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1. Introduction 

Lattice Boltzmann method (LBM) has recently been receiving considerable attention as a 

possible alternative to conventional computational fluid dynamics (CFD) approaches in 

many areas related to complex fluid flows. It is of great promise for simulating flows in 

topologically complicated geometries, such as those encountered in porous media, and for 

simulations of multi-component and/or multiphase flow conjugated with heat and mass 

transfer. In these particular areas, there are few viable conventional CFD methods for using. 

The present chapter deals with LBM numerical investigation to heat and mass transfer in 

flows with multiple components and/or phases encountered in the rotating packed-bed or 

nucleate pool boiling. 

In the following section 2 the LB multi-component model is adapted for simulating the 

mixing process in a rotating packed-bed with a serial competitive reaction (A+B→R, 

B+R→S; A, B, R, and S denote different components.) occurred inside. The serial competitive 

reaction in the main filling area of a rotating packed-bed is simulated and the mass transfer 

with forced convection caused by a cylindrical filler (to mimic the packing material) is 

studied as well. The obtained results provide some guidance for further studying the forced 

mass-transfer in and for the design of the real rotating packed-bed in industries. 

In section 3, a hybrid LBM model is constructed. In combination with a lattice Boltzmann 

thermal model, the lattice Boltzmann multiphase model being capable of handling a large 

density ratio between phases is extended to describe the phenomenon of phase change with 

mass and heat transferring through the interface. Based on the Stefan boundary condition, 

the phase change is considered as change of the phase order parameter and is treated as a 

source term in the Cahn-Hilliard(C-H) equation. The evolution of the interfacial position is 

thereby tracked. With an improved Briant’s treatment to the partial wetting boundaries, this 

hybrid model is used to simulate the growth of a single vapour bubble on and its departure 

from a heated wall. Numerical results exhibit similar parametric dependence of the bubble 

departure diameter in comparison with the experimental correlation available in recent 

literatures. Furthermore, parametric studies on the growth, coalescence and departure of a 

pair of twin-bubbles on a heated wall are conducted as well. 
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2. LBM mass transfer model 

In practical engineering, the fluid flow is commonly multiphase and/or multi-component 
flow. The interface between phases or components changes randomly with time and the 
boundary surfaces between fluid and solid are sometimes very topologically-complicate. 
These factors make the corresponding numerical study being of great challenge. Based on the 
lattice gas method (Frish et al., 1986) since 1992, LBM has been developed and employed in the 
area of computational fluid dynamics, particularly, for the simulations of multi-component 
flows. Alexander et al. (1993) first used the LBM work to study component delivery problems, 
but the model was limited to a fixed Prandtl number. Chen et al. (1997) introduced a matrix 
instead of the Bhatnagar-Gross-Krook (BGK) collision factor to overcome this limitation, but 
their method is subjected to some computational instability (Soe et al., 1998; Vahala et al., 1998; 
Vahala et al., 2000). Bartoloni et al. (1993) and Shan (1997) employed two distribution functions 
to enhance the stability of the calculation. Inamuro et al. (2002) further simplified the 
distribution function. Because non-linear first-order error term presents in the macroscopic 
diffusion equation, the LBM multi-component model has only first-order accuracy.   
Via comparison with the analytical solution, this section firstly analyzes the truncation error 
and accuracy of LBM. Secondly, we build up the serial competitive reaction LBM and use 
this model to simulate the mass transfer process in a rotating packed-bed.  
In a rotating packed bed, the extremely high rotation speed forms super large centrifugal 
body force, which can be hundreds times of the gravity. Multiphase and/or multi-
component fluids flowing inside the porous packed-bed will be torn into micro- or even 
nano- sized fragments, leading to greatly elongated interfaces between phases or 
components and hence making the mixing process around 1 - 3 orders of magnitude more 
efficient than in the traditional mixing towers. In this section, mixing process with a serial 
competitive reaction in a simplified rotating packed-bed will be simulated using an 
improved LBM mass transport model.  

2.1 Mathematical formulation and model validation 
2.1.1 Mathematical formulation 

Continuity and Navier-Stokes equations 

We assume the fluid system contains fluid phase of n-components. The D2Q9 BGK model is 
applied and the equilibrium distribution function (f) of component n is formulated as follows,  

 2 29 3
( , , ) (1 3 ( ) )

2 2
eq
a n a a af t n c u     x e u e u  (1) 

The term on the left hand side denotes the probability that component n is present at 
position x, at time t along the direction a. The ea is the particle velocity，e0=0；e=△x⁄△t，△x 

is the space step, △t is the time step, 

4 /9,     0;

1/9,      1,3,5,7;

1 / 36,   2,4,6,8.
a

a

a

a


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 
 

 cn is the concentration of 

component n, u is the velocity vector of fluid flow. The corresponding LBM equation of 
component n is 

 
( , , ) ( , , )

( , , ) ( , , )
eq

eq a a
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

    
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x e x  (2) 
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with  being the relaxation parameter and  the time step. We define the macroscopic 

variables as 

 ( , , )eq
n a

a

c f t n x  (3) 

 eq
n i ia a ia a

a a

c f f  u e e  (4) 

 ( , ) ( , , )n
n

c t c t nx x  (5) 

By virtue of the Chanman-Enskog expansion and multiscale analysis, the corresponding 

continuity and Navier-Stokes equations yield 

 0
j

j

cuc

t x


 

 
 (6) 

 
2 2

2( )
i j iji i k

j j j j k i

cu u pcu cu cu
o

t x x x x x x


  

   
     

      
 (7) 

where, the viscosity is calculated with μ=(2τ-1)ε/6.0=η/2.0, the pressure p=c/3. Eqs. (6) and 
(7) ensure the multi-component system being of the general flow characteristics. 

Mass transport equations of fluid components  

Applying the Taylor series expansion and using the Chapman-Enskog approximation to Eq. 
(2), we get the following second order LB mass transport equation, 

 (0) (0) (0)2 2

0

1
( ) ( ) ( ) 0
2

i a i
i i

f f f o
t x t x

   
  

     
     

     e e  (8) 

Combined with Eqs.(3)and (4), Eq.( 8) can be expressed as 

 
2 2

2
2

( )n n i n n i

i ii

c c u c c u
o

t x t xx
     

   
   

 (9) 

where, μ=(2τ-1)ε/6.0 is the diffusion coefficient. A perturbation term
2

n i

i

c u

t x


 

 of first-order 

accuracy is present in the convection-diffusion equation. The dimensionless velocity u is 
very small, so the perturbation term only has little influence on the precision of Eq. (9). The 
difference between LBM and the traditional convection-diffusion equation is that the series 
truncation error term appears in the diffusion term of the corresponding macroscopic 
equation (9). This section focuses firstly on the truncation error term and the perturbation 
term to investigate their influence on the LBM diffusion behavior. 

Mass transport with serial competitive reaction  

We consider a serial competitive reaction: A+B→R；B+R→S. The corresponding convection 
-diffusion equation is formulated as 
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2

2
n n i n

i
i i

c c u c
D r

t x x

  
  

  
 (10) 

where, ui  is the xi-direction velocity; cn is the concentration of component n; D is molecular 

diffusion coefficient; ri is the source or sink term due to chemical reaction. 

 

1

1 2

1 2

2

A A B

B A B B R

R A B B R

S B R

r k c c

r k c c k c c

r k c c k c c

r k c c


 
  
 

 (11) 

where, k1 and k2 are rate constants. 

Based on D2Q9 BGK model, the equilibrium distribution function of component n is set as 

follows. 

 2 29 3
( , , ) (1 3 ( ) )

2 2

eq
a n a a af t n c      r e u e u u  (12) 
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where, 01 4, 0  e , 

4 /9,     0;

1/9,      1,3,5,7;

1 / 36,   2,4,6,8.
a

a

a

a



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i，j are the unit vector in the x, y direction, 

respectively; ea is the particle velocity. The distribution function ( , , )eq
af t nr denotes the mass 

fraction probability of component n presented at location r, at time t and along the a 

direction. Using rna toi denote the corresponding chemical reaction term, the equation of 

LBM is thus obtained as 

 
( , , ) ( , , )

( , , ) ( , , )
eq

eq a a
a a a na

f t n f t n
f t n f t n r 




     
r r

r e r  (14) 

Likewise, we define macroscopic variables: 

The node mass fraction of the component n: ( , , )
eq

n a
a

c f t n r                  (15) 

The total mass fraction of nodes: ( , ) ( , , )n
n

c t c t nr r                    (16) 

Node momentum of component n： ( , , ) ( , , )eq
a a a a

a n a n

c f r t n f r t n    u e e                 (17) 

Node chemical reaction term of composition n: n na
a

r r                            (18) 

Applying the Taylor series expansion and Chapman-Enskog expansion to Eq. (14), we can 

get a different time scale LBM equation. Bonded with the multi-scale equations, the 

following equation yields  
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Introducing Eqs. (15), (16), (17) and (18) into the Eq. (19), we get 

 
2

2
2

( )n n i n
i

i i

c c u c
D r o

t x x
  

   
  

 (20) 

where, D=(τ-0.5)ε/3is the diffusion coefficient.  

2.1.2 Model validation 
In order to validate the model prediction we consider a transient diffusion case, which is 
described with:  

 
2

2

c c

t x
 


 

, 0 1x  , 0t   (21) 

The boundary and initial conditions are,  

 (0, ) 1c t  ， (1, )
0

c t

x





，( 0t  ); ( ,0) 0c x  ，( 0 1x  ) (22) 

It has an analytical solution,  

 2 2

0

4 1 1
( , ) 1 exp ( 1) sin (2 1)

(2 1) 4 2j

c x t j t j x
j

  






              
  (23) 

As shown by Fig. 1, the LBM simulated results are in good agreement with the analytical 
solutions. No initial value fluctuation occurs in the LBM computation.  
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Fig. 1. Diffusion behavior without convection effect 
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The above test case verifies that the perturbation term
2

n i

i

c u

t x
 
 

in Eq. (9) can be safely 

omitted. Hereby we validate the reliability and accuracy of the LBM diffusion transport 
model. 

2.2 Mixing process with serial competitive reaction 
2.2.1 Laminar diffusion and reaction model 
Experimental results of TV camera image and stroboscopic photography show that the 

liquid flow in rotating packed-bed is mainly in the form of film flow (Liu, 2000). Due to the 

strong centrifugal force, the liquid film is very thin, thinner than tens of microns. Therefore, 

the Reynolds number is small (approximately less than 30) and thus the liquid flow falls in 

the laminar flow regime. To this understanding, we perform the LB modeling to the laminar 

diffusion and reaction process. 

We consider a case that two liquid films meet and bond together and then move at the same 

speed with no tangential movement due to shear force. The diffusion is across the interface 

of two liquid films and the reaction is added: A+B→R；B+R→S. Analyzing this serial 

competitive reaction and comparing the first product R and second product S, we can 

quantify the reactive mass transport. 

Fig.2 displays the concentration profile of each component of reactants and products, at 

position i=75 and at time t=50000 time steps, which corroborates the process follows the 

laminar diffusion and reaction regime. More simulation results about temporal variation of 

the total amount of each component (
,

( , )
i j

c c i j ) are shown in Fig. 3. 
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Fig. 2. Component concentration at i=75 and at t=50000 time steps 
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Fig. 3. Temporal variation of the total amount of each component  

2.2.2 Forced convection and reaction model 
To introduce convection disturbance to the mixing process, a cylindrical pillar is put at the 
entry section of the simulated geometry. The cylindrical pillar mimics one packed- filler in a 
rotating packed-bed. With the LBM, the mixing with serial competitive reaction at the end-
effect regions of the rotating packed-bed is simulated and some hints about the convective 
mixing in the packed-bed are obtained. Typical results are shown in Figs. 4 and 5. The 
inserted pillar induces disturbance to fluid flow, deforming the interface of different 
components and hence enhancing the mixing process. 
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Fig. 4. Temporal variation of the total amount of each component  
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Fig. 5. Evolution of 2-D distribution of the reactant/product concentration 

3. A hybrid lattice Boltzmann model 

Nucleate boiling is a liquid-vapor phase-change process accompanying with the bubble 
formation, growth, departure and rising. Because the process plays a key role in the boiling 
heat transfer, it has been widely studied for half a century. Although the phenomenon of 
bubble motion with bubble growth can be explained qualitatively as demonstrated in the 
corresponding experimental investigations, main difficulty in quantitative prediction is that 
multiphase flows pose to be very complex, involving thermodynamics (co-existing phase), 
kinetics (nucleation, phase transitions) and hydrodynamics (inertial effects). “What role 
does a liquid-vapor interface play?” remains to be a core and open issue from the physical 
point of view. Fortunately, the development of numerical methods and computer 
technology has provided a powerful tool to predict vapor bubble behavior in nucleate pool 
boiling. For vapor bubble with phase-change, the vapor-liquid interface becomes 
extraordinary complicated because of its nonlinearity, variety, and time-dependence 
behavior induced by phase-change accompanying with heat and mass transfer. Therefore, 
treatment of the interface is a key problem in the simulation of multiphase flows including 
bubbly flows. Generally, numerical simulation of bubbly flows can be classified as: the 
singular interface model and the diffuse interface model. Earlier studies on vapor bubble 
dynamics were based on the Rayleigh equation and its modification, which were basically 
related to dealing with zero or one dimensional problems (Plesset & Zwick, 1953 ). Wittke & 
Chao (1967) studied the collapse of a spherical bubble with translatory motion. Cao & 
Christensen (2000) simulated the bubble collapse in a binary solution, in which the Navier-
Stokes equation was transformed into the form of the stream function and vorticity in two-
dimensional axisymmetric non-orthogonal body-fitted coordinates. Yan & Li (2006) 
simulated a vapor bubble growth as it rises in uniformly superheated liquid by using two 
numerical methods based on moving non-orthogonal body-fitted coordinates proposed by 
Li & Yan (2002a,2002b). Han et al. (2001) used a mesh-free method to simulate bubble 
deformation and growth in nucleate boiling. Fujita & Bai (1998) used the arbitrary Lagrange-
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Eulerian (ALE) method to simulate the growth of a single bubble attached at a horizontal 
surface with a constant contact angle before its departure. These numerical simulations are 
the singular interface model, in which the grid is limited so as not to be fit to bubble large 
deformation in topology, such as coalescence and breakup of the bubble. In such a situation, 
the diffuse interface model, such as VOF (volume of fluid), the level set and phase field 
method etc., was proposed to recover the defects of the first kind of model. Tomiyama et al. 
(1993) simulated a single bubble by using the VOF. Hua & Lou (2007) developed the front 
tracking method to simulate the bubble rising in the quiescent viscous liquid due to 
buoyancy. Little progress had been made in the numerical simulation of bubbly flows with 
phase change based on the diffuse interface model. Son et al. (1998) simulated a growing 
and departing bubble on a horizontal surface and captured the vapor-liquid interface by the 
level set method which was modified to include the action of phase change. Ni et al. (2005) 
simulated the bubbly flows with phase change by the level set method as stated in Son et al. 

(1998)’s work. In their work, u  is applied to define the phase change and the interfacial 

velocity need to be separately obtained from the temperature condition at the interface. 
Nevertheless, little information in the literatures was reported about the vapor bubbles’s 
behavior with phase change. In particular, few papers have been reported on the 
propagations of temperature field around a growing and deforming vapor bubble. Due to 
the complexity of environment about the realistic bubble flow like porous media, the 
treatment of boundary usually encounters a lot of embarrassment for the above-described 
methods. This point has limited and weakened the ability of these numerical methods to 
some extent. 
Recently, the lattice Boltzmann method (LBM) became a popular tool to simulate the 
incompressible viscous flows due to its merits like the ease of boundary treatment and the 
parallel implementation. In the LB context, there were several models developed for 
multiphase and multi-component flows in the past two decades. The earlier works were the 
color method proposed by Rothman & Keller (1998), the potential method by Shan et al. 
(1993), the free energy method by Swift et al. (1996) and the method by He et al. (1999). 
These models have not been used in solving practical problems due to the limit of smaller 
density ratio between phases. Up to 2007, three models of large density ratio were proposed, 
the first one was an immiscible incompressible two-phase model with large density ratio 
proposed by Inamuro et al. (2004), the second one was that of Lee et al. (2005) and the third 
one was proposed by Zheng et al. (2006). Inamuro et al. (2004)’s model was used to track the 
two-phase interface by applying a diffuse equation which is analogy to the C-H equation. 
This kind of interface-tracking technique has the same principle as the level set method. In 
fact, the two-phase interface is also disposed as an index such as 0 and 1. Unlike Inamuro et 
al. (2004)’s and Lee et al. (2005)’s models, Zheng et al. (2006) approximated the C-H equation 
to track and define the two-phase interface without the artificial disposal adopted by other 
models in the physical background. Benefiting from the concept of the order parameter 
continuum in phase-change process following the regime of Landau mean-field theory, 
Zheng et al. (2006)’s model can be extended to non-isothermal systems with phase-change.  
Therefore, we proposed a hybrid LBM model (Dong et al.,2009), which is a combination of 
the Zheng et al. (2006)’s multiphase model and a thermal LBM model (Inamuro et al. 2002) 
and is able to characterize the heat and mass transfer in multiphase flows. In this hybrid 
model, Zheng et al. (2006)’s model is added with a source term to the corresponding C-H 
equation to define the phase-change and the thermal LBM model is added by a source term 
to define the latent heat. The modified C-H equation has a much clearer physical 
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explanation to the treatment of phase change at the interface, thus enabling to track the 
interface automatically by following the change of the phase order parameter. 

3.1 Zheng’s lattice Boltzmann dynamic model 
In the simulation of vapor bubbly flows, the binary model proposed by Zheng et al.(2006) is 
employed to track the dynamic evolution of the flow field. In Zheng et al. (2006)’s model, 
there are two independent macroscopic parameters, total number density, n=(ρA+ρB)/2 and 
number density difference, Φ=(ρA-ρB)/2, where ρA and ρB stand for the density of fluid A 
and fluid B, respectively. The parameter n is proportional to pressure and approximately 
constant in the whole flow field. The parameter Φ becomes positive in the region where ρA > 
ρB and negative in the region with ρA < ρB, and thus it represents two-phase distribution, 
which is the same as the definition in the Swift et al. (1996)’s model. 
Two sets of discretized distribution functions fi and gi are used to assign each site, which are 
related to the parameters n and Φ, respectively. The distribution function fi can be used to 
model the transport of mass and momentum, while the distribution function gi can be 
employed to track the interface. Thus, the corresponding LB BKG equation is written as 
follows, 

    , ,i i i if x e t t t f x t        (24) 

with 
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   

 (25) 

where, x is restricted to sites on the lattice and t is the discrete time, τn, τΦ is the 
dimensionless relaxation parameter. The equilibrium distribution functions to satisfy the 
conservation laws can be expressed as follows: 
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  1eq
i ii

i

g e e     with        (31) 

where, u  is the macroscopic velocity of the fluid. The chemical potential is given by: 

  23 24 4A K          (32) 

By performing a Chapman-Enskog expansion to Eqs. (24) and (25), the macroscopic 

equations for n and  in the second order precision can be derived as follows. 

   0
n

nu
t


   


 (33) 

 
       2

b

nu
nuu P nu F

t
    


          


 (34) 

   2
Mu

t


   
    


 (35) 

where,  0.5M q q     . 

From Eqs. (33), (34) and (35), the corresponding equilibrium distribution functions can be 

constructed as follows: 

   23 9
3

2 2

eq
i i i i i iif A n e u u u u e e            

 
 (Based on D2Q9) (36) 

where 1

1
15

9 3

4 4

n

A n
  

     2,....,9

1
3

3i iA n
   
 

, 

 1

4

9
  ,  2,....,5

1

9i i   ,  6,.......,9

1

36i i   .  

  eq
i i i iig A B C e u      (Based on D2Q5) (37) 

where 1 1B  ,  0 1iB i  , 
1

2
iC

q
 , 1 2A    ,  is the diffusion coefficient. 

3.2 Inamuro’s thermal LBM model 
Inamuro et al. (2002) proposed a model for the diffusion system including heat transfer. In 

their model, there is the simplest distribution function hi among other thermal models. The 

LBM equation can be written as: 

        1
, , , ,eq

i i i i i
T

h x e t t t h x t h x t h x t


          , (38) 
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where, T is the dimensionless relaxation parameter. 
The equilibrium distribution function (based on D2Q9) for the thermal model can be stated 
as follows: 

    , 1 3eq
i iih x t T e u    (39) 

where, T is the temperature. 
The diffusion equation corresponding to the thermal model can be expressed as: 

 
2

2

1 1

3 2
T

T T T
u

t x x


 
          

 (40) 

3.3 Phase change based on assumption of Stefan boundary 
In the Landau mean-field theory, the phase change is considered as a continuous variable of 
order parameter. So, the corresponding C-H equation can also be extended to include a phase-
change term in the non-isothermal system. The phase change can be identified by calculating 
the change of phase order parameter. Such a treatment can make the interface be automatically 
traced based on the change of the phase order parameter. At the same time, the corresponding 
phase-change latent heat is also considered in the LBM model. 
In order to simulate the departure of the vapor bubble from a heated wall and its growth in 
superheated liquid, two assumptions have to be considered as follows: 
1. The vapor inside the bubble is pure and approximately incompressible;  
2. The heat transferred from the liquid to the interface is completely used to evaporate the 

liquid at the interface based on the Stefan boundary, which results in the net increase of 
bubble volume. 

A vapor bubble of volume '
bV  is introduced into the superheated liquid. In time interval 

from t to t t   , the mass transferring into the bubble during the phase change process is 

expressed as: 

 
2

2

1 1
-b

G l l
fg fgbV S V V

dVm T T
dV dV dS dV

t dt h x h x
  

   

                       
     (41) 

where, G  is vapor density, T is temperature, fgh  and l  are the latent heat of evaporation 

and the thermal conductivity, respectively. 
Based on phase order parameter, the phase-change is taken into account and expressed as: 

 
   

2 2
L G L Gm m m

t t t t

   
      

    
     

  (42) 

Equation (42) is normalized by the following equations: 

 b
b

bo

V
V

V





, T

e

t U
t

d


 , 

b

T T
T

T T




 


 
, 

e

x
x

d


  (43) 

where V’bo is the bubble volume at an initial stage, de is the equivalent diameter of the 
bubble, UT is the terminal rising velocity of the bubble and T’∞ is the temperature of liquid at 
the top boundary of the domain. So, the dimensionless form of equation (41) is written as: 
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  2

2
l b

G
fg T e

T TdV T

dt h U d x


     

     
 (44) 

By introducing the Jacob number  1
pl b

fg

Ja C T T
h

   and the Peclet number
L T e pl

l

U d C
Pe




 , 

Eq. (41) can be expressed as: 

 
2

2
L

G L G

dV Ja T

dt Pe x

 
  

 
      


 (45) 

To include the phase change, the LBM equation (2) when 0   is rewritten as: 

 

         

   

, , 1 , ,

1
, ,

i i i i i i

eq
i ii

g x e t t t g x t q g x e t t g x t

g x t g x t





           

    

 

  (46) 

In the LBM Eqs. (37), 
1 1 1

3 2
T

Pe
    

 
. So when 0  , the latent heat term 

 
G

L L G Ja

 
  





can be added into the LBM Eqs. (38). 

          
1

, , , ,eq G
i i i i ii

T L L G

h x e t t t h x t h x t h x t
Ja

 
   

          


 (47) 

By using the Taylor series expansion and the Chapman-Enskog expansion with respect to 

Eqs. (46) and (47), the improved governing equations when Φ<0 can be approximately 

recovered In the second order form as 

     2
2

2
L L G

M
G

Ja T
u

t Pe x


     


  
          

 (48) 

  
2

2

1 1

3 2
G

T
L L G

T T T
u

t x Jax


 

  
  

          


 (49) 

To validate the hybrid LBM model including phase change, a phase-change problem with 

available analytical solution is chosen as a test case, which is the bubble growth in a 

superheated liquid layer of infinite extent under the condition of no gravity. Initially, a small 

spherical bubble is rested in the superheated liquid layer. Numerical mesh system has 

100*100 numerical cells. A comparison between numerical results and analytical solutions 

has been carried out and tabulated in Tab.1. It can be discovered that the numerically 

predicted bubble growth is in good agreement with the Mikic et al. (1970)’s analytical 

solution, which indicated that the treatment of phase change based on phase order 

parameter is feasible for the hybrid LBM model. 
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Time 
 

Jacob/Radius 
10 20 30 40 50 

Ja=0.0006 
Mikic et al. (1970) 0.04375 0.06375 0.07937 0.09324 0.10552 

Present work 0.04339 0.06158 0.0744 0.08519 0.09811 

Ja=0.0009 
Mikic et al.(1970) 0.06551 0.09243 0.1136 0.1303 0.14406 

Present work 0.06013 0.08691 0.10819 0.12704 0.14412 

Ja=0.0012 
Mikic et al.(1970) 0.08736 0.12382 0.15126 0.17416 0.19613 

Present work 0.08197 0.11746 0.14672 0.17236 0.19579 

 

Table 1. Comparison of the calculated radius of bubble growth with the Mikic’s solution 
(Pe=3000) 

Accounting for the buoyancy force as stated in the reference (Zheng et al., 2006), we define 
the Eo, M and Re as follows: 

 
  2

H Lg d
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 
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  4

2 3
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g
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

 , Re H T
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V d

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The bubble volume is calculated by  
 

 
0

0
0

b

t

V t
t












 


  and the growth rate of bubble 

volume is calculated by     /b b bV V t t V t t         
 . 

3.4 Numerical simulation of vapor bubble growth on and departure from a 
superheated wall 
3.4.1 The Briant’s treatment of partial wetting boundary 
The Briant’s treatment of the partial wetting boundary is introduced into the hybrid LBM 
model elaborated above. The details of this treatment is available in the literature (Biant et 
al., 2002). Adjustment aroused by the wetting boundary is considered as follows: 
1. A little order parameter non-conservation induced by the distribution functions at 

inflow and outflow on the wetting boundary is counted and apportioned to every node 
occupied by the bubble. 

2. The surface tension forces between the wall and fluids are adjusted to guarantee the 
vapor bubble to be able to expand and depart in integrality on the wetting boundary 
like action of an actual vapor bubble in practical processes. Therefore, according to the 

Young’s law ( cos SG SL
w

LG

 



 ), the order parameter ΦG is set as -90 or smaller in this 

work. The contact angle is adjusted in relative to the corresponding ΦL. The comparison 
of resulting effects is schematically shown in Fig.6. 
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Fig. 6. Effect of different adsorb ability (left: ΦG<-90; right: ΦG>-90) on wetting boundary 

The corresponding properties are taken as follows; 

 1000L  , 1G  , 650  , 3000Peclet  , 72Eo  , 3.44M  .  

The mesh of the domain is generated as 100×50. A spherical bubble with radius of 3 is 

located in (50, 2). The flow field is surrounded with one partial wetting boundary (bottom 
boundary), one extrapolated-boundary (top boundary) and two stationary walls (left and 
right boundaries). The initial thermal boundary layer thickness is calculated from the 

correlation (Han et al., 1965): 

 
 

( )3
2 1 (2 / )

w c

w sat c v

T T R

T T R L


 



 

  

where, cR is the initial bubble radius. 
As far as the bubble departure diameter is concerned, different physical parameters, such as 

body force, surface tension force, and partial wetting boundary and Jacob number are 

considered and investigated. The most widely used correlation for the bubble departure 

diameter on the heated surface was proposed by Fritz (1935), in which the bubble departure 

was determined by a balance between the buoyancy and surface tension force acting normal 

to the solid surface. Based on the experimental measurement of the departure diameter over 

a pressure range, and observation of the influence of the bubble growth rate on the 

departure diameter, Staniszewki (1959) modified the Fritz (1935) equation to obtain the 

departure diameter correlation as follows: 

 

1

22
0.0071 1 34.3d

D
D

g t




          
  

where D
t


  denotes the bubble growth rate.  

Using the present method, the effect of physical parameters on the departure diameter is 

investigated. The calculated departure diameter for different gravity forces and surface 

tension forces are regressed to functions as 0.472D g and 0.5D  . The result is in very 

good agreement with the Fritz (1935) relation. The calculated correlation of departure 

diameter and the Jacob number is a regressed function of D Jacob . Because the Jacob 

number is a dominant factor of the bubble growth rate, the result shows indirectly the 

correlation between the departure diameter and the bubble growth as predicted by 
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Staniszewki (1959)’s correlation. The departure diameter changes with the adjustment of ΦL. 

Because the contact angle is determined by ΦL and ΦG, the adjustment of ΦL can change the 

contact angle and influence the bubble departure diameter. The precise quantitative relation 

between contact angle and departure diameter is still under investigation. 

3.4.2 Propagation of flow field 
Fig.7 presents the evolution of flow field accompanying with the corresponding stream 
traces. It can be seen from these figures how the bubble growth and departure affect the 
flow field. In the early stage, due to the bubble growth or expanding on the wetting 
boundary, two vortexes are formed on both sides of the bubble. The vortexes (including 
shape and intensity) are enforced to develop with the bubble further growing up. With the 
process continuing, the change of shape induces the vertex breaking up into twin-vortex. 
With the bubble starting with departure, the twin-vortexes on both sides incorporate into a 
single vortex and rise up with the bubble. In the late stage, the vortexes further strengthen 
their scopes and intensity and rise up accompanying with the bubble departure.  

 

 

 
 

Fig. 7. Propagation of flow field  

3.4.3 Propagation of temperature field 
The evolution of temperature field is depicted in Fig.8. The effects of the bubble growth and 
departure on the temperature field around the bubble are clearly seen. In the early stage, 
due to its small volume, the bubble phase-change is dependent on the heat transfer in the 
micro layer and macro layer both. With growing up of the bubble, the contribution of heat 
transfer in the macro layer is gradually weakened. In the process of the bubble departure, 
the forced convection induced by the ascending bubble greatly affects the temperature field. 
The disturbance to the temperature field, in return, influences the bubble growth and 
departure to some extent. 
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Fig. 8. Propagation of temperature field  

3.4.4 Characteristics of two bubbles growth on and departure from the wall 
Based on the LBM elaborated above, two bubbles coalescence dynamics on a horizontal 
surface are also investigated. The simulation focuses on the effect of twin-bubble distance 
(dist) on the bubble growth, coalescence and departure. The result is shown in Fig.9 and the 
bubble diameter is calculated from the summation of the two bubbles’ volume. It is easily  
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Fig. 9. Bubble growth and departure in different coalescence conditions 

found that the final result is closely related to twin-bubble distance. With the distance 
increasing, the coalescence is delayed and the departure time is shortened to some extent. 
But the diameter of bubble departure does not change with the coalescence of bubbles of 
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different distance, like dist=14, 16, and 17. With the distance increasing further, the effect of 
coalescence on bubble growth rate disappears except the diameter of bubble departure is 
becoming larger, (see cases with dist=18 and 19). When the bubble departs from the surface 
in its integrality, the bubble growth rate tends to become zero, i.e.; the growth ceases. 
Figs.10 and 11 show the evolving process of flow and temperature field, respectively. From 
Fig. 10, it is seen that before the bubble coalescence, two vortexes are forming on the 
outward side of the twin-bubbles, respectively. With growing up and coalescence of the 
bubbles, both vortexes are strengthened. They both are split into one clockwise vortex and 
one anti-clockwise vortex with the bubbles further growing up. After the two bubbles 
coalesce, we see firstly four bubbles with 2 of them locating on one side of bubble and the 
other 2 on the other side. Then the merged large bubble further grows up, until it departs 
from the wall. Vortexes on the same side of the merged bubble are developing further and 
converge into one. Afterwards, we see one bubble ascending in the liquid with 2 vortexes 
locating on right and left side respectively. Fig.11 shows the related temperature field. It is 
easily found that the forced convection directly influences the temperature field especially 
after bubble coalesces and departs. 
 
 

  

  
 
 

Fig. 10. Propagation of flow field  
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Fig. 11. Propagation of temperature field  

4. Concluding remarks 

In this chapter we reviewed the current state-of-the-art and recent advances of LBM through 

case studies. We presented firstly an improved LBM for modeling the mass transport in 

multi-component systems, which was used to simulate the mixing process in a rotating 

packed bed with a serial competitive reaction (A+B→R, B+R→S; A, B, R, and S denote 

different components.) occurring therein. The obtained results provide some guidance for 

further studying the forced mass-transfer in and for the design of the real rotating packed-

bed in industries. Secondly, with a purpose to simulate phase change process, the LBM 

multiphase model being able to handle a large ratio of density between phases is combined 

with the LBM thermal model to form a hybrid LB model. By introducing the Briant’s 

treatment to partial wetting boundary, this hybrid model was used to investigate growth 

and departure of a single bubble, and coalescence of twin-bubbles, on (or from) a heated 

horizontal surface. Numerical results exhibited correct parametric dependence of the 

departure diameter as compared to the experimental correlation available in the literatures. 

The capability and suitability of this hybrid LB model for modeling complex fluid and 

heat/mass transfer systems are thus demonstrated. Due to its terseness advantage in the 

treatment of complex boundary, our future work will further extend this hybrid model to 

simulate multiphase and/or multi-component flows in complex systems, such as in porous 

media of complex micro-pore structures encountered fuel cell (battery) realms. 
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