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1. Introduction 

Acanthamoeba spp. are free-living amoebae that are ubiquitous in the environment. Most 
healthy individuals carry Acanthamoeba-reactive antibodies, suggesting constant exposure to 
amoebae. In spite of the high prevalence of the amoebae, the incidence of diseases caused by 
Acanthamoeba is very low. Non-opportunistically, Acanthamoebae can induce keratitis in 
healthy humans, but as an opportunistic pathogen, the amoebae can cause fatal encephalitis 
especially in immunocompromised individuals and treatments are often ineffective.  
Amoebic encephalitis is a life-threatening disease of the central nervous system (CNS) 
caused by free-living amoebae belonging to the genera Acanthamoeba, Balamuthia and 
Naegleria. Because they lack host-specificity, the ubiquitous amoebae can infect a wide range 
of species (Marciano-Cabral & Cabral, 2003, Schuster & Visvesvara, 2004). The diseases 
caused by Acanthamoeba spp. and Balamuthia spp. are generally termed ”granulomatous 
amoebic encephalitis” (GAE), whereas those caused by Naegleria spp. are called ‘primary 
amoebic meningioencephalitis (PAM)’(Marciano-Cabral & Cabral, 2003, Schuster & 
Visvesvara, 2004, Khan, 2006, da Rocha-Azevedo, et al., 2009). While Acanthamoebae induce 
illness mostly in immunocompromised individuals, Balamuthia spp. and Naegleria spp. can 
cause diseases in both immune-sufficient and immune-deficient individuals (Martinez & 
Visvesvara, 2001, Marciano-Cabral & Cabral, 2003, Schuster & Visvesvara, 2004, Khan, 2006, 
da Rocha-Azevedo, et al., 2009). Nevertheless, all of them can induce keratitis in healthy 
individuals, often in contact lens-wearers (Jones, et al., 1975, Martinez & Visvesvara, 1997, 
Marciano-Cabral & Cabral, 2003, da Rocha-Azevedo, et al., 2009). We recently discovered 
that A. castellanii contains mimicry sequence for immunodominant epitope of CNS myelin 
proteolipid protein (PLP), suggesting that exposure to A. castellanii can lead to the 
generation of autoimmune responses by antigenic mimicry. In this review, we discuss our 
understanding of the pathophysiology of Acanthamoeba-induced encephalitis, with a special 
emphasis on autoimmunity in mediation of the disease, and implications for therapy. 

2. Characteristics of Acanthamoeba infections 

Based on morphological characteristics, such as shape and size of amoebic cysts, and growth 
conditions, the genus Acanthamoeba was initially classified into groups I, II, and III, 
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containing 4, 11, and 5 species, respectively (De Jonckheere, 1987). Recently, reclassification 
was made to group various species into 15 genotypes (T1 to T15) based on 18S rRNA gene 
sequences, which can distinguish different genotypes showing a variation of as low as 5% 
(Gast, et al., 1996, Schuster & Visvesvara, 2004). The genotypes T1, T4, T10, and T12 
generally cause encephalitis, and A. castellanii and A. polyphaga that belong to T4 genotype 
are most frequently implicated as causes of GAE (Garate, et al., 2006). The current trend is to 
classify Acanthamoebae based on genotype rather than morphology. 

2.1 Geographical distribution 

Epidemiologically, no clear disease associations have been found with respect to race, 
gender, and geographical location, except that the disease has not been reported in Africa, 
an observation attributed mostly to lack of familiarity and diagnostic tools (Tan, et al., 1993, 
Barker, et al., 1995, Marciano-Cabral & Cabral, 2003). However, serological evidence 
suggests that Hispanics are 14.5 times less likely to carry Acanthamoeba-reactive antibodies 
than individuals of other ethnicities (Chappell, et al., 2001, Khan, 2006). A study undertaken 
to measure the seroprevalence of Acanthamoeba in different ethnic groups indicated that up 
to 90 % of healthy humans can carry Acanthamoeba antibodies. Seropositivity occurred in the 
order of Caucasians, followed by Hispanics and African Americans (Chappell, et al., 2001). 
But it is unknown whether the occurrence of amoebic encephalitis follows a similar pattern 
in the general population. 

2.2 Host distribution and susceptibility 

The amoeba has a two-stage life-cycle: trophozoites (infective and invasive) and cysts 

(dormant). The life cycle can be completed in either the environment or infected hosts 

(Chagla & Griffiths, 1974, Marciano-Cabral & Cabral, 2003). Under unfavorable conditions, 

such as extremes of pH and temperature, trophozoites become cysts that are highly resistant 

to commonly used disinfectants containing chlorine and the cysts can survive 

environmental temperatures even upto 80o C (De Jonckheere & van de Voorde, 1976, 

Khunkitti, et al., 1998, Storey, et al., 2004). Balamuthia spp. (e.g., B. mandrillaris) can cause 

GAE in a wide range of species such as horses, baboons, sheeps, dogs, and humans 

(Martinez & Visvesvara, 2001), but development of clinical disease takes months to years. 

Likewise, Acanthamoeba infections are also reported in humans including domestic and non-

domestic species such as dogs, monkeys, kangaroos and buffaloes (Schuster & Visvesvara, 

2004). Found ubiquitously, Acanthamoebae have been isolated from a variety of sources 

such as soil; drinking, natural and sea water; hospitals, eye wash stations, and dental 

irrigation systems; swimming pools; and heating and cooling ducts (Jahnes & Fullmer, 1957, 

Kingston & Warhurst, 1969, Casemore, 1977, De Jonckheere, 1991, Barbeau & Buhler, 2001, 

Marciano-Cabral & Cabral, 2003, da Rocha-Azevedo, et al., 2009) and the amoebae generally 

feed on bacteria, algae, and yeast (Bowers, 1977, Bowers & Olszewski, 1983, Marciano-

Cabral & Cabral, 2003, da Rocha-Azevedo, et al., 2009).  

Generally, GAE is regarded as a disease of immunocompromised individuals. HIV patients, 

individuals undergoing immunosuppressive and steroid therapies, and those who have 

received organ or stem cell transplants are at great risk of developing the disease (Marciano-

Cabral, et al., 2000, Seijo Martinez, et al., 2000, Marciano-Cabral & Cabral, 2003, Schuster & 

Visvesvara, 2004, Khan, 2006, da Rocha-Azevedo, et al., 2009). Other predisposing factors 

include malignancies and debilitated conditions such as diabetes, chronic alcoholism and 
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malnutrition (Martinez & Janitschke, 1985, Sell, et al., 1997, Marciano-Cabral & Cabral, 2003, 

Khan, 2006). Exacerbation of GAE lesions was reported in one patient undergoing treatment 

for cryoglobulinemia with a monoclonal antibody directed against CD20 which selectively 

depletes mature B cells (Meersseman, et al., 2007). Likewise, GAE can occur in patients with 

systemic lupus erythematosus, further emphasizing the importance of a compromised 

immune system for disease-predisposition (Koide, et al., 1998, Uschuplich, et al., 2004, Cha, 

et al., 2006). Since amoebic encephalitis is not a reportable disease, and diagnosis is often 

made postmortem, the number of cases documented in the literature does not reflect actual 

disease-incidence. One study has reported to have documented upto 500 cases of amoebic 

encephalitis worldwide (Sarica, et al., 2009). However, the recent availability of PCR-based 

detection of Acanthamoeba is greatly facilitating diagnosis (Schroeder, et al., 2001, Khan, 2006, 

da Rocha-Azevedo, et al., 2009, Maritschnegg, et al., 2011) and as a result, the number of 

cases reported in recent years show an increasing trend.  

2.3 Importance of Acanthamoeba in nosocomial infections 

Recently, it is proposed that Acanthamoebae might play a role in the increased incidence of 

nosocomial infections (Michel, et al., 1995, Marciano-Cabral & Cabral, 2003). It is well 

documented that Acanthamoebae act as natural vectors or reservoirs for a variety of 

microbes, such as Escherichia coli, Klebsiella, Bacillus spp., Mycoplasma, Legionella pneumophila, 
Mycobacterium avium, Mycobacterium leprae, Clostridium frigidicarnis, Porphyromonas gingivalis, 
Prevotella intermedia, Burkholderia pseudomallei, Afipia felis, Vibrio cholerae, Mobiluncus curtissi, 

Campylobacter spp., Helicobacter pylori, Cryptococcus neoformans, Candida spp., Coxiella burnetti, 

Chlamydia, Rickettsia, and Coxsackievirus among others (Marciano-Cabral & Cabral, 2003, 

Waldner, et al., 2004, Khan, 2006, Mattana, et al., 2006, Thomas, et al., 2009). Bacteria grown 

in Acanthamoeba show resistance to bactericides and biocides; their survival and virulence 

are enhanced; and they mechanically transport disease-producing agents to various target 

organs, thus increasing the risk of multiple infections in the affected patients (King, et al., 

1988, Barker, et al., 1995, Turner, et al., 2000, Lloyd, et al., 2001, Marciano-Cabral & Cabral, 

2003). The amoebae shed waste through vesicles of 2.1 to 6.4 µm diameter, and they can 

potentially contain pathogenic microbes. For example, A. polyphaga can release up to 20 to 

200 bacteria per vesicle and the vesicles can become aerosolized leading to their dispersal to 

wide-range of geographical locations (Rowbotham, 1980, Berk, et al., 1998).  

3. Pathogenesis 

The amoebae can gain entry into the CNS through two routes: migration via the olfactory 
neuroepithelium and/or blood (Fig. 1). Naegleria spp. tend to follow the former route. After 
penetrating the nasal mucosa, the amoebae pass through the cribriform plate and travel 
along the nerve fibers to the olfactory bulb in the cerebrum (Khan, 2007, Elsheikha & Khan). 
Alternatively, the amoebae that enter through nasal exposure go to the lungs, enter the 
blood stream, and reach the CNS possibly by disrupting the blood brain barrier (BBB). The 
hematogenous route also is a choice for amoeba that enter through the skin (Khan, 2007). 
However, the mechanism by which amoebae actually enter the CNS is not clearly 
elucidated. Although it is postulated that they enter through the cerebral capillary 
endothelium or choroid plexus, the former being the more widely accepted mechanism 
(Khan, 2003, Marciano-Cabral & Cabral, 2003, Khan, 2005b, Khan, 2006, da Rocha-Azevedo, 
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et al., 2009). These two modes of entry lead to the localization of amoebae in the cerebrum 
and cerebrospinal fluid (CSF) respectively (Elsheikha & Khan, 2010).  
 

 

Fig. 1. Proposed routes of entry of Acanthamoeba into the CNS. Under favorable conditions, 
cysts become trophozoites which are the infective stages of Acanthamoeba. Upon nasal 
exposure, trophozoites can reach CNS hematogenously via lungs or through olfactory 
neuroepithelium. The amoeba that gains entry through the skin can also reach CNS 
hematogenously. However, actual entry into the brain tissue involves crossing the BBB 
which appears to be mediated through either contact-dependant mechanisms by inducing 
apoptosis of the endothelial cells or contact-independent mechanisms via destruction of 
extracellular matrix by amoebic proteases. The micrographs of Acanthamoeba trophozoites 
and cysts were kindly provided by Dr. Francine Marciano-Cabral, Virginia Commonwealth 
University, VA, USA 

Regardless of route of entry, the amoebae have to cross the BBB, either paracellularly by 
damaging the tight junctions, or transcellularly, in which the integrity of the BBB is 
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maintained (Khan, 2003, Khan, 2006, Khan, 2007). Disruption of the BBB is thought to be 
mediated by contact-dependent or contact-independent mechanisms (Khan, 2003, Khan, 
2006, Khan, 2007). Contact-dependent mechanisms require attachment of the amoeba to the 
brain’s microvascular endothelial cells through amoebic mannose-binding protein 
(mannose-BP) causing apoptosis of the endothelial cells, a phenomenon that depends on the 
phosphatidylinositol 3-kinase signaling pathway (Sissons, et al., 2005, Khan, 2006, Khan, 
2007). In contrast, contact-independent mechanisms involve extracellular proteases secreted 
by Acanthamoeba, particularly serine proteases, and these enzymes destroy extracellular 
matrix proteins comprised of collagen (type I, III, and IV), elastin, and fibronectin (Khan, et 
al., 2000, Sissons, et al., 2005, Khan, 2007). Alternatively, infected immune cells, most 
importantly macrophages, may simply act as Trojan horses to carry the amoebae to the CNS 
(Khan, 2007). 
The pathogenicity of Acanthamoebae varies by species, depending on their inherent potential 
to tolerate temperatures, attachment to cellular surfaces, and induction of cytolysis 
(Marciano-Cabral & Cabral, 2003, Khan, 2006). The principal virulent factors are mannose-
BP, Nicotinamide adenine dinucleotide (NADH)-dehydrogenase, GDP-mannose 
pyrophosphorylase and proteasomal ATPase (Marciano-Cabral & Cabral, 2003, Han, et al., 
2006) and of these, the role of mannose-BP has been well-studied. As noted above, the 
amoebae use mannose-BP for cellular attachment, and the fact that only the infective stage-
trophozoites but not cysts upregulates mannose-BP expression suggests that, this protein is 
critical for amoebic invasion (Garate, et al., 2006). However, once the infection is established, 
microglial cells produce inflammatory cytokines, such as tumor necrosis factor (TNF)-┙, 
interleukin (IL)-6, IL-1┚ and IL-1┙ and they can contribute to tissue damage (Benedetto & 
Auriault, 2002, Benedetto, et al., 2003, Marciano-Cabral & Cabral, 2003).  

4. Immune responses to Acanthamoeba 

The role of the immune system and immune defense mechanisms in protecting against 
Acanthamoeba has not been well characterized, but protection against amoebae appears to 
involve both innate and adaptive immune responses. Amoebae are extracellular organisms 
that lack a sialic acid coat or capsule, making them vulnerable to complement-mediated 
destruction (Bowers & Korn, 1968, Korn & Olivecrona, 1971, Khan, 2005a). Conversely, 
amoebae can evade immune mechanisms by binding to a C1q component, as shown in the 
case of A. culbertsoni, and the parasite-derived serine proteases can degrade IgG and IgA 
(Toney & Marciano-Cabral, 1998, Kong, et al., 2000, Na, et al., 2002, Marciano-Cabral & 
Cabral, 2003). Neutrophils, macrophages, and microglia can destroy amoebae, and their 
amoebicidal effects are mediated in part by respiratory burst and nitric oxide under the 
influence of IL-1┚, IL-1┙, TNF-┙ and/or IFN-┛ (Ferrante, 1991a, Ferrante, 1991b, Marciano-
Cabral & Toney, 1998, Marciano-Cabral, et al., 2000, Benedetto & Auriault, 2002a, Benedetto 
& Auriault, 2002b, Dudley, et al., 2007, Khan, 2008).  
Affected patients, including healthy individuals upto 90%, carry the Acanthamoeba-reactive 
antibodies of IgM, IgG, and IgA isotypes with no significant differences between males 
(86.2%) and females (89.2%), indicating that humans are regularly exposed to Acanthamoeba 
and become sensitized with the amoebic antigens (Chappell, et al., 2001, McClellan, et al., 
2002, Schuster, 2002, Khan, 2005a, Brindley, et al., 2009, da Rocha-Azevedo, et al., 2009). It 
has been reported that T cells from healthy individuals can react to Acanthamoeba antigens 
obtained from CSF and antigen-specific T cell clones capable of producing IFN-┛ also have 
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been derived (Tanaka, et al., 1994). Likewise, peripheral blood mononuclear cells from 
rheumatoid arthritis patients shows proliferative responses to A. polyphaga (Shadidi, et al., 
2001). But the significance of these observations is not known. The fact that the individuals 
exposed to Acanthamoeba become seropositive and also carry antigen-specific IFN-┛-
secreting cells suggests that the host defenses might involve both antibody- and cell-
mediated immune responses but, this aspect requires additional investigations. 

4.1 Autoimmunity in the mediation of amoebic encephalitis  

In our efforts to identify the disease-inducing microbial mimics for CNS myelin antigens, we 

recently identified a novel epitope from A. castellanii (Fig. 2; Massilamany, et al., 2010, 

Massilamany, et al., 2011). The epitope termed, ACA 83-95 is derived from rhodanese-

related sulfur transferase of Acanthamoeba. We tested the disease-inducing ability of ACA 83-

95 in the mouse model of experimental autoimmune encephalomyelitis (EAE), which has 

been traditionally used to study the pathophysiology of multiple sclerosis (MS) in humans 

(Massilamany, et al., 2010, Massilamany, et al., 2011).  

 
 

 
 

Fig. 2. Comparison of peptide sequences. Peptide sequences of PLP 139-151 and ACA 83-95 
are compared. Identical residues are underlined. Top arrows, TCR- contact residues; bottom 
arrows, MHC-anchor residues (Massilamany, et al., 2010, Massilamany, et al., 2011) 

We verified the encephalitogenicity of mimicry epitope in both active immunization and 

adoptive transfer (AT) EAE protocols in autoimmune-prone SJL mice bearing the H-2s 

haplotype. While EAE induction by active immunization requires administration of 

peptides emulsified in complete Freund’s adjuvant (CFA), AT-EAE involves infusion of 

antigen-sensitized cells into naïve recipients (Miller & Karpus, 2007). The disease induction 

by active immunization essentially involves two phases: antigen-sensitization and effector T 

cell-expansion. On the contrary, the pathogenic potential of effector T cells is directly tested 

in AT-EAE protocol by transferring antigen-stimulated lymph node or spleen cells 

generated from previously immunized mice, thus eliminating the need to immunize naive 

recipients prior to disease induction. Figure 3a shows that SJL mice immunized with ACA 

83-95 developed clinical signs of EAE reminiscent of disease induced by the cognate peptide 

PLP 139-151 (Tuohy, et al., 1989, Massilamany, et al., 2010, Massilamany, et al., 2011). 

Verification of these results in AT-EAE protocol clearly indicated that the disease-induction 

by ACA 83-95 requires the mediation of antigen-sensitized T cells (Fig. 3b, Fig. 4; 

Massilamany, et al., 2010, Massilamany, et al., 2011). 
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Fig. 3. ACA 83-95 induces autoimmune encephalomyelitis similar to that induced by PLP 

139-151. (a) EAE induction by active immunization. SJL mice were immunized with 

peptides emulsified in CFA, and pertussis toxin was administered on day 0 and 2 

postimmunization and the mice were monitored for clinical signs of EAE and scored. (b) 

EAE induction by adoptive transfer. Short-term T cell lines were derived from mice 

immunized with the indicated peptides and viable lymphoblasts were injected into naive 

SJL mice intraperitoneally, and the mice were monitored for signs of EAE and scored 

(Massilamany, et al., 2010, Massilamany, et al., 2011). Scoring scale: 0, healthy; 1, limp tail or 

hind limb weakness, but not both; 2, limp tail and hind limb weakness; 3, partial paralysis of 

hind limbs; 4, complete paralysis of hind limbs; 5, moribund or dead (Tuohy, et al., 1989, 

Massilamany, et al., 2010, Massilamany, et al., 2011). 

4.1.1 ACA 83-95 induces the generation of cross-reactive T cells 

We adopted two approaches to prove that EAE induced with ACA 83-95 involves the 

generation of cross-reactive T cells for PLP 139-151: 1) T cell proliferation assay based on 

tritiated 3[H] thymidine incorporation and 2) major histocompatibility complex (MHC) class 

II tetramer staining. The latter assay involves creation of fluorescent dye-labeled MHC class 

II tetramers for the class II allele of SJL mice, called IAs, into which peptide sequences for 

ACA 83-95 and PLP 139-151 are covalently tethered. The use of tetramers permitted 

detection of antigen-specific cells by flow cytometry at a single cell level.  

As expected, PLP 139-151 induced dose-dependent proliferative T cell response to PLP, but 

a fraction of these cells also responded to unimmunized mimicry peptide, ACA 83-95 and 

vice versa (Fig. 5; Massilamany, et al., 2010, Massilamany, et al., 2011). Consistent with the 

proliferative responses, PLP 139-151 tetramer+ CD4+ T cells were evident in mice immunized 

with either PLP 139-151 or ACA 83-95 as predicted (Fig. 6; Massilamany, et al., 2010, 

Massilamany, et al., 2011). We verified the specificity of tetramer staining using Theiler’s 

murine encephalomyelitis virus (TMEV) 70-86 tetramers, which stained negligibly. Taken 

together, the data demonstrate that ACA 83-95 induces T cell response that can cross-react 

with PLP 139-151. 
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Fig. 4. Histological evaluation of AT-EAE induced by ACA 83-95-sensitized T lymphocytes. 
Hematoxylin and Eosin-stained sections show perivascular cuffing (arrows) in the brains 
and spinal cords of mice that received PLP 139-151 (a and b)-, ACA 83-95 (c and d)- 
sensitized T lymphocytes. Original magnification, x 400 (bar = 20 µm) (Massilamany, et al., 
2010, Massilamany, et al., 2011). 

 

Fig. 5. Cross-reactive T cell responses induced by PLP 139-151 and ACA 83-95. Lymph node 
cells from PLP 139-151- and ACA 83-95-immunized mice were stimulated with PLP 139-151, 
ACA 83-95 and NASE 101-120 (control) for two days. After pulsing with tritiated 3[H] 
thymidine, proliferative responses were measured as counts per minute 16 hours later 
(Massilamany, et al., 2010, Massilamany, et al., 2011). 
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Fig. 6. Cross-reactive T cell responses induced by PLP 139-151 and ACA 83-95 are antigen-
specific. Lymph node cells obtained from mice immunized with PLP 139-151 or ACA 83-95 
were restimulated with the corresponding peptides, and tetramer staining was performed 
using PLP 139-151, ACA 83-95 and TMEV 70-86 (control) tetramers, anti-CD4 and 7-amino-
actinomycin D (7-AAD). After acquiring the cells by flow cytometry, percentages of 
tetramer+CD4+ T cells were enumerated in the live (7-AAD-) populations (see upper right 
quadrant in each plot; (Massilamany, et al., 2010, Massilamany, et al., 2011). 

4.1.2 ACA 83-95 induces cytokine responses that favor CNS autoimmunity 

One of the hallmarks of CNS autoimmunity is the production of T helper (Th)1 and Th17 
cytokines. Although both Th1 and Th17 cells could contribute to EAE pathogenicity, it 
appears that the ratio between the two subsets of T cells determines the severity of EAE. 
Predominance of Th17 over Th1 cells exacerbates inflammation and infiltration into the CNS 
(Bettelli, et al., 2007, Stromnes, et al., 2008). Furthermore, it has been proposed that Th1 cells 
enter non-inflamed CNS tissues and initiate inflammation, then facilitate the entry of Th17 
cells (O'Connor, et al., 2008). Flow cytometrically, we verified Th1 (IL-2, and IFN-┛) and 
Th17 (IL-17A, IL-17F and IL-22) and Th2 (IL-4 and IL-10) cells, which mediate pro- and anti-
inflammatory effects respectively by intracellular staining. As expected, ACA 83-95 induces 
predominantly Th1 and Th17 cytokines similar to that induced with the cognate peptide, 
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PLP 139-151 (Fig. 7; Massilamany, et al., 2010, Massilamany, et al., 2011). Based on these data, 
we expect that animals infected with A. castellanii will show the generation of pathogenic 
PLP-reactive T cells. 
 

 

Fig. 7. ACA 83-95 from A. castellanii induces cytokines similar to that of PLP 139-151. Lymph 
node cells obtained from mice immunized with PLP 139-151, or ACA 83-95 were stimulated 
with the corresponding peptides for two days and then maintained in IL-2 medium. Viable 
lymphoblasts were harvested on day 4 and stimulated briefly with phorbol 12-myristate 13-
acetate and Ionomycin. After staining with anti-CD4 and 7-AAD, intracellular staining was 
performed using cytokine antibodies and frequencies of cytokine-secreting cells were then 
determined by flow cytometry in the live (7-AAD-) CD4 subset. Shown are the frequencies 

of cytokine-secreting cells corresponding to Th1 (IL-2 and IFN-), Th2 (IL-4 and IL-10) and 
Th17 (IL-17A, IL-17F and IL-22) subsets (Massilamany, et al., 2010, Massilamany, et al., 2011). 

4.1.3 Murine Acanthamoeba granulomatous encephalitis as a disease model of MS  

Acanthamoeba spp. can cause choriomeningitis and destructive encephalomyelitis in mice 

and monkeys (Culbertson, et al., 1958, Culbertson, et al., 1959). The mouse model is widely 

used to study the pathogenesis of GAE (Kim, et al., 1990, Janitschke, et al., 1996, Marciano-

Cabral, et al., 2001, Gornik & Kuzna-Grygiel, 2005, Khan, 2009). Intranasal inoculations of 

mice with A. castellanii produce subacute to chronic granulomatous encephalitis 

accompanied by rhinitis and pneumonitis (Martinez, et al., 1975, Kim, et al., 1990, Janitschke, 

et al., 1996, Gornik & Kuzna-Grygiel, 2005). Clinically, GAE in mice is manifested by 

respiratory distress, pneumonia, head tilt, circling, twirling, seizures, and limb paresis 

(Culbertson, et al., 1959, Culbertson, 1961, Culbertson, et al., 1966, Martinez, et al., 1975, Kim, 

et al., 1990, Janitschke, et al., 1996, Gornik & Kuzna-Grygiel, 2005). Histologically, 

infiltrations consist of microglia, histiocytes and lymphocytes around capillaries, suggestive 

of formation of foreign body granuloma (Martinez, et al., 1975, Janitschke, et al., 1996, Gornik 

& Kuzna-Grygiel, 2005). Electron microscopic studies reveal swelling and disintegration of 

dendrites, astrocytes, oligodendrocyte disruption, and disassociation of the myelin sheath 

along swollen axon cylinders (Martinez, et al., 1975). In our studies with ACA 83-95-induced 
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autoimmune encephalomyelitis, in spite of the presence of mononuclear cells (MNC), the 

dominance of plasma cells and giant cells was absent. Instead, the histologic disease 

resembled typical PLP 139-151-induced EAE (Sobel, et al., 1990, Massilamany, et al., 2010, 

Massilamany, et al., 2011), suggesting that naturally occurring GAE may involve the 

mediation of multiple factors and different cell types, which may reflect the host’s response 

to living organisms in situ. To date, there are no reports to indicate that autoimmune 

response is a component of disease pathogenesis in GAE, and our data with ACA 83-95-

induced autoimmune encephalomyelitis provide compelling evidence to test this possibility. 

This notion is further supported by the fact that humans affected with A. castellanii infection 

can never be treated successfully (Marciano-Cabral & Cabral, 2003).  

Pathogens that primarily infect the CNS can induce autoimmune responses secondarily. As 
previously discussed, A. castellanii is a pathogen of the CNS that causes granulomatous 
inflammation of the brain and spinal cord. We propose that A. castellanii can induce myelin-
reactive T cells by two mechanisms in infected mice (Fig. 8). (a) Molecular mimicry. Upon 
exposure to the parasites, the immune system recognizes parasite-derived mimic of PLP, 
generating T cells in the periphery, which then migrate into the CNS and cause inflammation. 
In support of this theory, we have demonstrated that the mimicry epitope from A. castellanii, 
 

 

Fig. 8. Proposed mechanisms for the induction of CNS autoimmunity in mice infected with 
A. castellanii. (a) Molecular mimicry. Peripherally, the immune system can recognize 
mimicry epitope of PLP, and generates cross-reactive T cells, which then migrate into the 
CNS and cause inflammation. (b) Epitope spreading. Granulomatous CNS inflammation 
induced by Acanthamoeba can lead to the release of myelin antigens and prime T cells locally 
or peripherally and the de novo generated myelin-reactive T cells can further aggravate CNS 
inflammation. Conversely, mice can remain infected and clinically normal but, cross-
reactive cells can still be generated by mimicry. 
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ACA 83-95, can induce clinical signs of autoimmune encephalomyelitis in the adjuvant 
protocol of inducing CNS autoimmunity in SJL mice (Massilamany, et al., 2010, Massilamany, 
et al., 2011). (b) Epitope spreading. A. castellanii causes granulomatous inflammation in the 
brain and spinal cord, which can lead to the local release of myelin antigens and prime T cells. 
Alternatively, the newly released myelin antigens are carried by antigen-presenting cells to the 
draining lymph nodes and prime T cells, which, in turn, migrate back into the CNS and 
further aggravate inflammation. Similar events have been earlier demonstrated in the case of 
murine pathogen, TMEV (Miller, et al., 2001, Olson, et al., 2004, McMahon, et al., 2005).  
MS is a disease of the CNS characterized by inflammation and infiltration of MNC and the 
loss of myelin sheath encapsulating the axons (Noseworthy, et al., 2000, Sospedra & Martin, 
2005). Autoimmune responses to myelin antigens have been implicated in MS pathogenesis 
and this requires the mediation of autoreactive T cells and B cells, but the mechanisms by 
which the disease is initiated are unknown (Kerlero de Rosbo, et al., 1993, Sospedra & 
Martin, 2005). Although genetic susceptibility is a major predisposing factor, exposure to 
environmental microbes such as viruses and bacteria have been suspected in the initiation of 
autoimmune diseases. In support of the latter, exacerbations of MS attacks or temporal 
alterations in the disease course have been linked primarily to exposure to virus infections 
such as Epstein Barr virus and Human Herpes virus-6, but the clinical evidence remains 
elusive (Cirone, et al., 2002, Pohl, 2009, Salvetti, et al., 2009). The current dogma is that MS 
does not appear to follow Koch’s postulates in that no single organism appears to trigger it; 
rather, exposure to multiple organisms might be critical for MS predisposition (Sospedra & 
Martin, 2005). The fact that ACA contains mimicry epitope for PLP, one of the candidate 
autoantigens implicated in MS pathogenesis, suggests that ACA infection can potentially 
lead to the generation of PLP reactive T cells and predispose to MS.  

5. Clinical signs and histology 

Acanthamoeba-induced encephalitis is often overlooked (Schuster & Visvesvara, 2004, da 
Rocha-Azevedo, et al., 2009), partly due to the rarity of Acanthamoeba infections and a lack of 
familiarity and diagnostic tools. However, when diagnosed, it is difficult to differentiate 
PAM from GAE because symptoms overlap between each other (da Rocha-Azevedo, et al., 
2009). PAM is initially manifested by severe headache, rhinitis, nausea, and fever followed 
by anosmia, seizures, stiff neck, diplopia, and coma, finally leading to death (Marciano-
Cabral & Cabral, 2003, da Rocha-Azevedo, et al., 2009). Histologically, brains contain 
inflammatory infiltrates comprised of neutrophils, eosinophils, and macrophages (Martinez 
& Janitschke, 1985, Marciano-Cabral & Cabral, 2003, da Rocha-Azevedo, et al., 2009). In 
contrast, symptoms of GAE are diverse in that a wide range of clinical manifestations can be 
expected. These include headache, rise in intracranial pressure, abnormal gait or ataxia, 
diplopia, stiff neck, confusion, behavioral changes, hemiparesis, cranial nerve palsies, 
seizures, photophobia, and anorexia; more than 90% of individuals affected with GAE tend 
to die (Marciano-Cabral & Cabral, 2003, Khan, 2006). The histologic disease is characterized 
by hemorrhagic or necrotic encephalitis, edema of the brain accompanied by the presence of 
focal lesions around the cerebrum, cerebellum, and corpus callosum. Cellular infiltrations in 
histological sections include multinucleated giant cells, plasma cells, polymorphonuclear 
cells and mononuclear cells (Martinez & Visvesvara, 1997, da Rocha-Azevedo, et al., 2009) 
and HIV patients can develop granulomas within the CNS possibly due to low CD4 T cell 
count (Marciano-Cabral & Cabral, 2003, Cha, et al., 2006, Khan, 2006). In some patients, 
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organs other than brain such as skin, liver, lungs, kidneys, prostate glands, lymph nodes, 
pancreas, and adrenals can also be affected.  

6. Diagnosis 

Acanthamoeba-induced encephalitis is not routinely suspected, the disease can be 
misdiagnosed as neurocysticercosis; viral, rickettsial, fungal, and bacterial meningitis; 
toxoplasmosis; and brain tumors (Schuster & Visvesvara, 2004, khan, 2005b). Serologically, 
detection of Acanthamoeba-reactive antibodies gives an indication of amoebic exposure at a 
population level (Cursons, et al., 1980, Cerva, 1989, Khan, 2006). However, definitive 
diagnosis requires the demonstration of amoebic trophozoites or cysts in biological samples. 
Examination of wet-mount smears prepared from CSF or methanol-fixed smears stained 
with Giemsa-Wright permit identification of amoebic trophozoites. While evaluating wet-
mount smears, careful consideration should be given to differentiate trophozoites from 
macrophages because of their close morphological resemblance to each other (Cleland, et al., 
1982, Lalitha, et al., 1985, Singhal, et al., 2001). In addition to CSF, trophozoites can also be 
detected in bronchoalveolar lavage fluid from patients with respiratory distress (Newsome, 
et al., 1992). Detection of trophozoites in fixed tissue sections prepared from brains is usually 
performed using hematoxylin and eosin and trichrome stainings (Newsome, et al., 1992). In 
contrast, amoebic cysts in brain tissues are detected using calcofluor white staining (Silvany, 
et al., 1987). Alternatively, periodic acid-Schiff’s stain and Gomori-methenamine silver stain 
can be used to stain tissue sections in which, cysts appear red whereas tissues appear black 
in color (Marciano-Cabral & Cabral, 2003).  
Other specialized techniques employed to demonstrate the presence of amoeba are 
transmission electron microscopy and immunofluorescent or immunoperoxidase staining 
(Willaert & Stevens, 1976, Stevens, et al., 1977, McKellar, et al., 2006, Guarner, et al., 2007). 
However, because most Acanthamoeba spp. are antigenically related, the use of 
immunohistochemical techniques does not permit identification by species. To identify 
structural brain lesions, computed tomography and magnetic resonance imaging are widely 
used (Sell, et al., 1997, Kidney & Kim, 1998). These evaluations can reveal changes such as 
multifocal areas of signal intensities or ring-like lesions or low-density areas indicating 
occupying mass of tumor or abscess (Martinez, et al., 1977, Martinez, et al., 1980, Ofori-
Kwakye, et al., 1986, Matson, et al., 1988, khan, 2005b, Khan, 2008, da Rocha-Azevedo, et al., 
2009). The regions of the brain that are usually affected are midbrain, basal areas of the 
temporal and occipital lobes, and the posterior fossa (Seijo Martinez, et al., 2000, Marciano-
Cabral & Cabral, 2003, Khan, 2006). Molecularly, PCR amplification of the 18S rDNA using 
sequence-specific primers is currently used as a quick and reliable method of diagnosis 
(Schroeder, et al., 2001, Khan, 2006, da Rocha-Azevedo, et al., 2009, Maritschnegg, et al., 
2011). Hematologically, pleocytosis accompanied by lymphocytosis, neutrophilia, 
hypoglycemia and hyperprotenemia may be seen in patients with GAE (Marciano-Cabral & 
Cabral, 2003). In addition, Acanthamoeba can be isolated from clinical specimens by plating 
the samples on non-nutrient agar plates coated with E. coli or Enterobacter aerogenes 
(Schuster, 2002, Khan, 2006, da Rocha-Azevedo, et al., 2009).  

7. Treatment 

The low degree of therapeutic success in treating amoebic encephalitis is due in part to the 

fact that immunocompromised individuals are most often affected, and the disease outcome 
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thus depends on successful treatment of underlying causes. Furthermore, Acanthamoeba 

infections tend to escape early diagnosis due to the lack of both awareness and diagnostic 

tools. Nonetheless, if diagnosed early, the disease can be treated successfully (Marciano-

Cabral & Cabral, 2003, Schuster & Visvesvara, 2004, Khan, 2006, Khan, 2008, Matin, et al., 

2008, Elsheikha & Khan, 2010, Akpek, et al., 2011). Various treatment regimens have been 

reported in the literature, but there are no reports to indicate that Acanthamoeba infections 

can be treated with a single drug; rather, a combination of multiple drugs is used (Table 1). 

These include ketoconazole, fluconazole, flucytosine, sulfa-trimethoprim, amphotericin B, 

pentamidine isothionate, azithromycin, itraconazole and rifampicin. Currently, to enhance 

BBB-permeability, soluble analogs of the most effective drugs are being tested (Khan, 2006). 

Likewise, experimental attempts also are being made to use non-viral plasmid DNAs 

encoding anti-sense RNA sequences for virulence factors of amoebae which can block their 

entry into the CNS (Elsheikha & Khan, 2010). Based on our data (Massilamany, et al., 2010, 

Massilamany, et al., 2011), we propose that amoebic encephalitis might involve mediation of 

autoimmunity, but this hypothesis needs to be tested experimentally in animal models and 

clinically in GAE patients. Proving that autoimmunity is a component of GAE provides a 

basis for exploring treatment modalities directed toward autoimmunity in patient subjects.  

 
Species Disease Drugs Outcome Reference 

Acanthamoeba spp. GAE Pyrimethamine and 
fluconazole 

Died Gardner, et al., 1991 

Acanthamoeba spp. GAE Pyrimethamine and 
sulfadiazine 

Died Gordon, et al., 1992 

Acanthamoeba spp. Cutaneous 
amoebiasis 
and GAE  

 
Fluorocytosine and 
pentamidine  

 
Died 

 
Murakawa, et al., 1995 

Acanthamoeba spp. GAE Sulfadiazine, pyrimethamine, 
fluconazole and sulfadiazine 

Survived Seijo Martinez, et al., 2000 

Acanthamoeba T4 GAE Fluconazole, rifampicin,  
Metronidazole and 
sulfadiazine 

Survived Petry, et al., 2006 

Acanthamoeba T1 GAE Fluoxetine, pantoprazole and  
prednisolone. 

Died Cha, et al., 2006 

Acanthamoeba spp. GAE Ketoconazole, trimethoprim, 
sulfamethoxazole, rifampicin  
and cotrimoxazole 

 
Survived 

 
Gupta, et al., 2008 

Acanthamoeba T2 GAE Miltefosine and amikacin. Survived Walochnik, et al., 2008 

Acanthamoeba spp. GAE Miltefosine and amikacin Survived Aichelburg, et al., 2008 

Acanthamoeba spp. GAE Rifampicin and co-trimoxazole Survived Fung, et al., 2008 

Acanthamoeba 
lenticulata T3 

GAE Meropenem, linezolid,  
moxifloxacin and fluconazole 

Survived Lackner, et al., 2010 

Acanthamoeba 
group II T4 

GAE Trimethoprim-
sulfamethoxazole, fluconazole, 
pentamidine and miltefosine  

 
Survived 

 
Maritschnegg, et al., 2011 

Table 1. Drugs used in the treatment of Acanthamoeba infections 
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8. Conclusion 

In spite of high prevalence, the diseases induced by Acanthamoebae are extremely low. 
Although amoebic encephalitis is more commonly seen in immunocompromised 
individuals, the disease can occur in immunocompetent healthy individuals (Marciano-
Cabral & Cabral, 2003, Schuster & Visvesvara, 2004). Our discovery that A. castellanii 
contains mimicry epitope for PLP indicates that exposure to Acanthamoeba can accompany 
autoimmunity through the generation of self-reactive T cells. Acanthamoebae are free-living 
organisms that are ubiquitous in the environment, leading to constant exposure. It is 
possible that such coexistence can help microbes acquire some of the genetic elements of 
their hosts as an evasive mechanism for survival. Alternatively, exposure to such organisms 
could lead to a break in self-tolerance as a result of antigenic mimicry in genetically 
susceptible individuals who potentially carry pathogenic autoreactive T cell and B cell 
repertoires. Further research is required to address these hypotheses, proving which creates 
opportunities to also target therapy toward autoimmunity in patients affected with GAE.  
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