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1. Introduction   

The aim of medical imaging is an unerring diagnosis of diseases. Up to now several well 

established imaging modalities like e.g. computed tomography (CT), magnetic resonance 

tomography (MRT), single photon emission computed tomography (SPECT), positron 

emission tomography (PET) or ultrasound imaging (US) are known. Each imaging modality 

exhibits advantages and shortcomings. Computed tomography images the absorption of X-

ray quanta and is suitable for imaging bone structures, brain imaging, angiography 

(imaging of blood vessels) but involves ionising X-rays. The contrast mechanism in MRT is 

the relaxation time of excited protons and therefore this method images soft tissue and 

vessels (using a contrast agent with the drawback that it can trigger an allergic reaction of 

the human body) best. But MRT is an expensive technology; the huge magnetic field is not 

easy to shield and disqualifies some patients with old models of cardiac pacemakers and 

other metallic implants. A new imaging modality called magnetic particle imaging (MPI) - 

which is just topic of research – uses also high magnetic fields for imaging. In this case the 

fields generated by magnetic nanoparticles are imaged. Nuclear techniques like SPECT or 

PET involve a radionuclide for imaging functional processes like the metabolic rate - which 

is for instance higher in cancerous tissue than in healthy organs. The radionuclide is 

attached to a specific molecule and distributed in the body during the blood flow. The 

radioactive decay measured by adequate detectors shows the spatial distribution of the 

incorporated radioisotope which is higher in cancerous tissue compared to healthy tissue. 

Although these are important imaging modalities for cancer screening the radioactive 

substances which are incorporated in the body are one drawback apart from the high costs 

per examination. Nuclear imaging techniques only image functional processes but no 

anatomical structures for which reason other complimentary techniques (e.g. CT) are 

necessary. Ultrasound imaging displays the backscattering of ultrasonic waves on a 

boundary layer between different tissues or organs. Although US is a cheap and safe 

imaging modality, its contrast mechanism is only related to changes in acoustic properties. 

Since cancer arises from neoplastic cells, the properties of the cancer and the surrounding 

tissue are almost identical in terms of acoustic contrast during the first stages of cancer 
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development. So there is no distinct boundary and therefore imaging contrast is low. Only 

at a progressed, but often too late stage the tumor can be imaged by US. To conclude, these 

contrast mechanisms and imaging modalities show the requirement for an additional 

imaging technique, since cancer screening and other applications are not satisfactorily 

covered by the established techniques.  

Breast cancer screening is an important topic as many surveys document. Up to now X-ray 
mammography is the gold standard in breast imaging although several false-positive (there 
seems to be a cancerous lesion while in fact there isn’t any cancer) and false-negative (an 
existing cancer is not detected) findings happen (Xu & Wang, 2006). Investigation of new 
imaging modalities using alternative contrast mechanisms is motivated by the potential of 
earlier diagnosis and reduced invasiveness. Recently several optical methods have been 
further developed, e.g. diffuse optical imaging (DOI) with the advantage of using non-
ionizing light, but with the drawback of low spatial resolution due to strong optical 
scattering in tissue. Generally, all pure optical imaging techniques have limited spatial 
resolution at depths of a few millimetres (Boas, 2011). Since new medical imaging 
techniques for applications like early breast cancer detection need high spatial resolution, 
further ideas have to be developed. A new promising imaging modality that addresses the 
problems/needs mentioned above is photoacoustic imaging.  
Photoacoustic imaging shows promise to overcome the challenge of imaging with high 
contrast – as known from pure optical imaging methods - and high spatial resolution in 
deeper tissue layers. Although the principle of photoacoustics was investigated in 1880 by 
Alexander Graham Bell (Bell, 1880), the technology to use optically generated acoustic 
waves for imaging became possible only with the introduction of short laser pulses with 
duration in the range of picoseconds to nanoseconds.  Photoacoustic imaging uses short 
pulses of electromagnetic energy, such as short laser pulses, to illuminate the sample/tissue. 
The imaging modality is therefore different from that described in early publications about 
photoacoustics (Rosencwaig & Busse, 1980; Wong et al., 1979), where thermal waves 
generated by modulated electromagnetic radiation at relatively low frequencies interact 
with features of a sample.   
In photoacoustic tomography the excitation beam is expanded to illuminate the whole 

sample at once. Best imaging quality is achieved when the excitation is as homogeneous as 

possible, which means an illumination from all sides around the sample/tissue is best 

suited. Depending on the wavelength the electromagnetic wave penetrates the 

sample/tissue in the range from several micrometers to a few centimetres (Xu & Wang, 

2006). Inside the sample/tissue the electromagnetic energy is absorbed according to the 

local electromagnetic absorption properties, causing local heating in the range of millikelvin. 

This quantity is called specific absorption rate (SAR) [W/kg]. Due to this absorption 

thermoelastic expansion occurs, which launches broadband ultrasonic waves – the 

photoacoustic signal. Thus photoacoustic imaging is based on the conversion of the 

absorbed light into ultrasound waves and permits to image optical contrast with ultrasonic 

resolution. Photoacoustic signals contain frequencies in the range from several kilohertz up 

to several megahertz depending on the size of the objects: the smaller the structures the 

higher the frequencies. Short laser pulses absorbed in a semitransparent sample/tissue 

generate an initial pressure distribution  

    0p W r r  (1) 

www.intechopen.com



 
Integrating Detectors for Photoacoustic Imaging 

 

401 

proportional to the volumetric density  W r  of the locally absorbed electromagnetic energy 

and the Grüneisenparameter  . Efficient generation of photoacoustic signals is only 

possible if the acoustic confinement and the thermal confinement are fulfilled (Xu & Wang, 

2006). The former requires that the heating time (i.e. the pulse duration) of a certain 

absorbing object should be shorter than the time an acoustic wave needs to escape from that 

object. Thermal confinement is easier met, because it requires the heating time to be shorter 

than the characteristic time of, the relatively slow, heat diffusion from the absorbing object.  
The excited photoacoustic signals that carry information about the optical absorption of the 

tissue sample can be detected outside the object either by conventional piezoelectric 

transducers (Xu & Wang, 2006), novel detectors like optical point detectors (Zhang et al., 

2009; Berer et al., 2010) or integrating detectors which are described in detail in section 2. 

Collecting signals from a sufficient number of different positions around the sample allows 

tomographic image reconstruction in two and three dimensions. In section 3 the 

mathematics of integrating detectors is explained and principle ideas of image 

reconstruction are presented.  

Many biological and medical applications arise from the advantage of photoacoustic 
techniques to provide optical contrast measured at ultrasonic resolution. Because of the high 
optical contrast between haemoglobin in the blood and the surrounding tissue, it can be 
used to visualize single blood vessels as well as the blood distribution in whole organs. The 
formation of new blood vessels (angiogenesis) can be an indication for cancer formation – 
hence imaging of angiogenesis is an important diagnostic method and could be done by 
photoacoustics. But photoacoustic imaging also shows promise for a number of other 
possible applications. For example brain imaging through an intact skull of a rhesus monkey 
was done by Xu et al. (Xu & Wang IEEE, 2006). Another group showed functional and 
structural imaging of a rat’s cortex using photoacoustic tomography (Wang et al., 2003). 
Especially in preclinical and clinical studies non-invasive in-vivo methods are of interest. 
Small animal imaging is integral to a variety of preclinical imaging applications with 
researchers monitoring changes in organs and tissues, for example in response to changed 
physiological or environmental influences. Researchers want to see how an organ is 
working inside the body. Ex-vivo analysis isolates the organs, while in-vivo imaging, of 
course, provides a much better picture of what is happening inside the body. Photoacoustic 
tomography (using a small animal imager) could therefore provide solutions for such 
research topics (Boas, 2011). In section 4 first biological and medical experiments done with 
different types of integrating line detectors are presented, including images of insects (ant, 
flea) and an ex-vivo mouse model with myocardial infarction. 

2. Integrating line detectors 

For medical applications fast imaging techniques are necessary – real time imaging is the 
ultimate goal. Therefore many detectors have to be arranged around the sample to collect 
data simultaneously. By using many finite size conventional piezo elements it is possible to 
obtain a closed detection surface around the sample with the drawback of missing space for 
a homogeneous illumination from all sides. One possible approach to overcome this 
drawback was presented by Buehler et al (Buehler et al. 2010) were a bundle of glass fibers 
between the detectors was used. The detector size influences the achievable spatial 
resolution: the smaller the detecting element the better is the resolution. Due to physical 
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limitations it is not possible to miniaturize detectors arbitrary also the signal to noise ratio 
(SNR) gets worse for a smaller detector volume.  

Because of these reasons new concepts for detectors were developed and investigated. 

Haltmeier et al. (Haltmeier et al., 2004) and Burgholzer et al. (Burgholzer et al, 2005) 

introduced integrating area and line detectors. Their size is at least 8 D  larger than the 

imaged object, whereas D  is the diameter of a circle enclosing the sample and tangentialy 

touching the line detector. This way one can overcome the problem of miniaturizing the 

detector, which can be more easily done with optical approaches compared to piezo 

detectors. Moreover, integrating line detectors can be based on laser beams or optical fibers 

(as described in section 2.1) and therefore these detectors are no barrier for the illumination. 

The excitation laser beam can cross the detector without any disturbance.  
An integrating detector integrates the pressure along two axes (area detector) or at least 
along one axis (line detector). An integrating area detector can be fabricated using a 
piezoelectrical film, e.g. made of PVDF (polyvinylidene fluoride), which offers better 
broadband sensitivity compared to the conventional piezo elements. Burgholzer et al. 
(Burgholzer et al., 2005) presented first measurements using a PVDF film integrating area 
detector. Unfortunately there are some drawbacks using PVDF. The high capacity in 
combination with the resistance of the electric circuit operates like a high pass filter and 
important frequencies get lost. In general illumination through PVDF films is also not 
possible although Nierderhauser et al. (Niederhauser et al., 2005) presented a transparent 
detector made of indium tin oxide (ITO). For an exact reconstruction one has to move the 
large area detector tangentially on the surface of a sphere enclosing the sample to collect 
data from all sides. Moving the detector this way is mechanically challenging. Dividing an 
integrating area detector into many integrating line detectors simplifies the movement of the 
detector and thus the setup. If many integrating line detectors are arranged in a circle 
around the sample only one rotation axis is needed as depicted in figure 1.   
 

 

Fig. 1. Integrating line detectors arranged in a circle around the sample. In this mechanically 
simple setup only one rotation axis for three dimensional imaging is needed.  
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Such an integrating line detector integrates the pressure along one dimension – i.e. along a 
line. Therefore it measures the integral of a cylinder with the radius c t  where c  is the 

speed of sound and t  is the time of flight. As described mathematically in section 3 this 

integrating behaviour results in a projection along the direction of the line detector. From a 
set of data acquired with line detectors arranged around the sample, e.g. in a circle (see 
figure 1) a projection image is obtained, which is analog to images taken with standard X-
ray mammography. For three dimensional imaging one has to rotate the sample (or the 
array of line detectors) to collect projection images of different angles. A subsequent inverse 
Radon transform reconstructs three dimensional images as explained in section 3. Some 
approaches of the implementation of optically integrating line detectors are presented in the 
following section.       

2.1 Implementation of integrating line detectors 

Since 2004 when Haltmeier et al. (Haltmeier et al., 2004) introduced the idea of integrating 
detectors several approaches of integrating line detectors have been investigated. A stripe of 
PVDF film was used as integrating line detector with some of the drawbacks mentioned 
before for piezoelectric sensors. As an alternative the use of optical interferometers as line 
detector has been proposed. In this approach a laser beam (or an optical fiber which guides 
a laser beam) being part of an interferometer is the sensitive element. The interferometer 
measures variations of the refractive index causing a variation of the change of the optical 
path length induced by the acoustic pressure (elasto-optic effect) which results in a change 
of the light intensity at the interferometer output. This section will give an overview about 
the implementation of different approaches of interferometric line detectors. The sensitive 
part of the interferometer – either the laser beam itself or the light guiding optical fiber – is 
immersed in a tank filled with water which operates as acoustic coupling medium for the 
wave propagation from the sample surface to the detector.   

2.1.1 Free-beam integrating line detectors 

Free-beam Mach-Zehnder interferometer 

The simplest type of an optically integrating line detector is the Mach-Zehnder 

interferometer (MZI), which is a two-beam interferometer. Paltauf et al. implemented a free-

beam MZI as integrating line detector and demonstrated first photoacoustic measurements 

(Paltauf et al., 2006). The schematic setup is depicted in figure 2. A continuous wave laser 

(633nm, HeNe-Laser) is split into two beams – one acting as reference beam and the other 

one as signal beam. Next to the signal beam the sample/tissue is located. Afterwards both 

beams are recombined and they interfere at the detecting photodiode with subsequent 

amplification. For stabilisation of the operating point (i.e. at quadrature condition) a piezo-

electrically driven mirror in one path is used. Spatial resolution of an imaging setup is 

directly influenced by the size of the detector – in the case of a free-beam integrating line 

detector the diameter of the laser beam. A smaller diameter corresponds to better spatial 

resolution. By using lenses the laser beam is focused next to the sample/tissue to enhance 

spatial resolution. After the proof of principle (Paltauf et al., 2006) this kind of detector was 

further improved and the focus – and therefore the spatial resolution – was further 

enhanced. Paltauf et al. (Paltauf et al., 2009) characterized this integrating Mach-Zehnder 

line detector in detail. This characterization (shape of the signal from a point source, length 
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of the line detector, directivity, and resolution) is also valid for all acoustically integrating 

line detectors.      

 

 

Fig. 2. Experimental setup for photoacoustic tomography using a Mach-Zehnder 
interferometer as integrating line detector. BS: beam splitter, M: mirror, L: lens, PD: 
photodetector, PT: piezo transducer, BPF: band pass filter, HPF: high pass filter, FL: focusing 
lens 

Free-beam Fabry-Perot interferometer 

Another approach for enhanced signal sensitivity is the use of a Fabry-Perot interferometer, 

which is a multi beam interferometer. A continuous laser beam is reflected several times 

between two semitransparent mirrors as depicted in figure 3. The signal enhancing 

mechanism of this device can be understood in a way that the incoming pressure wave does 

not only act once on the laser beam but several times. Depending on the reflectivity of the 

mirrors the light circulation in the cavity is different which influences the sensitivity. Higher 

reflectivity results in a better sensitivity. Burgholzer et al. (Burgholzer et al., 2006) built a 

setup using a free-beam Fabry-Perot line detector as depicted in figure 3. A continuous 

 

 

Fig. 3. Schematic of the used free-beam Fabry-Perot interferometer. A laser beam is reflected 
multiple times between two semitransparent mirrors and acts as integrating line detector. 
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wave laser (532nm) was coupled into the Fabry-Perot cavity using two semitransparent 
mirrors with a reflectivity of approximately 95%. The mirrors were realized by metalizing 
two microscope slides made of glass with thin layers of silver. On the opposite side of the 
Fabry-Perot cavity the modulated laser beam was detected by a photo diode with 
subsequent electrical amplification. For operation point stabilisation a piezo-electric actuator 
moved one of the semitransparent mirrors. In this case the laser beam was not focused and 
the diameter of the laser beam was constant along the line detector.  

2.1.2 Fiber-based integrating line detectors 

Both types of free-beam interferometers can also be realized in optical fibers. In this case the 
laser is coupled into and guided through an optical fiber. In general there are two types of 
optical fibers available that are applicable as sensor: glass optical fibers (GOF) and polymer 
optical fibers (POF). Glass optical fibers are standard components in telecommunication and 
are therefore cheap and reliable. Many components beside simple patch cords, e.g. beam 
splitters, attenuators, couplers and many more are available and easy to acquire. Recently 
also polymer optical fibers are used for short distance telecommunication. Due to high 
damping at the standard telecommunication wavelengths of 1310nm and 1550nm POFs are 
only used for the last few meters in the telecommunication chain (e.g. a network within a 
building). One advantage for standard applications is the low costs of POFs. For 
photoacoustic imaging polymer optical fibers are superior for realizing a detector compared 
to glass optical fibers as is described in detail in section 5. Depending on how many modes 
(different possible paths of light) can propagate through an optical fiber one can distinguish 
between single mode fibers or multimode fibers. The smaller a core diameter of an optical 
fiber the fewer modes can propagate through the wave guide. As described above the fiber 
diameter also influences the achievable spatial resolution – thus single mode fibers (with the 
smallest outer diameter) are more convenient than multi mode fibers. Varying the types of 
interferometer (Mach-Zehnder interferometer or Fabry-Perot interferometer), the material of 
the optical fibers (glass or polymer) and the geometry of the core (single mode or multi 
mode fiber) result in various possible setups for fiber-based line detectors as described in 
the next section.  

Fiber-based Mach-Zehnder interferometer 

First, single mode glass optical fibers were used for a Mach-Zehnder setup. A laser with 
adjustable wavelength and a center wavelength of 1550nm was coupled into a single mode 
glass fiber and split into two fibers. Analog to the free-beam Mach-Zehnder interferometer, 
one is the reference path and the other one is the signal fiber. The latter is placed in a tank 
filled with water next to the sample/tissue. At the sensitive region of the interferometer all 
outer layers of the fiber were removed, leaving only the core, cladding (both made of glass) 
and the inner surrounding polymer coating. The protection layers were removed to avoid 
damping of the pressure in the material. Both fibers – the reference path and the signal path 
- were combined afterwards and the interference of the laser beams was detected by a 
photodiode and a subsequent electrical amplifier (see figure 4). For operation point 
stabilization no mirrors had to be moved. Instead the wavelength of the laser was adjusted.    
Alternatively to the single mode GOF a perfluorinated graded index polymer optical fiber 
was used as signal path (Grün et al., 2009). The rest of the setup was identical with the single 
mode GOF setup described above. By using a more sensitive polymer fiber, signal detection 
could be improved. At the used wavelength of 1550nm standard polymer optical fibers 
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exhibit huge damping. Therefore a perfluorinated fiber – where the hydrogen molecules 
responsible for the damping are replaced by fluor molecules - was used. Unfortunately such 
perfluorinated fibers were only available as graded index fibers (a special case of multi 
mode fibers) with a core diameter of 50 microns.  
 

 

Fig. 4. Glass optical fibers (GOF) were used to realize a fiber-based Mach-Zehnder 
interferometer as optical line detector for photoacoustic imaging. 

Fiber-based Fabry-Perot interferometer 

As described earlier a Fabry-Perot interferometer is, because of the multiple reflections, 
more sensitive than a MZI. Therefore also fiber-based Fabry-Perot interferometers were 
realized. In glass optical fibers semitransparent mirrors are commonly realized by fiber 
Bragg gratings (FBG). A Bragg grating is a region in the fiber with a periodically changing 
refractive index (Dutton, 1989). Writing FBGs into GOFs is a standard procedure and these 
FBGs are commercial available. However, no stable Bragg gratings, which do not degrade in 
a seasonable amount of time, are available for polymer fibers. Alternatively the end faces of 
the fibers can be metalized by thin layers of metal (e.g. silver). This, however, comes at a 
cost of light absorption in the metallic layer. Fiber Bragg gratings are non-absorbing 
structures and therefore in general better than the metalized fiber end faces. A glass optical 
Fabry-Perot detector with Bragg gratings (Burgholzer et al., 2006) is depicted in figure 5. The 
laser beam is coupled into a single mode GOF. The detecting fiber has two FBGs with a 
reflectivity of approx. 99%. The sensitive area, i.e. the area between the gratings, is uncoated 
– as described above for the fiber-based MZI detector. The photodiode and the amplifier are 
the same as used for the MZI setup. Operation point stabilization is again done by adjusting 
the wavelength of the laser. A similar setup was also realized using a perfluorinated graded 
index POF - the same used for the MZI (Grün et al, 2010 SPIE). In this case, because of 
lacking the possibility of stable Bragg gratings, the end-faces of the fiber were metalized.  
 

 

Fig. 5. Glass fiber-based Fabry-Perot line detector. Two fiber Bragg gratings (acting like 
semitransparent mirrors) form the cavity where the pressure transients are measured. 

www.intechopen.com



 
Integrating Detectors for Photoacoustic Imaging 

 

407 

After these implementations of optically integrating line detectors a brief introduction in the 
mathematics of integrating detectors is given in the next section. 

3. Mathematics of integrating detectors 

Photoacoustic imaging aims for reconstructing a three dimensional image of 
electromagnetic absorption properties from pressure data outside the object.  The 
conversion of pressure measurements into a three dimensional image requires a model that 
describes acoustic wave propagation. Mathematically, the propagation of sound waves in 
tissue is modelled as a Cauchy Problem for the wave equation with constant sound speed. 
Denoting the thermoacoustic pressure by p  it satisfies the following Cauchy problem 

    2 2, ,t p t c p t  x x         3, 0,t R  x   (2) 

   ,0p fx x           3Rx  

 ,0 0tp x         3Rx  

for the three dimensional wave equation, where x  denotes a point in a three dimensional 

space 3R  and 0t   denotes the time variable. Further, we refer to    0f C x  as the 

initial density or initial pressure of the considered Cauchy problem. 
Commonly, in photoacoustic imaging it is assumed that acoustic pressure is known 
pointwise on a surface nearby the object and several reconstruction formulas have been 
derived that assume pointwise pressure data. However, in practice, acoustic pressure is 
measured by piezoelectric transducers, which can only provide approximate pointwise 
(pointlike) measurements. For this reason, the formulas above yield images with a spatial 
resolution that is essentially limited by the size of the piezoelectric transducers (Xu et al., 
2003). The size of a piezoelectric detector is typically a square with a side length of about 
400µm.   
A first approach that tried to overcome the problem of finite aperture size of piezoelectric 

transducers has been given by M. Xu and L. Wang in (Xu et al., 2003). Therein the spatial 

blurring caused by detectors is modelled as a convolution with a point spread function of 

ultrasonic transducers and is used to improve reconstructions by deconvolution. 

A practical approach, that tries to overcome the limitations due to finite aperture size of 

detectors, was proposed by Burgholzer et al. (Burgholzer et al., 2005), where linear and 

planar integrating, or shortly, linear and planar detectors were introduced. Planar, 

respectively, linear detectors measure a quantity that is proportional to the integral of 

acoustic pressure over a planar area or a line segment.  Planar and linear detectors reduce 

the problems, caused by finite aperture size of piezoelectric transducers, because they 

approximate over a line or a plane very accurately. In the following we will describe the 

mathematical reconstruction process in the case of integrating measurement data. 

3.1 Planar detectors 

Planar detectors have been realized in experiments in (Burgholzer et al., 2005). Therein a 

planar piezoelectric film is used to approximate pressure measurements over a plane E . For 
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simplicity we will assume for the moment that  E  is the yz  plane.  Then the measurements 

collected by the plane E  are given by  

  ( ) 0, , ,planar

E

G t p y z t dydz   (3) 

where p  satisfies the wave equation. Haltmeier et al. (Haltmeier et al., 2004) derived a 

reconstruction algorithm for the measurement setup that is described and depicted in figure 6.  
 

 

Fig. 6. The measurement procedure for planar detectors:  After each measurement the object 
is rotated by a small angle increment and acoustic pressure is measured again. When the 
object has fully  turned the planar detector is rotated around the dashed vertical axis and the 
whole measurement procedure is repeated.  Once the planar detector has turned by 180 
degree the process ends.      

The reconstruction algorithm for planar detectors is based on a dimension reduction, that is 

based on the fact that the integrated pressure  

    , , ,planar

E

p x t p x y z dydz   (4) 

satisfies the one dimensional wave equation 

    2 2 2, , 0t planar x planarp x t c p x t     (5) 

     ,0 , ,planar

E

p x F x f x y z dydz    

 ,0 0t planarp x   

By D’Alembert’s formula the unique solution of the one dimensional wave equation is given by  
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       1
,

2
planarp x t F x ct F x ct     (6) 

Thus, at the time t  the planar detector E  at 0x   measures  

      1
0,

2
planar planarG t p t F ct   (7) 

where we have used that  f ct  vanishes since f  is only supported on one side of the 

detector. From the latter equation we see that a planar detector E  measures integrals of the 

original f  over planes parallel to E . Rotating the object at the detection planes as described 

in figure 6 yields the three dimensional Radon transform of the function f . Application of 

its inverse transform leads to a reconstruction of f . 

3.2 Linear detectors  

In the following we describe measurements that are collected by linear detectors as 

illustrated in figure 1. For convenience we will assume that the linear detectors are 

perpendicular to the yz  plane E . The measurements that are collected by the circular 

arranged array of lines in figure 1 are given by      

    linear

L

p y,z, t p x,y,z, t dx   (8) 

where ,z y  lie on the circle RS E  (corresponds to the circle in figure 1). Equation (8) 

satisfies the two dimensional Cauchy problem. 

    2 2, , ,t linear linearp t c p y z t  x         2, , 0,y z t R    (9) 

     linear

L

p y,z,0 F y,z f x,y,z dx              x 3R   

 , ,0 0t linearp y z     3Rx  

Unfortunately, the relation between F and the measurements linearG  is more complicated as for 

the one dimensional wave equation. However, it is possible to obtain an exact relationship 

(Haltmeier et al., 2007) between linearG  and F by means of integral transforms by  

   
    

 

1 2

linear,
2 C G

H F
J R


 




 

  (10) 

whenever   0J R   .  

In this equation H   denotes the Hankel transform of order  , C  the cosine transform,   

the frequency variable of time and ,, linearF G   are the Fourier coefficients of F  and linearG  

from their Fourier series expansion with respect to the angular variable.    
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From the latter equation F  can be computed by applying the inverse Hankel Transform.  

Accordingly F  can be computed from its Fourier series expansion if all the F  are known.   

Note that F  consists of integrals over lines that are perpendicular to the plane E . 

Furthermore, the computations above would also hold for an arbitrary plane E . Thus one 

can obtain a family of projections F   of the original function f  by rotating E  around the z  

axis. For a fixed 0z z  this family is nothing but the two dimensional Radon transform of 

the restriction of f  to the plane 0z z . Applying the inverse Radon transform in each plane 

yields f . 

4. Biological and medical experiments with integrating line detectors 

Different types of line detectors and biological samples have been used to show the 
applicability of these detectors in the field of biomedical research. Some examples are given 
in the following section. 

Free-beam Mach-Zehnder interferometer for biological applications 

The free-beam Mach-Zehnder line detector was used, among others, for imaging of a flea. 

The small insect was chosen in order to test the imaging resolution and accuracy. To 

achievean adequate spatial resolution the sensing laser beam - which is the signal path of 

the interferometer - was focused to a diameter of the beam waist of 40 µm. For fixation the 

flea was embedded in gelatine which shows good impedance matching with the 

surrounding water of the setup. For one projection image data were acquired at 90 detector 

positions arranged on a semi circle with a radius of 5 mm. 400 of such projection images  

 
 

     
 

Fig. 7. Left: Photograph of a flea embedded in gelatine. Photograph is taken in front of a 
sheet of millimeter paper. The right picture shows a maximum amplitude projection (MAP) 
of the imaged flea in the xz-plane and was reconstructed using the universal back projection 
algorithm. 
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distributed over an angle of 360° were recorded. Laser pulses with a wavelength of 502 nm 

(Nd:YAG in combination with an OPO), and 8 ns pulse duration were used to excite  

photoacoustic signals in the flea. The radiant exposure was chosen with 10mJ/cm² which is 

below the allowed maximum value for biological tissue (20mJ/cm²). 

Looking at the reconstructed image (figure 7) of the flea one can clearly see the shape of the 

flea and the outer structures like the trotters. Also the striped structures at the back of the 

flea can be clearly identified.    

Free-beam Mach-Zehnder interferometer for preclinical applications 

Another study using the same type of setup was done a few months later. Nuster et al. 

(Nuster et al., 2010) and Holotta et al. (Holotta et al., 2011) presented first preclinical results 

on ex-vivo mouse hearts. They achieved a resolution in the range of 100 micrometers during 

imaging ex-vivo mouse hearts. Holotta et al. (Holotta et al., 2011) visualized ischemic areas 

within mouse hearts and compared it to already established imaging modalities like CT and 

MRT. In order to induce myocardial infarction, the left anterior descending artery has been 

ligated in-vivo in wild type mice. After varying survival periods the mice were sacrificed, 

the hearts were excised and immediately transferred into a 4% formaldehyde solution for 

conservation. Afterwards the hearts were embedded into 12% Agar and provided with a 

small stick to enable mounting on a translation stage.   

Photoacoustic signals were induced by 5ns laser pulses (10Hz repetition frequency) at a 

wavelength of 750nm where best results were obtained. The radiant exposure was 

maintained below the maximum value for biological applications (20mJ/cm²). 

For data acquisition the sample was moved around the measurement beam in a 270° arc and 

turned on its own axis continuously. A total of 283 projection images were recorded and 

used for three dimensional image reconstruction as shown in figure 8.   

 
 

     
 

Fig. 8. Slices of mouse hearts - ischemic regions are marked by arrows. Left: mouse survived 
for 2 days. Middle: mouse survived for 3 days. Right: mouse survived for 4 days.  

Due to the degradation of haemoglobin, the appearance of interstitial edema and various 
reparative processes (Friedrich, 2008; Kawasuji et al., 2000) the ischemic regions in the 
photoacoustic images (marked by arrows in figure 8) are characterized by lower absorption 
compared to the surrounding healthy muscle tissue in the myocardial wall. Agar – which is 
surrounding the ex vivo mouse heart - has a high water content and is, depending on its 
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concentration, almost optically transparent. Therefore, it is hardly visible in the 
photoacoustic images shown in figure 8. 

Fiber-based Fabry-Perot interferometer for biological applications 

Grün et al. (Grün et al., 2010) presented measurements of an ant utilizing a Fabry-Perot 

interferometer made of a single mode glass fiber as depicted in figure 5. The reflectivity of 

the FBGs was 81% and the distance between the FBGs (i.e. the sensitive area) was 11,5cm. 

Data for one projection image were acquired at 200 line detector positions arranged in a 

circle (radius: 10mm) around the object. For three dimensional image reconstruction the 

sample was rotated and 25 projection images with an angle increment of 7.2 degrees were 

recorded. The ant was mounted on a nylon rod to allow rotation of the sample. In the lab 

where the tomography was carried out, unfortunately only an excitation wavelength of 

532nm was available. At this wavelength most of the absorption takes place in the outer 

layers of the ant, i.e. no signals from inside the ant were excited. Thus, only the surface of 

the ant was reconstructed. For illumination laser pulses from a frequency-doubled Nd:YAG-

Laser (532nm) with a pulse duration of 6ns and a repetition rate of 20 Hz were used. The 

pulse energy was adjusted to keep the radiant exposure below the allowed maximum value 

for biological tissue (20mJ/cm²).          

 

 

 

 

  
 

 

 

 

Fig. 9. On the left, a photograph of the ant – mounted on a nylon rod - can be seen. On the 
right a three dimensional reconstruction (using time reversal reconstruction) of the ant is 
displayed. 25 projection images, each consisting of 200 detector positions, were acquired for 
the whole tomographic image (Grün et al., 2010).  
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In figure 9 one can see the reconstruction of the photoacoustically imaged ant. The 

reconstruction image is sliced in the middle of the ant. For image reconstruction a time 

reversal algorithm was used. One can distinguish the head (caput) with one feeler, the body 

(mesosoma) with two superposed trotters and the metasoma.  

5. Discussion 

In this section some advantages and disadvantages of the different approaches of optical 
line detectors are discussed as well as general considerations about optical line detectors. 
Optical line detectors are more convenient compared with other detector types in general. 

These detectors are transparent – free-beam interferometers as well as fiber-based detectors 

– and therefore are no optical barrier for the excitation laser pulses. The sample can be 

illuminated across the transparent detectors, which would not be able using conventional 

piezo elements.  

Using free-beam interferometers as well as fiber-based detectors one overcomes the 

directivity effects of piezo detector elements and finite size plane detectors. Due to the omni 

directional sensitivity of optical line detectors they can be easily scanned around an object 

without loss of sensitivity and signal quality.      

Spatial resolution is an important issue in medical imaging. In photoacoustic imaging the 

bandwidth of the detector has influence on the spatial resolution. For smaller objects the  

emitted ultrasonic frequencies are higher. At the same time extended objects emit rather low 

frequencies. Thus it is necessary to collect the data from several kilohertz up to frequencies 

in the range of tens of megahertz to reconstruct all structures in an object. Interferometers as 

detector show a high bandwidth and are therefore appropriate for high resolution 

photoacoustic imaging.  

Another parameter that influences the spatial resolution is the diameter of the detecting 

beam in an optical line detector. Smaller diameters correspond to a better spatial 

resolution. With a free-beam Mach-Zehnder interferometer one can achieve good spatial 

resolution by focusing the beam to a small diameter. But there are physical conditions 

which cannot be overcome. Focusing the beam to a tiny diameter leads to a short focal 

depth. Objects outside of this focal range can only be imaged with worse spatial 

resolution - the high resolution is only achievable for small objects. This issue was 

described by Paltauf et al. (Paltauf et al., 2009). Fiber-based line detectors, by contrast, 

provide constant diameter along the whole fiber – and therefore constant spatial 

resolution along the whole detector. Thus fiber-based line detectors are applicable for 

imaging of bigger objects.  

Comparing the fiber Mach-Zehnder and the fiber Fabry-Perot interferometer the latter has 

several advantages in applications. Within a MZI all optical paths are sensitive. This 

means the signal path but also the reference path is sensitive to ultrasonic vibrations. 

Thus, disturbances from the environment and movements of the detector lead to 

additional noise. Only disturbances acting on both paths of the interferometer are 

compensated by the interferometer itself. By contrast, the FPI is only sensitive between the 

two mirrors, i.e. between the fiber Bragg gratings for the fiber-based approach. Therefore, 

the movement of the detector around the object and environmental influences are not that 

critical. Another advantage of the FPI is the higher sensitivity due to its multi beam 
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interference. This leads to a steeper transfer curve, which is the relation between intensity 

change at the interferometer output and the optical phase variation caused by the acoustic 

pressure.  

Operation point stabilization in free-beam interferometers can be easily done by a mirror 

mounted on a piezo actuator, which slightly changes the length of the light path. This is a 

simple and well known approach which was realized in the free-beam MZI. This operation 

point stabilization also was realized in the free-beam FPI but resulted in severe troubles. A 

piezo actuator outside the water tank was connected to one of the microscope slides (which 

was metalized and therefore acted like a semitransparent mirror). Due to the big surface of 

the microscope slide it showed resistance while moving in the water. In combination with 

the long distance (as can be seen in figure 3) between the end of the microscope slide (with 

the metalized part) and the piezo actuator this construction began to resonate and stable 

operation point stabilization was achievable only for low frequencies. Therefore, the MZI 

detector is more applicable for the free-beam approach.  

For fiber-based interferometers the operation point stabilization can be done by two 

different approaches. One possibility is to tune the wavelength of the laser for operation 

point stabilisation. A tuneable laser – where the wavelength is changed in the range of a 

view of tens of picometers - was used for the interferometers presented in this work. This 

approach works well but is also an expensive method, beside of the fact that such suitable 

tuneable lasers are only available at the telecommunication standard wavelength of 1550 

nm. For some reasons shorter wavelengths for detection are be preferable. The damping in 

the used polymer fibers is much less for shorter wavelengths in the visible. A second reason 

is the higher phase shift of the detection light at the same pressure acting on the 

interferometer. This results in higher signal amplitudes and better SNR. Another approach 

for operation point stabilization, more equivalent to the free-beam operation point 

stabilization, is changing the optical path length. This can be done by electro-optical 

modulators which change the refractive index of the fiber or by piezo elements which 

change the length of the fiber. The latter can be realized by wrapping a fiber around an 

annular piezo element which changes the diameter or by stretching the fiber with a linear 

piezo stack changing its length. By using such an operating point stabilization one is 

independent of the detection wavelength. Furthermore, this is a cheap approach. 

Another advantage of fiber-based detectors is that they offer the opportunity of arbitrarily 

shaped sensors. A line detector can be e.g. bent to an annular detector, as described for 

example by Berer et al. (Berer et al., 2009) and Grün et al. (Grün et al., 2011). This way new 

imaging opportunities arise. Only slight modifications of the detector are necessary as the 

detection concept is the same. Having biomedical applications in mind, optical line 

detectors have another advantage. Fiber-based detectors, especially those made of 

polymer, have excellent compatibility with organic material, thus giving them great 

potential for biomedical applications (Peters, 2011). This is important although the fiber-

based detector is not in direct contact with the tissue when used as line detector for 

tomography. Free-beam line detectors of course, as they exhibit no material, are of course 

also compatible for organic materials. Therefore, they are also a good solution as detector 

for biomedical imaging.  

Nuster et al. (Nuster et al, 2009) presented a comparison of the different types of optically 

integrating line detectors. At this stage the free-beam MZI was the most sensitive line 
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detector, but the potential of more sensitive fiber-based line detectors could be clearly seen. 

In this study also the higher sensitivity of a FPI compared to a MZI was shown. For this 

reason the fiber-based detectors were further developed and many different approaches 

were implemented. In general, polymer optical fibers are more sensitive than glass optical 

fibers. This has two reasons. First, due to the lower Young’s modulus of the polymer a 

pressure acting on a polymer fiber results in greater deformation compared to a glass fiber. 

As the strain-optic constants are similar the change in refractive index and thus the optical 

path length is greater and the same pressure transient generates a bigger signal in a polymer 

fiber than in a glass fiber. Second, the polymer is better impedance matched to the 

surrounding water. Thus most of the ultrasonic energy is transmitted into the fiber, while 

for glass optical fibers a large part is reflected. Using a single mode fiber, as described in 

section 2.1, results in the highest achievable spatial resolution when using fiber-based 

detectors. Summarizing these facts a single mode polymer fiber-based FPI with high finesse 

would be the most sensitive fiber-based line detector for photoacoustic imaging. 

Unfortunately at the time when the measurements, presented in section 4, were carried out 

only multimode polymer fibers were available. A first drawback of using this multimode 

fiber – in this case a graded index multimode fiber with a core diameter of 50 microns – was 

the worse spatial resolution compared with the single mode glass fiber-based detector. 

Another drawback was the multimode behaviour itself. When coupling light into the 

multimode fiber – independent of the interferometer type – always several modes are 

excited. The operation point, however, is stabilized on one of these excited modes. 

Whenever the fiber is moved - or whenever it relaxes between the points where it is attached 

to the detector holder – a different mode pattern is formed at the fibers end and the coupling 

into the successive single mode fiber changes. This results in unstable conditions for 

operation point stabilization. However, the proof of principle was shown and two 

dimensional image was demonstrated (Felbermayer et al., 2011). For time consuming three 

dimensional imaging, however, this method is up to now probably too unstable and cannot 

compete with the single mode glass fiber-based FPI. Another drawback of the used POF-FPI 

setup is related to the metalized fiber end faces instead of FBGs. Up to now it is not possible 

to write stable FBGs into polymer. For some reasons the FBGs written in POFs vanish or lose 

reflectivity after a period of days or weeks (Harbach, 2008). A FBG is a non absorbing 

structure in the fiber, the thin layers of silver, however, are absorbing structures and 

therefore reduce signal intensity. A polymer optical fiber-based Fabry-Perot line detector 

with fiber Bragg gratings acting as semitransparent mirrors seems be the goal for a future 

implementation. 

The following points are not particularly specific to the topic of integrating detectors but are 
generally important for developing photoacoustic tomography devices. They have to be also 
discussed in relation to the detectors described in this chapter. As described earlier the 
smaller an object is the higher the emitted frequencies are. Therefore, frequencies ranging 
from several kilohertz up to some tens of MHz have to be detected. Unfortunately, in 
imaging of tissue in biological and medical application the effect of frequency depending 
attenuation is rather high. Higher frequencies are more damped than lower frequencies. 
This results in the loss of information about small structures in a certain depth. Thus, it is 
necessary to choose between a high bandwidth, high-frequency detector for microscopic 
imaging with high spatial resolution in small objects (or within a superficial region of few 
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millimetres in a larger object) and a low frequency detector for tomographic imaging with 
lower spatial resolution in a bigger volume. Of course compensation of frequency 
depending attenuation improves the reconstructed image quality. But frequencies damped 
below the noise level of the detector cannot be retrieved (Bauer-Marschallinger et al., 2009; 
Burgholzer et al., 2009; Burgholzer et al., 2010).     
For image reconstruction often constant speed of sound in the whole sample is assumed. 

Obviously this is just an approximation, as in biological samples the speed of sound is 

spatially varying. For example, between bones and surrounding tissue the difference in 

sound speed is considerable – but also in different types of tissue the sound velocity is 

slightly changing. Ignoring the spatial varying sound velocity can result in blurred images 

(Muratikov, 2004; Grün et al., 2008). However, compensation of the spatially varying sound 

velocity is not trivial, as one has to know the exact velocity distribution. This can be 

obtained by another imaging modality. Another approach is compensation by iterative 

image reconstruction algorithms.   

For biological and medical imaging a short data acquisition time is sometimes crucial. Up to 

now only one optical line detector was moved around the sample – or in the case of the free-

beam line detector the sample was moved around the laser beam. To speed up imaging 

parallel data acquisition is necessary. Instead of one line detector moving around the object 

many detectors could be arranged in an array. This way the data for one projection image 

can ultimately be obtained by one laser pulse. Only the detector array, or alternatively the 

object, has to be rotated to acquire many projection images for three dimensional image 

reconstruction. Parallelisation should be easier for fiber-based line detectors than for free-

beam interferometers, although concepts for the latter one are available, such as the use of a 

CCD camera (Nuster et al., 2010).  

6. Conclusion and outlook 

Photoacoutic tomography is a new imaging method which is attractive for medicine and 

biology because it is capable to provide a three dimensional image of electromagnetic 

absorption properties of biological tissue – which is dependent of the used wavelength - 

without ionizing radiation. These properties are of considerable interest for medical 

diagnostics as they are related to the molecular composition of tissue and reveal its 

pathological condition. Furthermore photoacoustic imaging is a cheap imaging modality 

compared to well known techniques like CT or MRT. For this rather new imaging modality 

new detectors – like the presented integrating detectors - are developed. In conclusion one 

can state that the optical approach of integrating line detectors works quite well. Not only 

the proof of principle but also the applicability for biological and (pre-) clinical imaging 

using different types of optical integrating line detectors has been shown. Several 

advantages like the frequency range, the spatial resolution, or the insensitivity against 

electromagnetic disturbances from the environment justifies this development and further 

enhancements of sensitivity and spatial resolution.  

Future work will focus on parallelization of many line detectors – independent of the kind 

of optical line detector that will be further developed - to speed up this technology and 

collect all data for one projection image by only one single laser pulse. For fiber optical 

detection another enhancement would be the use of single mode polymer fibers which are 

www.intechopen.com



 
Integrating Detectors for Photoacoustic Imaging 

 

417 

much more sensitive than glass optical fibers but do not exhibit stability problems as the 

multi mode optical fibers. Therefore improved signal-to-noise ratio is expected which 

further speeds up imaging as less signal averaging is required. Because of their smaller 

dimensions single mode fibers will further increase the spatial resolution compared to the 

multimode polymer fibers in use now. Inscribing fiber Bragg gratings into polymer optical 

fibers for Fabry-Perot detectors would reduce losses, which appear when using metalized 

fiber end faces. Last but not least excitation pulse lasers with a higher repetition rate in the 

range of kilohertz also would shorten imaging time and therefore push photoacoustic 

imaging towards real-time clinical imaging.     
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of charged or neutral particles and the very wide band of electromagnetic emission (from THz up to x-rays) is

observed. The traditional phenomena of nonlinear optics as harmonic generation, self-focusing, ionization, etc,

demonstrate the drastically different dependency on the laser pulse intensity in contrast the well known rules.

This field of researches is in rapid progress now. The presented papers provide a description of recent

developments and original results obtained by authors in some specific areas of this very wide scientific field.

We hope that the Volume will be of interest for those specialized in the subject of laser-matter interactions.
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