamics – Optimizing Methods and Tools
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Fig. 2. Driven cavity and location of the control volumes V1 and V2

Stage I:
V(n+1/2) − V(n)

ht

= −(V(n)∇)V(n) + Re
−1∆V(n) ,

Stage II: ∆p =
∇V(n+1/2)

ht

,

Stage III:
V(n+1) − V(n+1/2)

ht
= −∇p ,

where ht is time semispacing, V(n+1/2) is intermediate velocity field and n is a time layer.

Stage I consists in solution of the momentum equations without pressure gradients. For

simplicity X-momentum can be written as

u
(n+1/2)
ij − u

(n)
ij

ht

= ψij , (11)

where ψij is the given function defined as

ψij =

(

−
∂(u2)

∂x
−

∂(vu)

∂y
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

))(n)

ij

. (12)

It is easy to see that intermediate velocity field V(n+1/2) is independent on pressure.

This disadvantage can be compensated partially by the pressure decomposition (10).

Application of the decomposition requires two mass conservation equations for 2D problems.

Integration of the continuity equation (1) over the control volumes V1 and V2 shown on

Figure 2 gives

1
∫

0

u(t, x, y) dy = 0 ,

1
∫

0

v(t, x, y) dx = 0 . (13)
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Approximation of the mass conservation equations on the staggered grid is given by

hy

Ny

∑
j=1

u
(m)
ij = 0 , (14)

hx

Nx

∑
i=1

v
(m)
ij = 0 , (15)

where m = n, n + 1/2, n + 1 and Nx = 1/hx , Ny = 1/hy . As contrasted with equation

(11) in the classical approach, the velocity component u and «one-dimensional component of

pressure» px should satisfy to the system

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u
(n+1/2)
ij − u

(n)
ij

ht

= −

(

∂px

∂x

)(n+1/2)

i
+ ψij

hy

Ny

∑
j=1

u
(n+1/2)
ij = 0

, (16)

i.e. u and px are computed in the coupled manner using the discrete mass conservation

equation (14).

It is clear that the system (16) can be written in form of (5), where A is the diagonal matrix

for explicit schemes. This fact allows obtain analytic solution of the saddle point system (16).

Multiplication of the first equation in system (16) on hy and summation give

1

ht

⎛

⎝hy

Ny

∑
j=1

u
(n+1/2)
ij − hy

Ny

∑
j=1

u
(n)
ij

⎞

⎠ = −
Ny

∑
j=1

hy

(

∂px

∂x

)(n+1/2)

i

+ hy

Ny

∑
j=1

ψij . (17)

Left-hand side of the equation equals zero due to equation (14). Furthermore

Ny

∑
j=1

hy

(

∂px

∂x

)(n+1/2)

i

=

(

∂px

∂x

)(n+1/2)

i

Ny

∑
j=1

hy =

(

∂px

∂x

)(n+1/2)

i

,

because (px)′i is independent on j and
Ny

∑
j=1

hy = 1 is dimensionless height of the cavity.

Equation (17) is reduced to
(

∂px

∂x

)(n+1/2)

i

= hy

Ny

∑
j=1

ψij . (18)

Substitution of the equation into system (16) gives a new form of the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u
(n+1/2)
ij − u

(n)
ij

ht

= −hy

Ny

∑
j=1

ψij + ψij

(px)
(n+1/2)
i − (px)

(n+1/2)
i−1

hx
= hy

Ny

∑
j=1

ψij

, (19)
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Fig. 3. Ratio of execution time at flow simulation in the driven cavity

where (px)
(n+1/2)
0 is some constant. It is clear that solution of system (19) is

u
(n+1/2)
ij = u

(n)
ij − hthy

Ny

∑
j=1

ψij + htψij ,

(px)
(n+1/2)
i = (px)

(n+1/2)
i−1 + hxhy

Ny

∑
j=1

ψij .

Velocity component u and «one-dimensional component of pressure» px are computed in the

coupled manner saving explicit nature of the computation. Other velocity components are

computed in the similar way.

Accounting decomposition (10), other stages of the algorithm are written as

Stage II: ∆pxy =
∇V(n+1/2)

ht

,

Stage III:
V(n+1) − V(n+1/2)

ht
= −∇pxy .

In the stages only «multidimensional component» pxy is used for computation of the velocity

field.

For the numerical experiment law of the lid motion is taken as

U
(n)
w = min

( n

100
; 1
)

.

Reynolds number Re = 1000 is based on the cavity height and the lid velocity max U
(n)
w = 1.

Staggered uniform grid hx = hy = h = 1/200, ht = h/5 is used for the flow simulation. Ratio
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of the execution time T
(n)
m /T

(n)
c is used as a criterion of the convergence acceleration, where

T
(n)
m and T

(n)
c are execution time for abovementioned and classical approaches, respectively.

Figure 3 shows result of the numerical test. Obtained result for n = 200

1

200

200

∑
n=1

T
(n)
m /T

(n)
c = 0.81

illustrate the least acceleration efficiency arising at simulation of the rotated flows.

5. Development of implicit schemes

Application of the pressure decomposition (10) for improvement of the implicit schemes

requires solution of an auxiliary problem because of the «pressure» gradients can not be

determined in explicit form such as equation (18).

5.1 Auxiliary problem

Auxiliary problem is intended for fast computation of the «one-dimensional components»

px(t, x), py(t, y) and pz(t, z) in decomposition (10). It is assumed that the solution of the

auxiliary problem will be close to the solution of the Navier–Stokes equations.

Formulation of the auxiliary problem is based on replacement of the continuity equation (1)

by the mass conservation equations. For example, for the driven cavity (Figure 2) the auxiliary

problem with the mass conservation equations (13) instead of the continuity equation (1) takes

the form:

a) X-momentum and mass conservation equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂u

∂t
+

∂(u2)

∂x
+

∂(vu)

∂y
= −

∂px

∂x
−

[

∂pxy

∂x

]

+
1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

1
∫

0

u(t, x, y) dy = 0

, (20)

b) Y-momentum and mass conservation equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
= −

∂py

∂y
−

[

∂pxy

∂y

]

+
1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

1
∫

0

v(t, x, y) dx = 0

, (21)

where square brackets mean that the «pressure» gradients (pxy)′x and (pxy)′y are fixed (i.e.

its values are taken from previous iteration). Braces mean that the momentum and mass

conservation equations are solved only in coupled manner.

Since the systems (20) and (21) are similar to the simplified Navier–Stokes equations (7), the

systems can be solved by the same numerical methods. Main difference consists in stopping

criterion: auxiliary problem can be solved approximately, i.e. it is necessary to perform several

iterations of line Seidel method with the secant iterations. As a result, extra computational
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work for approximated solution of the auxiliary problem is negligible small as compared with

the total efforts. Note that the equations of the auxiliary problem are not pressure-linked.

To illustrate influence of the auxiliary problem on convergence rate, we use Uzawa algorithm

(6) for simulation of stationary flow in the driven cavity starting the iterand zero: u(0) = 0,

v(0) = 0 and p(0) = 0. Accounting zero boundary conditions for v, first equation of system (6)

is reduced to
∂(u2)

∂x
=

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

(22)

and v = 0. In the auxiliary problem the system (20) takes the form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂(u2)

∂x
= −

dpx

dx
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

1
∫

0

u(x, y) dy = 0

(23)

and v = 0. Finally both problem (22) and (23) are reduced to systems of linear algebraic

equations Ax = b. For clearness these equations are solved until

‖Ax − b‖

‖b‖
< 10−7 .

The computations are performed with Re = 100 on uniform staggered grid 101 × 101 (hx =
hy = 1/100).

Figure 4 represents solution of the Navier–Stokes equations in “stream function–vorticity” (+)

Ghia et al. (1982), primitive variables formulations (—) and solutions of equations (22) and

(23) in the middle section of the cavity (x = 0.5) at Re = 100. It is easy to see that use of

the mass conservation equations in the auxiliary problem makes it possible to obtain more

accurate approximation to solution of the full Navier–Stokes equations (1)–(3).

Fig. 4. Distribution of the velocity component u in the middle section of the cavity
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5.2 Main problem

Accounting the pressure decomposition (10), the momentum equations in the main problem

are written as

∂u

∂t
+

∂(u2)

∂x
+

∂(vu)

∂y
= −

[

dpx

dx

]

−
∂pxy

∂x
+

1

Re

(

∂2u

∂x2
+

∂2u

∂y2

)

, (24)

∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y
= −

[

dpy

dy

]

−
∂pxy

∂y
+

1

Re

(

∂2v

∂x2
+

∂2v

∂y2

)

, (25)

where square brackets mean that the «pressure» gradients (px)′ and (py)′ are fixed (i.e. the

gradients have been computed in the auxiliary problem (such as equation (20) and (21) for the

driven cavity)). Main problem consists of momentum (24), (25) and continuity equations (1).

Algorithm for simulation of the flows with given mass flow rate can be represented as:

Stage I: auxiliary problem: several iterations of line (2D) or plane (3D) Seidel method with the

secant iterations

Stage II: main problem: iterations of basic method (SIMPLE, Uzawa or Vanka iterations, etc.)

Stage III: check convergence, continue (go to 1) if necessary

5.3 Flow over a backward-facing step

The next benchmark problem about backward-facing step flow is used for illustration of the

impressive convergence acceleration for the directed fluid flows.

Consider the stationary laminar flow over a backward-facing step, which is another well

studied test case. Figure 5 shows the geometry of the flow. The fact that the solution of the

incompressible Navier–Stokes equations over a backward-facing step at Re = 800 is steady

and stable has been confirmed in a number of recent works.

No-slip boundary conditions are imposed on the step and the upper and lower walls, a

parabolic velocity u profile is specified at the channel inlet (v = 0), and zero natural boundary

conditions (v = 0 and u′
x = 0) are imposed at the channel outlet. The Reynolds number Re

is based on the channel height (H = 1) and the average inlet velocity in the parabolic profile.

The channel length is L = 14.

Fig. 5. Geometry of problem about the backward-facing step flow

186 Hydrodynamics – Optimizing Methods and Tools

www.intechopen.com



Convergence Acceleration of Iterative Algorithms for Solving Navier–Stokes Equations on Structured Grids 13

(a) Isolines of stream function (b) Isobars

Fig. 6. Stationary flow over a backward-facing step

Redefining velocity components to be zero inside the step, we obtain the following mass

conservation equations for the given problem

H
∫

0

u(t, x, y) dy =

H
∫

0

u(t, 0, y) dy ,

L
∫

0

v(t, x, y) dx = −

y
∫

0

(

u(t, L, ξ)− u(t, 0, ξ)
)

dξ .

Numerical experiments show that execution time can be reduced in ∼ 400 times for the given

problem (staggered grid 101 × 1401, unpreconditioned Uzawa algorithm, Re = 800). Figure 6

explains the impressive reduction of the computational efforts. It is easy to see that pressure

is changed mainly in x direction except small subdomain near attachment point of bottom

eddy (i.e. p(x, y) ≈ px(x)). Since the «one-dimensional component of the pressure» px(x) is

computed in the auxiliary problem, the proposed algorithm is very efficient for solving the

problem.

Table 1 represents comparison of obtained results.

Authors lB lT wT xTL xTR Nodes

Barton (1997) 6.0150 5.6600 – 4.8200 10.4800

Gartling (1990) 6.1000 5.6300 – 4.8500 10.4800 129681

Gresho et al. (1993) 6.0820 5.6260 – 4.8388 10.4648 245760

Gresho et al. (1993) 6.1000 5.6300 – 4.8600 10.4900 � 8000

Keskar & Lin (1999) 6.0964 5.6251 – 4.8534 10.4785 3737

present 6.1000 5.6300 0.28 4.8400 10.4700 141501

Table 1. Comparison of results of the flow simulation over backward-facing step (Re = 800)
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Fig. 7. Geometry of the microcatalyst

Fig. 8. Staggered grid in the microcatalyst

5.4 Flow in microcatalyst

Proposed approach has been used for simulation of incompressible fluid flows in

microcatalyst. The microcatalyst represents 2D channel with iridium-covered needles located

in chess order as shown on Figure 7.

Redefining velocity components to be zero inside the needles, there is no remarkable

difference in formulation of the auxiliary problem for flow over backward-facing step and for
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flow in the catalyst. Diffusion-dominant nature of fluid flow in the microcatalyst simplifies

the grid generation. Example of the simplest computational grid for this problem is shown on

Figure 8. No-slip conditions are approximated exactly on the needle surfaces.

Nonuniform staggered grid 385 × 3150 is used for the flow simulation (Re = 350). Figure 9

represents distribution of the stream function and pressure near first column of the needles.

Chess order of the needle location results in eddy-free flow inside the microcatalyst. However

intensive eddy formation after last column of the needles is observed (Figure 10).

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

0.00

0.10

0.20

0.30

(a) Isolines of stream function

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
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0.35

(b) Isobars

Fig. 9. Flow near first column of the needles

5.5 Compressible flow in laval micronozzle

Recently the numerical methods for fluid flow prediction have been classified into two

categories: density-based and pressure-based. For the pressure-based approach, methods are

4.40 4.50 4.60

0.00

0.10

0.20

0.30

Fig. 10. Eddy formation after last column of the needles
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classified into coupled and segregated (decoupled). Density-based algorithms traditionally

are used to compute high speed compressible flows. Computational methods for low Mach

number compressible flows are an active research field in recent years. The pressure-velocity

coupling problem discussed earlier for incompressible flows are also encountered in the

methods when used for low-speed applications.

Pressure decomposition (10) shows that there are not pure density-based and segregated

solvers because of the velocity components and corresponding «one-dimensional components

of pressure» (i.e. (u,px), (v,py) and (w,pz)) always are computed in the coupled manner.

«Multidimensional component» pxyz in (10) can be computed by coupled or segregated

method using density-based or pressure-based approach.

Consider application of the pressure decomposition for simulation of compressible flow in

flat Laval micronozzle. Width of subsonic part of the micronozzle is 1 mm. Grid generation

is based on mapping of the non-dimensional physical domain with nonuniform grid onto

computational domain (unit square) with uniform grid. Direct (ABCD → ĀB̄C̄D̄) and reverse

(ABCD ← ĀB̄C̄D̄) mappings are shown on Figure 11, where the function ϕ(x) describes the

micronozzle profile. The mappings can be given by

x̄ = x , ȳ = −
1

β
ln
(

1 − (1 − e−β)
y

ϕ(x)

)

,

where (x, y) and (x̄, ȳ) are spatial variables in physical and computational domains,

respectively. Parameter β > 0 is intended for the grid refinement near solid wall.

Jacobian (J) of the mapping

J =

∣

∣

∣

∣

x̄x x̄y

ȳx ȳy

∣

∣

∣

∣

=
1 − e−β

β

eβȳ

ϕ(x̄)

is non-singular (J �= 0). In addition, J → 1/ϕ(x̄) at β → 0 for uniform grid in y direction.

Fig. 11. Non-dimensional physical and computational domains

Finally, non-dimensional compressible Navier–Stokes equations in the computational domain

are written as

∂

∂t

(

U

J

)

+ ǫ
∂

∂x̄

(

E

J

)

+ ǫ
∂

∂ȳ

(

ȳxE

J

)

+
∂F

∂ȳ
=

H

J
,

190 Hydrodynamics – Optimizing Methods and Tools

www.intechopen.com



Convergence Acceleration of Iterative Algorithms for Solving Navier–Stokes Equations on Structured Grids 17

where

U =

⎛

⎜

⎜

⎝

ρ

ρu

ρv

ρi

⎞

⎟

⎟

⎠

, H =

⎛

⎜

⎜

⎝

0

0

0

S

⎞

⎟

⎟

⎠

,

E =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρu

ρu2 + p −
4

3

ǫ

Re

(

∂u

∂x̄
+ ȳx

∂u

∂ȳ

)

+
2

3

ȳy

Re

∂v

∂ȳ

ρuv −
ȳy

Re

∂v

∂ȳ
−

ǫ

Re

(

∂v

∂x̄
+ ȳx

∂v

∂ȳ

)

ρui −
ǫ

Pe

(

∂T

∂x̄
+ ȳx

∂T

∂ȳ

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρv

ρvu −
ȳy

Re

∂u

∂ȳ
−

ǫ

Re

(

∂v

∂x̄
+ ȳx

∂v

∂ȳ

)

ρv2 + p −
4

3

ȳy

Re

∂v

∂ȳ
+

2

3

ǫ

Re

(

∂u

∂x̄
+ ȳx

∂u

∂ȳ

)

ρvi −
ȳy

Pe

∂T

∂ȳ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Parameter ǫ is the micronozzle width-to-length ratio.

First mass conservation equation is obtained by integration of the continuity equation as

follows

∂

∂t

1
∫

0

x
∫

0

ρ(t, ξ, y)

J
dξ dy + ǫ

1
∫

0

(

ρu

J

)∣

∣

∣

∣

x

dy − ǫ

1
∫

0

(

ρu

J

)∣

∣

∣

∣

0

dy = 0 .

In the auxiliary problem for incompressible flows, iterations of line (2D) or plane (3D)

Seidel method are stopped then the velocity component satisfies to the mass conservation

equation. Computation of compressible flows requires updating of thermophysical properties

(density ρ, coefficient of viscosity in Re and heat conductivity coefficient in Pe) using updated

pressure in the line or plane. In 3D case values of thermophysical properties of the fluid for

X-momentum should be updated using pressure

p(t, x, y, z) = px(t, x) + [py(t, y) + pz(t, z) + pxyz(t, x, y, z)],

temperature T and equation of state. Here square brackets mean that the pressure components

py, pz and pxyz are fixed.

Figure 12 represents isobars in the Laval micronozzles. It is easy to see that the isobars are

almost vertical lines near throat and in supersonic part of the micronozzle. It means that the

pressure is changed mainly along the micronozzle axis. In other words, «one-dimensional

component of the pressure» px in decomposition (10) is dominant in this problem. For
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Fig. 13. Starting location of the plunger

the given problem, the auxiliary problem makes it possible to compute the most «part of

pressure» (i.e. px(t, x) + py(t, y)) and corresponding change of thermophysical properties of

the fluid based on simplified (pressure-unlinked) momentum equations in primitive variables

formulation and mass conservation equations.

Fig. 12. Isobars in Laval micronozzle (sizes in meters)

5.6 Flows with unspecified mass rate

Previously fluid flows with the given mass rate have been simulated and analyzed. In some

applications mass flow rate cannot be given in advance. The simplest example of such flows is

problem about moving plunger. Immovable plunger is located between parallel plates filled

by incompressible fluid. Figure 13 shows geometry of the problem and starting location of the

plunger. Motion of the plunger causes the fluid flow. It is clear that mass flow rate depends on

the plunger speed. Algorithm for simulation of the flows with unspecified mass rate should

be modified as:

Stage I: main problem: iterations of basic method (SIMPLE, Uzawa or Vanka iterations, etc.)

Stage II: check convergence; continue if necessary

Stage III: auxiliary problem: several iterations of line (2D) or plane (3D) Seidel method with the

secant iterations; continue (go to 1)

Assume that ũij, ṽij and p̃
xy
ij are approximation to the solution of the Navier–Stokes equations

obtained after iterations of the basic method. Then the mass conservation equation can be
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(a) Isolines of stream function
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Fig. 14. Flow near the moving plunger

formulated as
1

∫

0

u(t, xi, y) dy = max
i

1
∫

0

ũ(t, xi, y) dy

at accelerated or uniform plunger motion and in form

1
∫

0

u(t, xi, y) dy = min
i

1
∫

0

ũ(t, xi, y) dy

at decelerated plunger motion. As a result, the auxiliary problem ensures expansion of

perturbations caused by the plunger on all domain in each iteration. Uniform staggered grid

201× 2401 (hx = hy = 1/200) is used for simulation the fluid flow around the moving plunger.

Reynolds number Re = 200 is based on the plunger velocity and distance between the plates.

Stream function isolines and isobars near the moving plunger are shown on Figure 14.

6. Pressure decomposition in geometric multigrid methods

Proposed convergence acceleration technique based on the pressure decomposition (10)

should be incorporated with well-known algorithms for solving Navier–Stokes equations.

Multigrid methods having (almost) optimal convergence rate for many applications seem

to be the most promising solvers for many CFD problems. Our purpose is development of

multigrid method with the least number of problem-dependent components for using in black

box software.

6.1 Nonlinear multigrid iterations

To overcome problem of robustness, the Navier–Stokes equations (4) should be adapted for

the multigrid algorithm Martynenko (2006). Adaptation of the Navier–Stokes equations (so

called Σ-modification) consists in representation of the velocity �V and pressure P as sum of
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two functions
�V = C

�V
+ �̂V, P = CP + P̂ ,

where discrete analogues of the functions C
�V

and CP will be coarse grid corrections and

discrete analogues of the functions �̂V and P̂ will be approximations to the solutions in the

following multigrid iterations.

As a result, the Navier–Stokes equations (4) can be rewritten in the Σ-modified form

⎧

⎨

⎩

N (C
�V
+ �̂V) +∇(CP + P̂) = F

∇(C
�V
+ �̂V) = G

.

Since N (C
�V
+ �̂V) = N ∗(C

�V
) + N (�̂V), where N ∗ �= N for the nonlinear operator N , we

obtain
{

N ∗(C
�V
) +∇CP = F∗

∇C
�V
= G∗

, (26)

where F∗ = F −N (�̂V)−∇P̂ and G∗ = G −∇�̂V.

It is clear that main difference between Σ-modified and initial forms of the Navier–Stokes

equations consists of the nonlinear convection-diffusion operator (N ∗ in equation (26) instead

of N in equation (4)) and source terms (F∗ and G∗ in equation (26) instead of F and

G in equation (4)). Note that Σ-modification does not require some linearization of the

Navier–Stokes equations. Therefore modified Navier–Stokes equations with other transport

equations can be solved in coupled manner on all coarse grids.

For example, 2D Σ-modified Navier–Stokes equations are written as:

a) Σ-modified continuity equation

∂cu

∂x
+

∂cv

∂y
= Ruv(t, x, y) ,

b) Σ-modified X-momentum

∂cu

∂t
+

∂(cu)2

∂x
+ 2

∂(ûcu)

∂x
+

∂(ûcv)

∂y
+

∂(v̂cu)

∂y
+

∂(cucv)

∂y
=

= −
∂cp

∂x
+

1

Re

(

∂2cu

∂x2
+

∂2cu

∂y2

)

+ Ru(t, x, y) ,

c) Σ-modified Y-momentum

∂cv

∂t
+

∂(ûcv)

∂x
+

∂(v̂cu)

∂x
+

∂(cucv)

∂x
+

∂(cv)2

∂y
+ 2

∂(v̂cv)

∂y
=

= −
∂cp

∂y
+

1

Re

(

∂2cv

∂x2
+

∂2cv

∂y2

)

+ Rv(t, x, y) ,

where discrete analogues of the functions cu, cv and cp will be coarse grid corrections and

discrete analogues of the functions û, v̂ and p̂ will be approximations to the solutions in the

following multigrid iterations. Source terms in the Σ-modified equations coincide with the
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initial Navier–Stokes equations, i.e.

Ruv(t, x, y) = −
∂û

∂x
−

∂v̂

∂y
,

Ru(t, x, y) = −
∂û

∂t
−

∂(û2)

∂x
−

∂(v̂û)

∂y
−

∂p̂

∂x
+

1

Re

(

∂2û

∂x2
+

∂2û

∂y2

)

,

Rv(t, x, y) = −
∂v̂

∂t
−

∂(ûv̂)

∂x
−

∂(v̂2)

∂y
−

∂p̂

∂y
+

1

Re

(

∂2v̂

∂x2
+

∂2v̂

∂y2

)

,

Additional convection terms in Σ-modified momentum equations are result of nonlinear

nature of the convection-diffusion operator N , i.e. N ∗ �= N . Approximation of the source

terms Ruv, Ru and Rv defines the accuracy, monotonicity and conservatism of the numerical

solutions. Approximation of other terms in the modified equations defines only multigrid

convergence rate because cu → 0, cv → 0 and cp → 0 for convergent solution.

6.2 Multigrid structure

Recently variant of the geometric multigrid methods with the problem-independent transfer

operators (so-called Robust Multigrid Technique) has been proposed and developed

Martynenko (2006; 2010). The problem-independent restriction and prolongation operators

are result of the multiple coarse grid corrections on subgrids of the finest grid.

Assume that a finest staggered grid G0
1 has been generated in the domain. Coarsening in

Robust Multigrid Technique is based on representation of the finest grid G0
1 as union of 3N

(N = 1, 2, 3) coarse grids G1
1 , G1

2 , . . . , G1
3N with the following properties:

1. all coarse grids G1
1 , G1

2 , . . . , G1
3N have no common points, i.e. G1

n ∩ G1
m = ∅ , n �= m.

2. the finest grid G0
1 is the union of all coarse grids G1

1 , G1
2 , . . . , G1

3N , i.e. G0
1 =

3N
⋃

k=1
G1

k .

3. all grids are similar to each other, but a mesh size on the coarse grids is three times as large

as than the mesh size on the finest grid.

4. control volume on the coarse grids G1
1 , G1

2 , . . . , G1
3N is union of 3N control volumes on the

finest grid G0
1 .

The coarse grid generation is further recurrently repeated: each grid G1
1 , G1

2 , . . . , G1
3N gives

3N coarser grids. The coarse grid generation is finished when no further coarsening can be

performed. Finally we obtain Gl
k, l = 0, 1, . . . , L+, k = 1, 3Nl computational grids (so called

a multigrid structure), where L+ is number of the coarsest level and N = 2, 3. Details of the

coarse grid generation is given in Martynenko (2006).

6.3 Multigrid cycle

Multigrid cycles for simulation of flows with given and unspecified mass flow rates are shown

on Figure 15. There are two kinds of smoothing on the multigrid structure. One of them

(marked as ◦) is intended for solving Σ-modified Navier–Stokes equations with computation

of correction of the «multidimensional component of pressure». Another smoothing (marked

as �) is intended for computation of correction of the «one-dimensional component of
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pressure» on the finest grid. In other words solution of the modified auxiliary problem is

additional smoothing on the finest grid.

(a) Flows with unspecified mass flow
rate

(b) Flows with the given mass flow rate

Fig. 15. Multigrid cycles

6.4 Numerical test

The algorithm is tested by simulation of unsteady flow in a driven cavity at Re = 1000. Law

of the lid motion is taken as

U
(n)
w = min

( n

50
; 1
)

,

and stopping criterion is posed as

max
ij

∣

∣

∣

∣

∂u

∂x
+

∂v

∂y

∣

∣

∣

∣

(n+1)

ij

< 10−10.

Six-level multigrid structure with uniform finest staggered grid 501 × 501 (ht = hx = hy =
1/500) is used for the test. Correction of the «multidimensional component of pressure» is

computed using Uzawa algorithm with diagonal preconditioning.

Figures 16–18 show evolution of the flow in the cavity. The main vortex is located near the

lid after finish of the lid acceleration. Then the vortex moves to upper right corner under

influence of the lid motion. After that the vortex moves along diagonal of the cavity to the

center (Figure 16). Motion of the main vortex generates two additional vortices (Figure 17).

The first vortex is formed in the lower corner, but the second vortex is formed on right vertical

wall of the cavity. Location of the corner vortex is stable because of its motion is limited by the

cavity walls. However the wall vortex can moving under influence of the main vortex. Corner

and wall vortices agglomerate in common vortex. Agglomerated vortex tends to stable corner

position, but a new corner vortex is generated in the left lower corner of the cavity. Figure 18

represents close-to-steady flow picture in the cavity.

196 Hydrodynamics – Optimizing Methods and Tools

www.intechopen.com



Convergence Acceleration of Iterative Algorithms for Solving Navier–Stokes Equations on Structured Grids 23

X

Y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) Isolines of stream function (n = 50)
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Fig. 16. Flow picture in the driven cavity (n = 50, 400, 1000)
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Fig. 17. Flow picture in the driven cavity (n = 2250, 3000, 3500)
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Fig. 18. Flow picture in the driven cavity (n = 5000, 10000)
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8. Conclusion

«Part of pressure» (i.e. sum of the «one-dimensional components» in decomposition (10)) can

be computed using the simplified (pressure-unlinked) Navier–Stokes equations in primitive

variables formulation and the mass conservation equations. «One-dimensional components

of pressure» and corresponding velocity components are computed only in coupled manner.

As a result, there are not pure segregated algorithms and pure density-based approach

on structured grids. Proposed method does not require preconditioners and relaxation
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parameters. Pressure decomposition is very efficient acceleration technique for simulation

of directed fluid flows.
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