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1. Introduction 

Skin cancer is the most common type of cancer affecting Caucasian populations. It has a 
very high rate of incidence, exceeding the sum of all other cancers combined (Simonette et 
al., 2009). There are three forms of skin tumors that stand out: cutaneous malignant 
melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC).  
BCC and SCC are classified as nonmelanoma skin cancers, with BCC being the most 
common and constituting 75% of cases (Anthony, 2000). The incidence of nonmelanoma 
skin cancers has steadily increased, making them a major challenge in terms of 
management of public health. Moreover, these cancers can have a huge impact on health 
care costs. In the United States, it is estimated that there are approximately 3 to 4 million 
cases annually of BCC and approximately 100,000 cases of SCC. Nonmelanoma skin 
cancers are not fatal but can destroy facial sensory organs such as the nose, ear and lips 
(Alam et al., 2011). Therefore, these lesions should preferably be treated using 
noninvasive techniques.  
In contrast, melanoma skin cancers are an aggressive type that can metastasize and cause 
death. These cancers originate from melanocytes, which are pigment-producing cells, and 
are associated with chronic exposure to sunlight (Einspahr et al., 2002). Because melanoma 
has a much higher mortality rate than nonmelanoma skin cancers, different treatments, 
including invasive interventions, are required (Martinez & Otley, 2001). 
There are some well-established treatments for nonmelanoma skin cancer, such as curettage, 
surgery, cryotherapy and chemotherapy. However, these conventional treatments lead to 
severe inflammation, pain and unappealing scars (Lopez et al., 2004). Treatments for 
melanoma, in turn, are primarily surgical because these tumors can be resistant to traditional 
chemo- and radiotherapies (Davids & Kleeman, 2010). Nonsurgical treatments for melanomas 
are limited to adjuvant therapies, such as immunotherapy, biochemotherapy, gene therapy 
and photodynamic therapy (Martinez & Otley, 2001; Davids & Kleeman, 2010). 
To increase patient compliance and to reduce surgical costs and undesirable scars, 
particularly in cases where the cancer has spread over large areas of the body, the topical 
administration of anticancer drugs has been investigated. The topical administration of 
anticancer drugs is an interesting alternative for reducing side effects and for increasing 
drug targeting and therapeutic benefits. The major challenge of this kind of treatment is to 
increase penetration of the antineoplastic tumor drug in sufficient levels to kill tumor 
cells. 
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Several techniques and formulations have therefore been developed to successfully 
overcome skin barriers and to reach skin malignancies by favoring drug penetration into the 
deep layers of the epidermis. The use of chemical penetration enhancers is the simplest 
strategy, causing temporary and reversible disruption of the stratum corneum bilayers and 
leading to increased anticancer drug penetration into the tumor. Moreover, great interest 
has been shown in nanoparticle delivery systems that can protect anticancer drugs against 
degradation and, combined with physical methods, significantly increase the tumor 
penetration of the drug.  
This chapter will briefly discuss skin anatomy, the primary barriers to topical anticancer 

drugs’ skin penetration, and the most studied penetration enhancer methods for topical skin 

cancer treatment. The aim of this chapter is to provide a basic understanding and 

description of the strategies that can be used to overcome the skin barrier, such as 

liposomes, polymeric and lipid nanoparticles, iontophoresis and electroporation. Each of 

these modalities will be discussed in the context of their application for promoting and 

targeting the delivery of skin tumor drugs following topical, noninvasive, administration. 

2. The skin as a barrier against anticancer drug penetration 

The skin is the largest organ of the body and is composed of three primary layers: the 

epidermis, dermis and hypodermis. The epidermis plays an important role in the 

penetration of substances into the skin. It is the outer avascular layer of the skin, primarily 

composed of keratinocytes. Because of cellular differentiation, the epidermis is divided 

into different layers, which are formed by the division of basal cells from the inner part of 

the body toward the surface (Figure 1). Hence, basal cells undergo progressive 

maturation, giving rise to the spinous layer or squamous cells. These cells also 

differentiate, forming the granular layer and finally the stratum corneum, which is the 

outermost layer of the skin.  

The stratum corneum is the major barrier for the penetration of substances into the skin 

because of its heterogeneous composition and packed organization of corneocytes and the 

intracellular lipid matrix. The corneocytes are flat anucleated squamous cells packed 

primarily with keratin filaments and surrounded by a lipid matrix composed primarily of 

ceramides, cholesterol, and free fatty acids (Bouwstra et al., 2003).  

Two other cell types that are important in the context of skin tumor composition, 

melanocytes and Langerhans, are embedded between the basal keratinocytes. Melanocytes 

are dendritic cells capable of melanin production, and Langerhans cells are antigen-

presenting cells that are responsible for the immune response in the skin (McGrath & Uitto, 

2010) (Figure 1).  

Because the skin is a heterogeneous organ, this wide variety of cell types can generate 

several types of benign and malignant tumors. For instance, SCC and BCC originate from 

keratinocytes. The development of these tumors is associated with many factors, but most of 

these cancers are related to excess ultraviolet radiation (UV) exposure. Following sun 

exposure-induced damage, the stratum corneum of tumor lesions usually presents with 

hyperkeratinization (Neel & Sober et al., 2006), a factor known to hamper drug penetration. 

Topical anticancer administration therefore requires a well-designed formulation to increase 

drug penetration into the thicker stratum corneum and to favor drug penetration into the 

deep skin layers, where tumors are usually located. 
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Fig. 1. Schematic representation of the epidermis/dermis and epidermis layers consisting of 
basal cells, squamous cells, the granular layer and the stratum corneum.  

For example, the most superficial malignancy that develops in the epidermis is actinic 
keratosis, so-named because of the exaggerated production of keratin in the stratum 
corneum, which causes it to become thicker (Figure 2A and 2B). These lesions can develop 
into tumors, usually SCCs, which may be nodular (invasive) and hyperkeratotic (Figure 2C). 
For topical treatment of both actinic keratosis and SCC, anticancer drugs should penetrate 
the stratum corneum to reach the tumor cells.  
 

 

Fig. 2. Schematic representation of the skin layers, especially the stratum corneum, of (A) 
Normal skin, (B) Actinic Keratosis: (1) hyperkeratosis, (2) atypia of cells, (3) Langerhans 
cells; (C) Invasive SCC: (1) hyperkeratosis and (2) squamous cells with atypical nuclei 
(enlarged and hyperchromatic).  
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Another example for the necessity of drug penetration through the stratum corneum is the 
use of immunoregulator drugs for the topical treatment of actinic keratosis. To be effective, 
these drugs need to act in the Langerhans cells to induce the release of proinflammatory 
cytokines, which stimulate an immune response. To reach Langerhans cells, anticancer 
drugs must cross the hyperkeratotic stratum corneum (Figure 2B). 
Within this context, it is important to understand the mechanisms of drug penetration 
through the stratum corneum to determine methods or strategies that can increase drug 
penetration such that the drug reaches sufficient concentrations to kill tumor cells.  

2.1 Drug penetration in the skin  

Over the past two decades, significant attention has been paid to understanding the 
mechanisms by which drugs penetrate the skin. It is well known that substances usually 
penetrate the skin by three different routes: through the stratum corneum between the 
corneocytes (intercellular route); through these cells and the intervening lipids (intracellular 
route); or through the skin appendages, such as hair follicles and sweat glands (Moser et al., 
2001). Molecules with adequate solubility in water and oil, with a log of oil/water partition 
coefficients between 1 and 3 (Hadgraft & Lane, 2005) and a molecular weight lower than 0.6 
kDa (Schäfer-Korting et al., 2007; Barry, 2001), may penetrate the skin. Therefore, topical 
administration is limited to hydrophobic and low-molecular weight drugs. Because most 
anticancer drugs are hydrophilic, have low oil/water partition coefficients, high molecular 
weights and ionic characters (Souza et al., 2011), they do not easily penetrate the stratum 
corneum.  
Drug permeation through the stratum corneum can be described with Ficks’s second law 
(Williams & Barry, 2004) (Equation 1). 

 Dm Cv 

L

P
J  , (1) 

where J is the flux, Dm is the diffusion coefficient of the drug in the membrane, Cv is the 
drug concentration in the vehicle, P is the drug partition coefficient and L is the stratum 
corneum thickness.  
It can be seen in Equation I that the flux of a drug through the skin is governed by the 
diffusion coefficient of the drug in the stratum corneum, the concentration of the drug in the 
vehicle, the partition coefficient between the formulation and the stratum corneum and the 
membrane thickness. Using this equation, it is a simple matter to determine which 
parameters can be manipulated to increase drug flux through the stratum corneum. 
Formulations containing chemical penetration enhancers or the use of physical penetration 
methods, such as iontophoresis and electroporation, may alter one or more of these 
parameters to increase drug penetration in the skin. For instance, chemical enhancers can 
disrupt the stratum corneum barrier and increase the diffusion coefficient of the drug 
through the altered membranes. Alternatively, enhancers can alter the solvent nature of the 
skin and improve partitioning between the formulation and the stratum corneum. 
Nanocarriers can increase drug concentration in the vehicle and so increase drug flux. 
Physical penetration methods can modify drug penetration routes through the stratum 
corneum, making it less tortuous, facilitating drug penetration (Williams & Barry, 2004).  
In this context, several manuscripts have reported the use of anticancer drugs in 
combination with penetration-enhancing methods or nanocarriers aimed at obtaining high 
penetration of the drug through the skin for tumor elimination.  
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3. Current topical therapies for skin cancer treatment 

Current topical treatments for skin cancer include semi-solid formulations of 5-fluorouracil, 
diclofenac and imiquimod. Another topical treatment also used and approved by the US 
Food and Drug Administration (FDA) is photodynamic therapy (PDT). These therapies are 
used to treat nonmelanoma skin cancers and its precursor lesions, such as actinic keratosis. 
Several studies have discussed the preferred schedules for topical treatment to avoid tumor 
recurrence. Advantages and disadvantages of each topical treatment will be discussed to 
give a better understanding of treatment limitations and to propose different approaches 
that may improve topical skin cancer treatment. 
5-fluorouracil has been considered the topical treatment of choice for actinic keratosis since 
its approval in 1970 by the US FDA (Barrera & Herrera, 2007). It is a structural analogue of 
thyamine and inhibits the enzyme thymidylate synthetase, blocking DNA synthesis and 
preventing cell proliferation (Galiczynski & Vidimos, 2011). There are many 5-fluorouracil 
preparations, and it is available through a variety of trademarks both as creams (5%, 1% and 
0.5%) and in solution (5%, 2% or 1%) (Barrera & Herrera, 2007). This medication has some 
side effects, such as an intense local inflammatory reaction, that result in a lack of patient 
compliance. Other disadvantages are the relative long treatment period and partial 
inefficacy of the treatment in the deep layers of skin, such as in cases of hyperkeratotic 
actinic keratosis (Barrera & Herrera, 2007). These drawbacks emphasize the need for 
alternative methods or techniques to improve the skin penetration of antineoplastic drugs. 
Imiquimod is an immune response modifier that directly and indirectly interacts with the 
immune system (Perrotta et al., 2011). It was initially approved by the FDA in 1997 for 
genital and perianal wart treatment but has been used off-label for neoplastic skin 
treatments (Burns & Brown, 2005). In 2004, the FDA approved the use of imiquimod 5% 
cream for the treatment of actinic keratosis and superficial BCC in patients for whom 
surgery is not an option (Perrota et al., 2011). Still, without FDA approval, it has been 
commonly used for many other cutaneous disorders, such as cutaneous melanoma 
metastases, BCC, Bowen’s disease, SCC and lentigo maligna. Studies have revealed that 
almost all patients treated with imiquimod exhibit some degree of local inflammation at the 
application site. In FDA studies, patients presented some degree of erythema, edema, 
ulceration or erosion (Burns & Brown, 2005).  
The formulation of 3% diclofenac gel has been used for the topical treatment of actinic 
keratosis. At present, it is approved by the FDA and is used only in the US (Berrera & 
Herrera, 2007). Diclofenac is a nonsteroidal anti-inflammatory drug and has been show to 
have an antitumor effect by inhibiting arachidonic acid metabolism (Galiczynski & Vidimos, 
2011). The examined treatment schedules have been two applications daily for 60 or 90 days, 
with patients showing complete resolution of actinic keratosis lesions in 47% of cases 
(Berrera & Herreara, 2007). 
PDT is also approved by the FDA for the treatment of nonhypertrophic actinic keratosis of 
the head and scalp (Galiczynski & Vidimos, 2011). Nevertheless, it has been used off-label to 
treat various dermatoses, such as superficial and nodular BCC, SCC in situ and others 
(Galiczynski & Vidimos, 2011). PDT involves the administration of a photosensitizing drug 
or a pro-drug that is converted in a photosensitizer intracellularly (usually 5-aminolevulinic 
acid, 5-ALA). Subsequent activation by light of a specific wavelength leads to the formation 
of highly reactive singlet oxygen (1O2), destroying the cells via chemical, biological and 
physiological reactions (Araújo et al., 2010). To specifically kill tumor cells, it is therefore 
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important that the photosensitizing drug target the tumor cells at a high concentration. 
Great efforts have been made to design topical nanocarriers and techniques that can increase 
the penetration of photosensitizers into the deep skin layers (Souza et al., 2011; Araújo et al, 
2010; Gelfuso et al., 2008; Gelfuso et al., 2011) to make topical PDT more effective. 
Other clinical trials are underway. The retinoids, or vitamin A analogs, which are commonly 
used in cosmetic products, have been considered to have certain chemopreventive effects 
(Berrera & Herrera, 2007). Resiquimod, which is structurally similar to imiquimod but 10–
100 times more potent, is another new drug that modulates the immune system (Perrotta et 
al., 2011) when topically applied. Adequate formulations for both of these drugs still need to 
be designed for successful skin penetration. 
It is interesting to note that the current topical medications approved by the FDA for skin 
cancer treatment are used primarily to treat superficial skin cancers. This is due to the fact 
that some skin cancers, such as SCC, can metastasize, and topical therapy is only used for 
invasive tumors if the patient cannot receive surgical treatments. Moreover, response rates 
differ for superficial and invasive cancers. For example, Burns (2005) reported that 
imiquimod was more effective in treating superficial BCC than for nodular BCC. This is 
likely because nodular BCC occurs deep in the dermis and the drug may not reach the full 
depth of the tumor invasion.  
Again, these limitations highlight the importance of developing new formulations or 
methods that improve drug penetration of the skin for the treatment of different skin 
cancers. Several chemical/physical methods and nanocarriers have been studied with the 
aim of overcoming the above limitations of current treatments and are discussed further. 

4. Methods to improve drug skin penetration 

Different approaches have been developed to increase skin permeability, such as the use of 
chemical enhancers, the application of an electric field (e.g., iontophoresis and 
electroporation) and the use of nanocarriers, such as liposomes and polymeric and solid 
lipid nanoparticles (Figure 3). These methods have the common goal of overcoming the 
stratum corneum and targeting tumor cells. 
 

 

Fig. 3. Methods to improve drug penetration through the skin and examples of each method. 
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Figure 4 lists the percentage of articles published between 1990 and 2011 that used the most 
commonly studied nanocarriers and physical/chemical methods to increase the penetration 
of drugs into the skin. Liposomes are the most frequently studied drug delivery system for 
topical delivery. Physical penetration methods were used in 22% of the publications, 
contributing to nearly one quarter of all publications for topical drug delivery (Figure 4). In 
total, chemical and physical penetration enhancers were employed in nearly half of studies. 
The other half examined nanocarriers, specifically liposomes and nanoparticles. Other 
nanocarriers or techniques that have been used to improve topical treatments, such as 
dendrimers, microemulsions, sonophoresis, etc., were not represented in Figure 4 because 
they represent a small percentage of studies (less than 10%) when compared to the other 
systems.  
 

 

Fig. 4. Percentage of articles published between 1990 and 2011 related to skin-applied 
liposomes, nanoparticles, chemical enhancers, iontophoresis or electroporation to increase 
drug penetration (“Science direct®” database, June/2011).  

Studies have examined a variety of nanoparticles in the context of improving drug delivery 
through the skin, including solid lipids, polymeric, gold and silver. Among studies 
addressing only polymeric or solid lipid nanoparticles, there has been more focus on the 
former than the latter. This is likely because the studies related to polymeric nanoparticles 
began around the 1970s, whereas studies related to solid lipid nanoparticles began around 
the 1990s (Guimarães & Ré, 2011). However, in the last 5 years, articles related to lipid 
nanoparticles for topical applications have nearly doubled, from 145 to 279 (data available in 
the “Science Direct” database June 2011).  
It is interesting that when considering only publications related to skin cancers that use the 
strategies outlined in Figure 4, the same distribution of techniques is observed. Specifically, 
a large number of articles examine the use of liposomes for skin cancer treatment or 
prevention (33%). Nanoparticles are the second most studied system (20%), followed by 
chemical enhancers (28%), electroporation (13.5%) and iontophoresis (4.5%). These strategies 
were therefore chosen for further discussion in this chapter. 

4.1 Chemical penetration enhancers 

Penetration enhancers have been extensively used in topical formulations. These are chemicals 
that, when added to the topical formulation, generally promote drug diffusion by 1) reversibly 
disturbing the structure of the stratum corneum, 2) increasing drug diffusivity and 3) 
increasing the solubility in the skin (Shah et al., 2000). There are many well known substances 
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that may act as penetration enhancers. Fatty acids, oleic acid, azone, dimethyl sulfoxide 
(DMSO) and terpenes all increase the drug diffusion coefficient by disordering the stratum 
corneum lipid matrix (Moser et al., 2001). Propylene glycol, ethanol, transcutol and N-methyl 
pyrrolidone act by increasing a drug’s solubility in the skin. Monoolein, a frequently studied 
substance used to enhance the skin penetration of anticancer drugs, causes a temporary and 
reversible disruption of the stratum corneum, increasing drug penetration.  
Table 1 lists studies that employed chemical penetration enhancers for topical anticancer 
delivery.  
 
 

Anticancer Drug Chemical Enhancer Results References 

5-fluorouracil 
Azone, lauryl alcohol and 
isopropyl myristate  

Azone increased drug flux through the 
skin more than the other penetration 
enhancers.

Singh  
et al., 2005.  

Doxorubicin  
Monoolein and propylene 
glycol 

Increased drug retention in the skin 
avoiding transdermal delivery. 

Herai  
et al., 2007.  

Cisplatin  
Monoolein and propylene 
glycol 

Increased drug concentration in the 
skin by a factor of two when compared 
to the control. 

Simonetti  
et al., 2009.  

Tretinoin  

Liposomes combined with 
decylpolyglucosid , 
caprylocaproyl macrogol 
8-glyceride, ethoxydiglycol 
and propylene glycol. 

Association of the nanocarrier with the 
penetration enhancers improved drug 
retention, avoiding transdermal drug 
delivery.  

Manconi  
et al., 2011.  

5-Aminolevulinic 
acid (5-ALA) and 
ALA derivatives.  

DMSO and DMSO with 
EDTA  

DMSO at 10 and 20% increased the 
penetration of 5-ALA, a 
protoporphyrin IX (PpIX) precursor, in 
hairless mouse skin. These 
formulations also increased the 
production and accumulation of PpIX 
derived from 5-ALA in healthy skin 
and tumor skin.

De Rosa  
et al., 2000,  
Malik  
et al., 1995.  

Monoolein and propylene 
glycol  

Significantly increased drug 
penetration and retention in the skin. 
Results in vivo demonstrated that the 
increase of PpIX was monoolein 
concentration-dependent. 

Steluti  
et al., 2005.  

 

DMSO, Caprylic/capric 
triglycerides PEG-4 esters, 
triisostearin PEG-6 esters, 
caprylocaproyl macrogol 
8-glyceride, 
ethoxydiglycol,  
1-[2-(decylthio) 
ethyl]azacyclopentan-2-
one (HPE-10) 

Penetration enhancers increased the 
formation of porphyrins in the skin. 
Caprylic/capric triglycerides PEG-4 
esters was less irritating than HPE-10. 

Bugaj  
et al., 2006a.  
Bugaj  
et al., 2006b. 

Oleic acid  

In vitro and in vivo studies 
demonstrated that oleic acid was a 
potential penetration enhancer of ALA 
in the skin. 

Pierre  
et al., 2006.  

Table 1. Chemical penetration enhancers associated with anticancer drugs for skin cancer 
treatments. 
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It can be seen in Table 1 that penetration enhancers generally increase drug penetration and 
retention into the skin. The most common and extensively studied chemical enhancers for 
topical chemotherapy are DMSO and monoolein. The lack of toxicity of monoolein 
compared to DMSO increases the potential use of this penetration enhancer in clinical trials. 
In addition, monoolein is biodegradable, safe and has been used in different formulations in 
the pharmaceutical field.  
The use of a chemical enhancer to increase the penetration of 5-ALA for topical PDT is 
another frequently studied strategy. 5-ALA is a prodrug, converted in situ by the heme 
biosynthetic pathway into a highly fluorescent substance, protoporphyrin IX (PpIX), an 
effective photosensitizer. Thus, for successful PDT therapy, it is important that high 
concentrations of 5-ALA penetrate the skin for its conversion to PpIX and to facilitate the 
death of tumor cells when light is applied. Although the FDA has already approved a 
topical application of ALA for actinic keratosis, extensive efforts have been made to increase 
5-ALA penetration into the skin in an appropriate semi-solid formulation. Thus, chemical 
enhancers appear to be promising for PDT treatment in combination with ALA topical 
delivery.  

4.2 Physical penetration methods  

Iontophoresis and electroporation are the most frequently studied physical methods used to 
improve antineoplastic topical delivery. Both techniques employ an electrical current to 
overcome the stratum corneum and to increase drug penetration into the skin. In the next 
sections, the basic principles of iontophoresis and electroporation will be described, and 
some of the studies that have employed these modalities in the context of skin cancer 
treatment will be discussed.  

4.2.1 Iontophoresis 

Iontophoresis is a non-invasive technique that consists of the application of a weak electrical 
current to increase drug penetration into biologic membranes. It has been extensively 
studied to increase drug transdermal delivery, i.e., drug penetration across the skin and 
towards the blood stream. In early 2000, however, iontophoresis began to be used to 
increase the skin penetration of topical ALA (Gerscher et al., 2000).  
To iontophoretically deliver drugs, a constant direct electrical current (usually less than 0.5 
mA/cm2) is applied over the skin using an electrolytic solution containing the drug. A 
battery or a power supply and two oppositely polarized, insulated electrodes are used to 
apply this current. The positive electrode is the anode, and the negative electrode is the 
cathode. When the current is applied, cations from the electrolytic solution in the anode 
compartment move toward the cathode, whereas anions in the cathode compartment move 
toward the anode (Figure 5) (Gratieri et al., 2008).  
All cations and anions, including ionized molecules (which can be an anticancer drug), are 
dispersed in the electrolytic solution and transport a fraction of the electrical current, 
referred to as the transport number (Sieg et al., 2004). The maximum transport number of a 
specific ion is 1, which is the case when this ion alone carries 100% of the current through 
the skin. Therefore, several factors related to the electrical properties of the system need to 
be considered when attempting to increase drug transport by iontophoresis, including the 
current density and type of electrode. Moreover, the solution/formulation characteristics, 
such as ionic strength and pH, need to be optimized to increase the fraction of the current 
(i.e., the transport number) of the drug of interest (Gratieri et al., 2008).  
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Fig. 5. Schematic representation of an iontophoretic device: cations and anions migrate 
through the skin during the application of a low-strength electrical current. 

The electrode choice has an important influence on the stability of the driving electric 
current, which is necessary to control drug delivery. Electrodes must guarantee the 
electroneutrality of the system without changing the pH of the electrolytic solution or 
altering the drug’s properties (Cullander et al., 1993). The most commonly used electrodes 
are the reversible Ag/AgCl electrodes. This choice is primarily because their electrochemical 
reactions are rapid and occur at a voltage lower than that required for the water to undergo 
electrolysis, thereby avoiding variations in the pH of the formulation (Kalia et al., 2004). 
During the application of the electrical current, Cl- ions in the electrolyte solution react with 
the silver electrode, i.e., the anode, donating one electron to the electric circuit (Ago + Cl-  
AgCl + e-). This electron arrives at the cathode, reducing the AgCl electrode (AgCl + e-  
Ago + Cl-). To ensure the system’s electroneutrality, a cation in the anode moves to the skin 
or an anion moves from the skin toward the anode. In the cathode, the opposite occurs, i.e., 
an anion moves to the skin or a cation moves from the skin toward the cathode (Kalia et al., 
2004; Chang et al., 2000). Therefore, the electric circuit is completed by the inorganic ions of 
the skin, primarily Na+ and Cl-.  
Antineoplastic drugs can be delivered to the skin by iontophoresis through two mechanisms: 
electromigration and electroosmosis. These mechanisms can act in combination to increase 
drug skin penetration.  
Electromigration refers to the orderly movement of ions in the presence of an electric 
current. For instance, positively charged antineoplastic drugs, when placed in the positive 
electrode compartment (anode), migrate away from the electrode with the same polarity 
into the skin (Tesselaar & Sjöberg, 2011). The same occurs when a negative drug is placed in 
contact with the cathode compartment. The electromigration contribution to a drug’s skin 
penetration depends on the concentration and the electrical mobility of the drug (ion) 
(Gratieri et al., 2008). High-molecular weight drugs, which include most antineoplastic 
drugs, generally have a low electric mobility, decreasing the electromigration contribution 
for their permeating.  
Electroosmosis refers to the solvent flow when an electric potential is applied to the skin. 
Under physiologic conditions, this flow occurs from the anode toward the cathode due to 
the skin’s cation permselectivity (Figure 6). Specifically, the skin is twice more permeable to 
cations than to anions (Burnette & Ongpipattanakul, 1987). This is because the skin is 
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negatively charged when in contact with a solution at physiological pH (Merino et al., 1999). 
As a result, solvent flow occurs in the direction of cation flux, enhancing the transport of 
cations and slowing the transport of anions (Singh & Mabach, 1996). Electroosmotic flux is 
the dominant mechanism for macromolecule’s skin permeation. This is because the solvent 
flux pushes the macromolecule and takes advantage of the low-resistance of the skin when 
iontophoresis is applied (Abla et al., 2005; Pikal, 2001). Hence, neutral and high molecular 
weight antineoplastic drugs can take advantage of solvent flow and penetrate the skin by 
iontophoresis. Furthermore, positively charged drugs can penetrate the skin by both 
electromigration and electroosmotic contributions. 
 

 

Fig. 6. Schematic representation of the electroosmotic flow that accompanies the 
electromigration of cations, which is due to the negative charge of the skin at pH 7.  

The use of iontophoresis in the topical administration of antineoplastic drugs offers 
important advantages for tumor drug delivery. Most of these advantages are related to the 

precise control of drug delivery by electrical current adjustments and formulation 
characteristics. The applied current density and the short duration of this application, 

combined with the components and formulation characteristics, may rapidly target the drug 
to the tumor in high concentrations, avoiding the blood stream (Kalia et al., 2004). As an 

example of the application of targeted drug delivery using iontophoresis and simple 

modifications in drug formulation, Taveira et al. (2009) demonstrated that iontophoresis 
significantly increased skin permeability to doxorubicin. However, because this drug is 

positively charged at a physiological pH, it interacted with the negatively charged stratum 
corneum, decreasing its permeation to the deep skin layers. Interestingly however, the 

authors demonstrated that the incorporation of a cationic polymer (chitosan) in the drug 
formulation decreased the skin’s negatives charge when iontophoresis was applied, 

releasing doxorubicin from ionic interactions with the skin and improving its diffusion into 
the deep skin layers. 
Despite the obvious benefits that iontophoresis may offer for topical skin tumor treatment, 
there have been limited studies using this technique to this purpose. Most studies have 
applied iontophoresis to increase the penetration of ALA and porphyrins for topical PDT 
(Table 2) 
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Drug Skin model 
Electrode 
polaritya 

Current 
density 

(mA/cm2) 
Formulationb References 

ALA and ester In vivo: human Anode  0.25 
Aqueous 
solution 

Gerscher  
et al., 2000. 

ALA and Ester In vivo: human Anode  0.25 
Aqueous 
solution 

Gerscher  
et al., 2001. 

ALA In vitro: human SC Anode  0.15  - 0.78 

isotonic  
phosphate 
buffer 
 (pH 2.1) 

Bodde  
et al., 2002. 

ALA In vivo: human Anode  0.2 
Aqueous 
solution and 
cream 

Choudry  
et al., 2003. 

ALA 
In vivo: rabbits – 
oral mucosa 

Anode  0.5 Ointment 
Tanaka  
et al., 2003. 

ALA In vitro: pig ear 
Anode and 
cathode 

0.5 
Physiological 
buffer 

Lopez  
et al., 2003. 

ALA and esters  In vitro: pig ear  Anode  0.5 Distilled water
Lopez  
et al., 2003.  

ALA and m-ALA In vitro: pig ear Anode  0.5 

Lipid sponge 
phase and 
buffer with 
propylene 
glycol  

Merclin  
et al., 2004. 

ALA and m-ALA In vitro: pig ear Anode 0.5 Anionic Gel 
Merclin  
et al., 2004. 

Meso-tetra-[4-
sulfonatophenyl]-
porphyrin 

In vitro: pig ear Cathode  0.5 
Electrolytic 
aqueous 
solution 

Gelfuso  
et al., 2008. 

ALA In vivo: human Anode  0.25 - 0.5 Distilled water 
Mizutani  
et al., 2009. 

Doxorubicin  In vitro: pig ear cathode 0.5 
Non-ionic and 
cationic gel  

Taveira  
et al., 2009.  

zinc 
phthalocyanine 
tetrasulfonic acid 

In vitro: pig ear 
Anode and 
cathode  

0.5 Non-ionic gel  
Souza  
et al., 2011. 

Meso-tetra-(N-
methylpiridinium-4-
yl)-porphyrin and 
meso-tetra-(4-
sulfonatophenyl)-
porphyrin 

In vitro: pig ear 
Anode and 
cathode 

0.5 Non-ionic Gel 
Gelfuso  
et al., 2011. 

a Polarity of the electrode in contact with the formulation containing the drug.  
B Composition of the principal components/ions of the formulation/electrolytic solution that contains 

the drug.  

Table 2. Drugs that have been delivered into the skin using iontophoresis as a skin cancer 

treatment.  

The experiments shown in Table 2 demonstrate that iontophoresis significantly increases 
drug penetration into and through the skin much more rapidly than passive (no current) 
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administration. For examples, a 50-fold higher flux over passive transport was observed 
with iontophoretic delivery of methyl-ALA after 2 h (Lopez et al, 2003). Furthermore, the 
same amount of ALA delivered passively into the stratum corneum in several hours was 
delivered in only 10 minutes of iontophoresis application (Bodde et al., 2002). In vivo 
experiments performed with ALA and its esters generally show an increase in the depth and 
intensity of PpIX fluorescence following administration of the prodrug ALA. However, 
adjustments of electrical and formulation parameters are still required to improve the 
performance of iontophoretic delivery in vivo. In vitro, modifications in the pH and ionic 
strength of drug formulation have shown extensive improvements in drug delivery. For 
example, the simple elimination of Na+ from a gel formulation containing the porphyrin 
meso-tetra-(N-methylpyridinium-4-yl)-porphyrin at pH 5.5 increased anodal drug 
iontophoretic transport by approximately 30% (Gelfuso et al., 2011).  
In summary, iontophoresis has a huge potential for drug delivery in topical skin cancer 
therapy. Clearly, more studies should be performed in vivo with other antineoplastic drugs 
and with optimized iontophoretic parameters. Moreover, risks and toxicity for other organs 
should be evaluated to ensure that antineoplastic drugs accumulate in the tumor without 
entering the systemic circulation in significant quantities. 

4.2.2 Electroporation 

Electroporation is the application of high-voltage pulses (100 to 1,500 V) in cells or 
membranes to increase drug penetration (Prausnitz et al., 1996). When applied in cell 
culture, the pulses create openings in the cell membrane similar to pores, and non-permeant 
drugs can access the cytosol (Gothelf et al., 2003). The following sequence of events is 
believed to take place during electroporation: (1) within nanoseconds to microseconds, new 
aqueous pathways ('pores') are created in the cell membrane, (2) molecules move through 
these pathways primarily by electrophoresis and/or electroosmosis due to the local electric 
field, and (3) following the pulse, the pores remain open for milliseconds to hours (Prausnitz 
et al., 1996) (Figure 7).  
 

 

Fig. 7. Schematic illustration of the formation of pathways ('pores') in cell membranes 
created by electroporation. (A) Schematic representation of a cell, (B) Pathways created in 
the cell membranes following electroporation, (C) Membrane permeabilization and drug 
flux into the cells. 
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When applied to the skin, these high-energy pulses generate transient aqueous pores in the 
stratum corneum. These pores are responsible for the increase of skin permeability, thereby 
increasing the penetration of the drugs, especially macromolecules and hydrophilic drugs 
(Charoo et al., 2010). The electrical pulses are primarily applied using plate electrodes 
placed on the skin’s surface. However, other types of electrodes can be used for different 
tumors, such as needle electrodes (Gothelf et al., 2003). These may be inserted into the tumor 
to favor membrane electroporation of the tumor cells. Electroporation has been shown to 
increase the transdermal delivery of many drugs, such as metoprolol, heparin, fentanyl 
(Denet et al., 2004), insulin (Murthy et al., 2006), piroxican (Murthy et al., 2004; Guoqiang et 
al., 2007). 
The administration of anticancer drugs followed by electroporation is referred to as 
electrochemotherapy. The first studies of electrochemotherapy treated subcutaneous tumors 
by injecting the anticancer drug into the tumor and locally applying high voltage pulses to 
permeabilize the cells. In clinical trials, bleomycin has been administered by intravenous, 
intratumoral or intraarterial injection. Different schedules of current application, varying 
from 8 to 28 minutes, were then performed to define a time window for the administration 
of electrical pulses and to ensure that the drug reached the tumor (Gothelf et al., 2003).  
Most of the electrochemotherapeutic protocols involve the invasive application of the 
anticancer drug, primarily by intravenous route, followed by the application of the high-
voltage pulse over the tumor site. Few studies have examined non-invasive, topical 
anticancer drug administration. Because the aim of this chapter is the topical administration 
of anticancer drugs, Table 3 summarizes a subset of the studies that examined topically 
applied antineoplastic drugs using electroporation. 
 

Drug 
In vitro/ 

In vivo model 
Pulse 

Voltage 
Time of 

application 
Electrode 

Type 
References 

Photosensitizer 
Methylene blue 

In vitro: pig ear 0 - 240 V 
One pulse per 1 
msec for 10-30  min

Ag/AgCl 
Johnson  
et al., 1998. 

5-ALA 
In vitro: pig ear  

In vivo:  mice 
0 - 240 V 

One pulse per 1 
msec for 15 min 

Ag/AgCl 
Johnson  
et al., 2002.  

5-ALA  In vitro: pig ear 300 V 
one pulse per 30 s, 
applied for 10 min 

Platinum  Fang et al., 2004.  

Photosensitizer 
chlorin and 
phthalocyanine 

In vitro: 
fibroblast cell line 

1200V 
one pulse per 0.1 
ms for 20 min 

Ag/AgCl  
Labanauskiene  
et al., 2007.  

Ruthenium 
complex  

In vitro: melanoma 
cell line 

80 – 240 V
 One pulse per 
100 μs for 8 s  

stainless 
steel plate  

Bicek et al., 2007.  

Table 3. Drugs that have been delivered by electroporation into the skin following topical 
administration.  

Table 3 shows that, as with other physical/chemical penetration methods, a great number of 
studies that use electrochemotherapy are related to PDT and the increase of 
photosensitizer’s permeation through the skin. In each of these studies, electroporation 
increases drug skin penetration and even drug cytotoxicity (Labanauskiene et al., 2007; 
Bicek et al., 2007). Combinations of electroporation with other physical methods, such as 
iontophoresis, often lead to synergistic effects in increasing drug penetration (Johson et al., 
2002; Fang et al., 2004). When applied alone, electroporation increases the penetration of the 
drugs more than iontophoresis. This is because the former creates new pathways through 
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the skin, whereas the later mostly takes advantage of the decreased electrical resistance in 
existing routes into the skin. In this context, electrochemotherapy is a potential strategy for 
topical anticancer drug administration. Nevertheless, more studies are required to 
investigate the side effects and to minimize patient discomfort during the application of the 
electroporation protocol. 

4.3 Nanocarrier systems for topical anticancer drug delivery 

Semi-solid conventional formulations, such as creams, ointments and gels, have been used 
for topical administration of drugs for many years. Simple application of the formulation on 
the skin’s surface, however, is not sufficient to allow the drug to reach the site of action. This 
means that it is important for the formulation to aid in drug penetration through the 
different skin layers to reach the tumor site (Schmid & Korting, 1996). Nanocarriers could 
improve skin targeting, improving the drug’s ability to reach and penetrate into tumor cells. 
Moreover, nanocarriers can improve drug stability and reduce skin irritation by avoiding 
direct contact of the drug with the skin’s surface (Schimid & Korting, 1996). 
Different nanocarriers have been used for topical application. This section will discuss the 
most frequently studied, topically applied carriers for the treatment of skin tumors.  

4.3.1 Liposomes 

Liposomes are one of the most studied nanocarriers for the treatment of cancer. They are 
colloidal particles and are biocompatible and biodegradable, consisting primarily of 
phospholipid vesicles. These vesicles are in turn composed of one or several lipid bilayers 
(Gratieri et al., 2010). Phospholipids are able to self-assemble into vesicular structures when 
dispersed in an aqueous medium because of their amphiphilic characteristic. The non-polar 
tails orient toward non-polar tails of other phospholipid molecules present in the medium in 
an attempt to avoid the water. This process forms lipid bilayers that are separated by the 
polar heads of the phospholipids (Figure 8). Because of this special arrangement, liposomes 
are able to entrap both hydrophilic and hydrophobic compounds in the aqueous 
compartments or within the lipid bilayer, respectively. Moreover, lipid bilayers are 
biocompatible with the stratum corneum, increasing the liposome’s affinity for the skin and 
making them able to release drugs directly to this membrane. 
 

 

Fig. 8. Schematic representation of liposomes, which are vesicles formed primarily from 
phospholipids that can self-organize into vesicles in aqueous media. Liposomes have 
regions capable of encapsulating drugs with different physicochemical characteristics. 
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Traditional liposomes are composed primarily of phospholipids. Liposomes formed with 
different components have been developed in an attempt to increase the stability of the 
vesicles and their ability to penetrate through different membranes, especially the stratum 
corneum. In this way, elastic liposomes, also called ultradeformable or ultraflexible 
liposomes, are the new generation of liposomes. These contain surfactants, other 
amphiphiles or ethanol in their composition, which improve the flexibility of the lipid 
bilayer. Transfersomes®, niosomes and ethosomes® were the names given to the first, second 
and third flexible liposome generations, respectively (Santana & Zancheta, 2011). 
Transfersomes® were introduced by Cevc and Blume (1992) and are composed of 
phosphatidylcholine and sodium cholate. Ethosomes® consist of a mixture of 
phosphatidilcoline and ethanol, and niosomes are non-ionic surfactant vesicles (Manconi et 
al., 2002). The ability of these vesicles to deform gives them the ability to pass through 
narrow pores, such as the pores present on the skin surface, possibly improving the 
penetration of drugs carried by these vesicles into the deep skin layers (Manconi et al., 2002, 
Santana & Zancheta, 2011). These new generations of liposomes have been well studied in 
the context of topical administration and have also been introduced into the field of topical 
skin cancer treatments.  
Most of the studies involving liposomes in the treatment of cancer have been performed 
using invasive administration, such as intravenous injections. Liposomes containing 
doxorubicin (Hosoda et al., 1995; Barenholz et al., 2001), cisplatin (Lasic et al., 1999; Krieger 
et al., 2010), oxaliplatin (Lila et al., 2010), camptothecin (Watanabe et al., 2008) and others 
have been shown to increase these drugs cytotoxicity and to reduce side effects because of 
direct targeting. Some of these liposomes, such as DOXIL®, are already commercially 
available. This liposomal formulation contains doxorubicin and was approved in the US in 
1995 (Barenholz, 2001).  
The topical application of anticancer drugs is, once again, primarily related to the 
administration of the pro-drug ALA for topical PDT. Fang et al. (2008) performed an in vivo 
study of the influence of liposomes and ethosomes in ALA skin penetration. This study 
showed that the flexible liposomes (ethosomes) increased 5-ALA penetration to a greater 
degree than did the traditional liposomes, although both formulations increased ALA 
penetration when compared to the control treatment. Cationic ultradeformable liposomes 
have also been shown to increase ALA skin permeability in vitro. In vivo, these liposomes 
result in persistent ALA retention in the skin and induce the production of high levels of 
PpIX (Oh et al., 2011). ALA skin retention was also improved when a traditional ALA-
containing liposome was examined in vitro (Pierre et al., 2001).  
In addition to these ALA studies, 5-fluorouracil-loaded niosomes showed an 8-fold 
improvement of this drug’s cytotoxicity and penetration when compared to the aqueous 
solution (Paolino et al., 2008). It is worth noting that liposomes in combination with other 
drugs not traditionally used in skin cancer treatments have also been studied. For instance, 
tretinoin and diclophenac-loaded liposomes (Kitagawa et al., 2006; Zaafarany et al., 2010) 
showed improvement in these drugs’ skin penetration over non-liposomal formulations. 
These studies, however, were aimed at treating acne, psoriasis and other inflammatory 
conditions but not skin tumors. These formulations, however, are currently proposed to 
treat skin cancer malignances. 
In summary, liposomes have been shown to increase drugs’ penetration into the skin, and it 
appears that ultradeformable liposomes may have an even stronger effect. However, some 
reports describe liposome instability and drug leakage during the storage period (Glavas-
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Dodov et al., 2005). Therefore, more studies should be performed to develop more stable 
liposomes. In vivo experiments with humans should be performed to demonstrate the 
potential of flexible liposomes loaded with different anticancer drugs for topical skin cancer 
treatment. 

4.3.2 Polymeric and lipid nanoparticles 

Nanoparticle drug carrier systems are potential formulations to improve the therapeutic 
effectiveness and safety profile of conventional cancer chemotherapies (Wong et al., 2007). 
Different types of nanoparticles have been investigated for topical delivery. The most 
commonly studied nanoparticles are solid lipid nanoparticles and polymeric nanoparticles, 
such as those made from poly(dl-lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and 
poly-ε-caprolactone (PCL) (Rancan et al., 2009).  
Polymeric nanoparticles can be classified as nanocapsules and nanospheres. Nanospheres 
have a solid matrix while nanocapsules have a shell that surrounds a core usually oily 
(Figure 9). Anticancer drugs can be encapsulated inside or be associated with the 
nanoparticle surface.  
 

 

Fig. 9. Schematic representation of polymeric nanoparticles. Nanocapsules have  
a polymeric shell with an interior phase that is often oily. Also shown are  
the solid-matrix nanospheres. 

Solid lipid nanoparticles (SLNs) have been studied since the 1990s and are considered new 
relative to liposomes and polymeric nanoparticles. SLNs are primarily composed of lipids, 
which are solid at room temperature, dispersed in water. They are similar to nanoemulsions, 
but the inner liquid lipid is replaced with a solid lipid (Gratieri et al., 2010). This structure 
can improve sustained drug release because drug mobility is lower in SLNs. When 
compared to liposomes, SLNs exhibit greater stability, prolonged drug release and greater 
ease in sterilization and in scaling the manufacturing process to an industrial level. The 
absence of organic solvents in the preparation of SLNs is a huge advantage compared to 
polymeric nanoparticles. However, low drug loading and drug expulsion during storage 
can be a limiting factor for some therapeutic treatments.  
Both SLNs and polymeric nanoparticles have been shown to promote sustained drug release 
and protection against drug degradation when topically applied (Teixeira et al., 2010; 
Marquele-Oliveira et al., 2010). In addition, they allow for modifications to matrix softness 
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and superficial charges, adjustments that may improve skin targeting. The exact mechanism 
by which these particles increase drug penetration through the skin is not completely 
understood, but efforts to understand this property have been made by developing and 
characterizing different nanoparticles (Lopez et al., 2011). It appears that nanoparticles can 
closely contact the superficial junctions of corneocyte clusters and furrows, possibly 
favoring drug accumulation for several hours. This would allow for the sustained release of 
anticancer drugs. However, there are controversies regarding the ideal mean diameter, 
flexibility and superficial charge of nanoparticles to contribute to skin penetration.  
Studies of nanoparticles have not been limited to the examination of cytotoxic cancer drugs; 
numerous studies have also been performed that use these systems to deliver anti-
proliferative drugs. Of studies of the topical administration of anticancer drugs, 
nanoparticles containing the 5-ALA, 5-fluorouracil and tretinoin are the most common 
(Prow et al., 2011). Some examples of recent results obtained with these and other drugs 
encapsulated in nanoparticles are described below. SLNs have been shown to increase 
tretinoin stability and to decrease drug irritation (Kumar et al., 2007, Mandawgade et al., 
2008 ). Microparticles containing ALA were shown in vitro to be capable of temperature-
triggered ALA release, enhanced drug stability and improved penetration through 
keratinized skin (Kassas et al., 2009). In vivo, high levels of PpIX were observed in mouse 
skin treated with ALA-loaded microparticles. This study also demonstrated a reduction in 
skin tumor growth rate (Donelly et al., 2009). Polymeric micro- and nanocapsules increased 
porphyrin-induced phototoxicity by a factor of 4 in cultured HeLa cells when compared to a 
liposomal emulsion of phosphatidylcholine loaded with an equivalent amount of porphyrin 
(Deda et al., 2009). PLA nanoparticles containing the prodrug 5-fluorouracil demonstrated 
linear release of this drug for 6 h with no evidence of a burst effect (McCarron et al., 2008). 
Promising results were found for resveratrol encapsulated in SLNs, a formulation that 
showed increased cellular uptake (Teskac et al., 2010). Nitrosyl ruthenium complex-loaded 
SLNs performed well at releasing and protecting the complex against degradation in vitro, 
showing this formulation to be a promising carrier for the topical delivery of nitric oxide 
(Marquele-Oliveira et al., 2010). Podophyllotoxin-SLNs were demonstrated in vitro to 
increase drug retention on the skin’s surface, avoiding transdermal penetration (Prow et al., 
2011). 
In summary, most studies have described the advantages of drug encapsulation in 
nanoparticles by demonstrating increased drug stability, sustained release and improved 
skin penetration and cytotoxicity. Despite such promising results, more studies should be 
performed to elucidate the mechanisms by which nanoparticles increase the ability of 
anticancer drugs to penetrate the skin.  

5. Conclusion 

The penetration of drugs into the skin through the keratinized stratum corneum is a major 
obstacle to the delivery of high concentrations of anticancer drugs into tumor cells. The use 
of chemical and physical methods and the development of nanoparticle-based drug delivery 
systems are very important strategies to improve the ability of drugs to penetrate the skin. 
Nanocarriers appear to be promising systems because they offer several advantages, such as 
low skin irritation and increased protection of encapsulated drug. An especially important 
advantage of these formulations is that they often increase anticancer drug penetration 
through the skin. Iontophoresis also appears to be a promising technique for improving 
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drug delivery through the skin, especially for PDT, for which high concentrations of the 
photosensitizer are required for effective treatment. The use of physical methods to improve 
the penetration of nanocarriers should be considered to increase the anticancer drug’s 
penetration into the skin and to provide for targeted drug release inside tumor cells.  
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