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1. Introduction 

Fossil-based fuels including oil, coal and gas play a pivotal role in modern world energy 
market. These fossil fuels, according to world energy outlook 2007, will remain the major 
sources of energy and are expected to meet about 84% of energy demand in 2030. However, 
fossil fuels are non-renewable and will be finally diminished. It has been recently estimated 
that the global oil, coal and gas last only approximately for 35, 100 and 37 years respectively, 
based on a modified Klass model (Shafiee & Topal, 2009). In order to sustain a stable energy 
supply in the future, it is necessary to develop other sources of energy, e.g., renewable 
energy. Renewable energy is derived from natural processes that are replenished constantly, 
including hydropower, wind power, solar energy, geothermal energy, biodiesel, etc. An 
estimated $150 billion was invested in renewable energy worldwide in 2009, around 2.5 
times of the 2006 investment (Figure 1). 
It is well known that transport is almost totally dependent on petroleum-based fuels, which 
will be depleted within 40 years. An alternative fuel to petrodiesel must be technically 
feasible, easily available, economically competitive, and environmentally acceptable 
(Demirbas, 2008). Biodiesel is such a candidate fuel for powering the transport vehicles. 
Biodiesel refers to a biomass-based diesel fuel consisting of long-chain alkyl (methyl, propyl 
or ethyl) esters. In addition to being comparable to petrodiesel in most technical aspects, 
biodiesel has the following distinct advantages over petrodiesel (Knothe, 2005a): 
1. derived from renewable domestic resources, thus reducing dependence on and 

preserving petroleum; 
2. biodegradable and reduced exhaust emissions, being environment-friendly;     
3. higher flash point, being safer for handling and storage; and 
4. excellent lubricity. 
Like petrodiesel, biodiesel operates in compression ignition engines. Biodiesel is miscible 
with petrodiesel in all ratios. Currently, the blends of biodiesel and petrodiesel instead of 
net biodiesel have been widely used in many countries and no engine modification is 
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required (Singhania et al., 2008). These blends of biodiesel with petrodiesel are usually 
denoted by acronyms, for example B20 which indicates a blend of 20% biodiesel with 
petrodiesel (Knothe, 2005a). 
 

 
Fig. 1. Global investment in renewable energy, 2004-2009. Adapted from REN21 (2010)  

The global markets for biodiesel are entering a period of rapid and transitional growth. In the 
year 2007, there were only 20 nations producing biodiesel for the needs of over 200 nations; by 
the year 2010, more than 200 nations become biodiesel producing nations and suppliers 
(Thurmond, 2008). Global biodiesel production has massively increased to 16.6 billion liters 
per year over the last nine years (Figure 2). Much of the growth is happening in just three 
countries: the United States, Brazil and Germany, which together account for over half of 
biodiesel (Checkbiotech, 2009). The International Energy Agency’s report suggests that world 
production of biodiesel could top 25 million tons per year by 2012 if the recent trends continue. 
 

 
Fig. 2. Global biodiesel production, 2001-2009. Adapted from REN21 (2010) 
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Biodiesel can be produced from a variety of feedstocks, including plant oils, animal fats and 
waste oils as well as microalgae (Demiras, 2008). Each feedstock has its advantages and 
disadvantages in terms of oil content, fatty acid composition, biomass yield and geographic 
distribution. Depending on the origin and quality of feedstocks, changes may be required 
for the production process of biodiesel.  
The use of plant oils as biodiesel feedstocks has been long recognized and well documented in 
numerous studies (Abdullah et al., 2009; de Oliveira et al., 2005; Graef et al., 2009; Hawash et 
al., 2009; Hill et al., 2006; Jain & Sharma, 2010; Nakpong & Wootthikanokkhan, 2010; Patil & 
Deng, 2009; Rashid & Anwar, 2008; Sahoo & Das, 2009; Saka & Kusdiana, 2001). These 
feedstocks include the oils from soybean, rapeseed, palm, canola, peanut, cottonseed, 
sunflower and safflower. Based on the geographic distribution, soybean is the primary source 
for biodiesel in USA, palm oil is used as a significant biodiesel feedstock in Malaysia and 
Indonesia, and rapeseed is the most common base oil used in Europe for biodiesel production 
(Demiras, 2008). The vast majority of these plants are also used for food and feed production, 
which means that possible food versus fuel conflicts are present. Thus, the use of these plant 
oils as feedstocks for biodiesel seems insignificant for the developing countries which are 
importers of edible oils (Meher et al., 2008). In addition to these edible oils, various non-edible, 
tree-borne oils from jatropha, karanja, jojoba and neem are the potential biodiesel feedstocks 
(Jain & Sharma, 2009; Meher et al., 2008; Sahoo & Das, 2009). Jatropha and karanja are two 
oilseed plants that are not widely exploited due to the presence of toxic components in the oils. 
In India, they are popularly used as biodiesel feedstocks.  
In addition to the plant oils, animal fats and waste oils are the potential sources for 
commercial biodiesel production (Thompson et al., 2010). Among these feedstocks, tallow, 
lard, yellow grease and waste cooking oils have received most interest (Banerjee et al., 2009; 
Canakci, 2007; da Cunha et al., 2009; Dias et al., 2009; Diaz-Felix et al., 2009; Oner & Altun, 
2009; Phan & Phan, 2008). However, animal fats and waste oils usually contain large 
amounts of free fatty acids, which can be as high as 41.8% (Canakci, 2007). Free fatty acids 
cannot be directly converted to biodiesel in alkali-catalyzed transesterificatoin but react with 
alkali to form soaps that inhibit the separation of biodiesel from glycerin and wash water 
fraction (Huang et al., 2010). A two-step process was developed for these high fatty acid 
feedstocks: acid-catalyzed pretreatment and alkali-catalyzed transesterificaton. Because 
animal fats and waste oils have relatively high level of saturation (Canakci, 2007), the 
biodiesel from these sources exhibits poor cold flow properties. 
Microalgae represent a wide variety of aquatic photosynthetic organisms with the potential of 
producing high biomass and accumulating high level of oil. The production of biodiesel from 
microalgal oil has long been recognized and been evaluated in response to the United States 
Department of Energy for research in alternative renewable energy (Sheehan et al., 1998). 
Currently, the commercialization of algae-derived biodiesel is still in its infancy stage. Using 
microalgae as biodiesel feedstocks has received unprecedentedly increasing interest, including 
but not restricted to microalgal strain selection and genetic engineering, mass cultivation for 
biomass production, lipid extraction and analysis, transesterification technologies, fuel 
properties and engine tests (Abou-Shanab et al., 2011; Brennan & Owende, 2010; Demirbas, 
2009; Greenwell et al., 2010; Miao & Wu, 2006; Pruvost et al., 2011; Radakovits et al., 2010; 
Rodolfi et al., 2009; Ross et al., 2008; Sydney et al., 2011). Considering their unique 
characteristics, microalgae have been considered as the most promising feedstock of biodiesel 
that has the potential to displace fossil diesel (Chisti, 2007). This review mainly focuses on the 
potential of using microalgae as biodiesel feedstocks, biodiesel production pipeline, and 
possibility of employing genetic engineering for improving microalgal productivity. 
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2. Potential of using microalgae as biodiesel feedstocks  

Microalgae represent a large and diverse group of prokaryotic or eukaryotic photosynthetic 
microorganisms that are in unicellular or multicellular form. Examples of prokaryotic 
microorganisms are cyanobacteria (commonly referred to as blue-green algae) that are closely 
related to Gram-negative bacteria and eukaryotic ones are for example green microalgae and 
diatoms (Graham et al., 2009). Microalgae can be found in a wide range of environmental 
conditions, including water, land, and even unusual environments such as snow and desert 
soils (Lee, 2008). It is estimated that there are more than 50,000 species around the world, 
among which only about 30,000 have been studied and analyzed (Mata et al., 2010). Extensive 
collections of microalgae have been established by researchers in different countries, including 
the Freshwater Microalgae Collection of University of Coimbra (Portugal), the Collection of 
the Goettingen University (Germany), the Provasoli-Guillard National Center for Culture of 
Marine Phytoplankton (CCMP, USA), the University of Texas Algal Culture Collection (USA), 
the CSIRO collection of Living Microalgae (CCLM, Australia), the National Institute for 
Environmental Studies Collection (NIES, Japan), the American Type Culture Collection 
(ATCC, USA), and the Freshwater Algae Culture Collection of Institute of Hydrobiology 
(China). Together more than 10,000 microalgal strains are available to be selected for use in a 
broad range of applications, for example, as biodiesel feedstocks.  
The use of microalgae for biodiesel production has long been recognized and its potential 
has been widely reported by many research studies recently (Abou-Shanab et al., 2011; Afify 
et al., 2010; Ahmad et al., 2011; Cheng et al., 2009; Damiani et al., 2010; Gouveia et al., 2009; 
Liu et al., 2010; Rodolfi et al., 2009; Yoo et al., 2010). Microalgae reproduce themselves 
autotrophically using CO2 from air and light through photosynthesis. Compared with 
higher plants, microalgae exhibit higher photosynthetic efficiency and grow much faster, 
finishing an entire growth cycle within a few days (Christi, 2007). Typical growth rates are 
presented in Figure 3 as the doubling time for each microalgal species. A low doubling time 
corresponds to a high specific growth rate. Microalgae double themselves with an average 
time of 26 h, and some can even reproduce within 8 h. Moreover, they can be adapted to 
grow in a broad range of environmental conditions, suggesting the possibility of finding 
species best suited to local environments which is not suitable for cultivating oil plants (e.g. 
palm, soybean and rapeseed).  
 

 
Fig. 3. Doubling time for some microalgal species. The dash line indicates the average value. 
Td=ln(2)/μ, Td, doubling time, μ, specific growth rate. 
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In addition to growth rate, lipid content is another important factor to assess the potential of 
microalgae for biodiesel production. Over the past few decades, thousands of algae and 
cyanobacterial species have been screened for high lipid production, and numerous 
oleaginous species have been isolated and characterized. The lipid contents of these 
oleaginous algae are species- and/or strains-dependent, vary greatly, and may reach as high 
as 68% of dry weight, as shown in Table 1. Generally, microalgae synthesize a low content of 
lipids under nutrient replete conditions (Figure 4), with membrane lipids (e.g., 
phospholipids and glycolidips) being the main components; whereas under stress 
conditions such as nitrogen deficiency, a great increase in total lipids was observed (Figure 
4) with neutral lipids in particular triacylglycerols (TAGs) being the dominant components 
(Hu, 2004). TAGs are considered to be superior to phospholipids or glycolipids for biodiesel 
feedstocks because of their higher percentage of fatty acids and lack of phosphate (Pruvost 
et al., 2009). Unlike higher plants in which individual classes of lipids may be synthesized 
and localized in a specific cell, tissue or organ, algae produce these different lipids in a 
single cell (Hu et al., 2008b). The synthesized TAGs are deposited in lipid bodies located in 
cytoplasm of algal cells (Damiani et al., 2010; Rabbani et al., 1998). 
 

Algal species 
Culture 
conditions 

Lipid 
content (%)

biomass 
productivity 
(g/L/day) 

Lipid 
productivity 
(mg/L/day)

References 

Chlorophyta      
Botryococcus braunii Phototrophic 9.5-13.5 0.02-0.04 2.6-4.5 Chinnasamy et al., 2010 
Botryococcus braunii Phototrophic 17.85 0.346   Órpez et al., 2009 
Botryococcus braunii Phototrophic 24 0.077 21 Yoo et al., 2010 

Botryococcus sp.  Phototrophic 15.8-35.9 0.14-0.22 21.3-46.9 
Yeesang and Cheirsilp, 
2011  

Chlamydomonas 
reinhardtii 

Mixotrophic 12.2-46 0.21-0.36 29-95 Li et al., 2010a 

Chlorella ellipsoidea Phototrophic 32 0.07 22.4 
Abou-Shanab et al., 
2011 

Chlorella ellipsoidea Phototrophic 15-43   11.4 Yang et al., 2011 

Chlorella protothecoides Heterotrophic 48.1-63.8 1.02-1.73 3432-6293 
De la Hoz Siegler et al., 
2011 

Chlorella protothecoides Heterotrophic 49 1.2 586.8 Gao et al., 2010 
Chlorella saccharophila Phototrophic 12.9-18.1 0.02 2.7-4.2 Chinnasamy et al., 2010 
Chlorella sorokiniana  Phototrophic 19.3 0.23 44.7 Rodolfi et al., 2009 
Chlorella sp.  Phototrophic 33.9 0.528 178.8 Chiu et al., 2008 
Chlorella sp. Phototrophic 22.4-66.1 0.08-0.34 51-124 Hsieh and Wu., 2009 
Chlorella sp.  Phototrophic 34.1 a 0.053 22 Matsumoto et al., 2010 
Chlorella sp.  Phototrophic 18.7 0.23 42.1 Rodolfi et al., 2009 
Chlorella vulgaris Phototrophic 20-42 0.21-0.35 44-147 Feng et al., 2011 

Chlorella vulgaris 
Phototrophic, 
Mixotrophic, 
heterotrophic 

21-38 0.01-0.26 4-54 Liang et al., 2009 

Chlorella vulgaris  Phototrophic 19.2 0.17 32.6 Rodolfi et al., 2009 
Chlorella vulgaris Phototrophic 26-52   11.6-13.2 Widjaja et al., 2009 
Chlorella vulgaris  Phototrophic 35 0.117 41 Yeh et al., 2010 
Chlorella zofingiensis Heterotrophic 52 0.72 374.4 Liu et al., 2010 
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Algal species 
Culture 
conditions 

Lipid 
content (%)

biomass 
productivity 
(g/L/day) 

Lipid 
productivity 
(mg/L/day)

References 

Chlorella zofingiensis Phototrophic 25.8 0.136 35.1 Liu et al., 2011 
Chlorococcum sp.  Phototrophic 19.3 0.28 53.7 Rodolfi et al., 2009 

Choricystis minor Phototrophic 21-59.3 0.35 82 
Sobczuk and Chisti, 
2010 

Dunaliella tertiolecta Phototrophic 12.2-15.2 0.03-0.04 4.0-4.6 Chinnasamy et al., 2010 

Dunaliella tertiolecta  Phototrophic 16.7 0.12 20 
Gouveia and Oliveira, 
2009 

Haematococcus pluvialis Phototrophic 15.6-34.9     Damiani et al., 2010 

Micractinium pusillum Phototrophic 24 0.108 25.7 
Abou-Shanab et al., 
2011 

Neochloris oleabundans Phototrophic 19-56 0.03-0.15 10.7-38.8 Gouveia et al., 2009 
Neochloris oleabundans Phototrophic 7-40.3 0.31-0.63 38-133 Li et al., 2008 

Ourococcus multisporus Phototrophic 52 0.045 23.3 
Abou-Shanab et al., 
2011 

Parietochloris incisa Phototrophic 18-34 a 0.23-0.47 46-160 Solovchenko et al., 2008 
Pseudochlorococcum sp. Phototrophic 24.6-52.1 0.234-0.76 53-350 Li et al., 2011a 

Scenedesmus obliquus  Phototrophic 21-58 0.08-0.09 19-43.3 
Abou-Shanab et al., 
2011 

Scenedesmus obliquus  Phototrophic 17.7 0.09 15.9 
Gouveia and Oliveira, 
2009 

Scenedesmus obliquus Phototrophic 12-38.9 0.20-0.29 35.1-78.7 Ho et al., 2010 

Scenedesmus obliquus 
Phototrophic, 
Mixotrophic 

12.6-58.3 0.51 270 
Mandal and Mallick, 
2009 

Scenedesmus rubescens 
like 

Phototrophic 11.3-27 a 0.44-0.54 108-133 Lin and Lin, 2011 

Scenedesmus 
quadricauda 

Phototrophic 18.4 0.19 35.1 Rodolfi et al., 2009 

Scenedesmus sp.  Phototrophic 22-53 0.08 20.3 Xin et al., 2010 
Scenedesmus sp.  Phototrophic 18 0.203 39 Yoo et al., 2010 
Scenedesmus sp.  Phototrophic 21.1 0.26 53.9 Rodolfi et al., 2009 
Tetraselmis chui Phototrophic 17.3-23.5 1-2.6 235-450 Araujo et al., 2011 
Tetraselmis sp. Phototrophic 8.7-33 0.21 22.86 Huerlimann et al., 2010 
Tetraselmis suecica  Phototrophic 8.5-12.9 0.28-0.32 27-36.4 Rodolfi et al., 2009 
Tetraselmis tetrathele Phototrophic 29.2-30.3 3.1-4.4 905-1333 Araujo et al., 2011 
Bacillariophyceae      
Chaetoceros calcitrans  Phototrophic 39.8 0.04 17.6 Rodolfi et al., 2009 
Chaetoceros gracilis Phototrophic 15.5-60.3 3.4-3.7 530-2210 Araujo et al., 2011 
Chaetoceros muelleri Phototrophic 11.7-25.3 1.2-2.7 1404-6831 Araujo et al., 2011 
Chaetoceros muelleri  Phototrophic 33.6 0.07 21.8 Rodolfi et al., 2009 
Cylindrotheca 
closterium 

Phototrophic 17-30     Pruvost et al., 2011 

Navicula sp.  Phototrophic 47.6 a 0.055 26.4 Matsumoto et al., 2010 

Nitzschia cf. pusilla Phototrophic 48 0.065 31.4 
Abou-Shanab et al., 
2011 

Nitzschia laevis Heterotrophic 12.8 2.02 258.6 Chen et al., 2008 
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Algal species 
Culture 
conditions 

Lipid 
content (%)

biomass 
productivity 
(g/L/day) 

Lipid 
productivity 
(mg/L/day)

References 

Nitzschia sp. Phototrophic 32 0.013   Moazami et al., 2011 
Phaeodactylum 
tricornutum  

Phototrophic 18.7 0.24 44.8 Rodolfi et al., 2009 

Skeletonema costatum  Phototrophic 21.1 0.08 17.4 Rodolfi et al., 2009 

Skeletonema sp.  Phototrophic 31.8 0.09 27.3 Rodolfi et al., 2009 
Thalassiosira 
pseudonana  

Phototrophic 20.6 0.08 17.4 Rodolfi et al., 2009 

Eustigmatophyceae      

Ellipsoidion sp.  Phototrophic 27.4 0.17 47.3 Rodolfi et al., 2009 

Monodus subterraneus Phototrophic 12.9-15 a 0.34-0.49 47.5-67.5 
Khozin-Goldberg and 
Cohen, 2006  

Monodus subterraneus  Phototrophic 16.1 0.19 30.4 Rodolfi et al., 2009 
Nannochloropsis oculata Phototrophic 22.8-23 2.4-3.4 547.2-782 Araujo et al., 2011 
Nannochloropsis oculata Phototrophic 26.2-30.7 0.37-0.50 84-151 Chiu et al., 2009 
Nannochloropsis oculata Phototrophic 7.9-15.9 0.06-0.13 9.1-16.4 Converti et al., 2009 
Nannochloropsis sp. Phototrophic 52 0.0465   Moazami et al., 2011 
Nannochloropsis sp.  Phototrophic 23.1-37.8 0.06 20 Huerlimann et al., 2010 

Nannochloropsis sp. Phototrophic 28.7 0.09 25.8 
Gouveia and Oliveira, 
2009 

Nannochloropsis sp.  Phototrophic 21.6-35.7 0.17-0.21 37.6-61 Rodolfi et al., 2009 

Others      
Aphanothece 
microscopica  

Heterotrophic 7.1-15.3 0.26-0.44 30-50 Queiroz et al., 2011 

Crypthecodinium Cohnii Heterotrophic 19.9 2.24 444.9 Couto et al., 2010 
Isochrysis galbana Phototrophic 24.6 0.057 14.02 Lin et al., 2007 

Isochrysis sp. Phototrophic 23.5-34.1 0.09 20.95 Huerlimann et al., 2010 

Isochrysis sp.  Phototrophic 22.4-27.4 0.14-0.17 37.8 Rodolfi et al., 2009 

Pavlova lutheri  Phototrophic 35.5 0.14 50.2 Rodolfi et al., 2009 

Pavlova salina  Phototrophic 30.9 0.16 49.4 Rodolfi et al., 2009 

Pavlova viridis Phototrophic 24.8-32     Li et al., 2005 

Pleurochrysis carterae Phototrophic 9.7-12 0.03-0.04 2.7-4.4 Chinnasamy et al., 2010 

Porphyridium cruentum Phototrophic 9.5 0.37 34.8 Rodolfi et al., 2009 

Rhodomonas sp.  Phototrophic 9.5-20.5 0.06 6.19 Huerlimann et al., 2010 
Schizochytrium 

limacinum 
Heterotrophic 50.3 a 3.48 1750 Ethier et al., 2011 

Schizochytrium 

mangrovei 
Heterotrophic 68 a 2.44 1659 Fan et al., 2007 

Spirulina maxima  Phototrophic 4.1 0.21 8.6 
Gouveia and Oliveira, 
2009 

Thalassiosira weissflogii Phototrophic 6.3-13.2 0.5-1.5 31.5-198 Araujo et al., 2011 

a Total fatty acid content 

Table 1. Lipid content and productivity of various microalgal species.  
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Fig. 4. Lipid content under nitrogen replete (open squares) and nitrogen deficient (filled 
circles) conditions for Chlorophyta. B. sp., Botryococcus sp. (Yeesang and Cheirsilp, 2011);  
C. reinhardtii, Chlamydomonas reinhardtii (Li et al., 2010); C. littorale, Chlorocuccum littorale  
(Ota et al., 2009); C. sp., Chlorella sp. (Hsieh and Wu, 2009); C. vulgaris, Chlorella vulgaris 
(Feng et al., 2011); C. zofingiensis, Chlorella zofingiensis (Liu et al., 2010); H. pluvialis, 
Haematococcus pluvialis (Damiani et al 2010); N. oleabundans, Neochloris oleabundans  
(Gouveia et al., 2009); P. incisa, Parietochloris incisa (Solovchenko et al., 2010); P. sp., 
Pseudochlorococcum sp. (Li et al., 2011); S. obliquus, Scenedesmus obliquus (Mandal and Mallick, 
2009); S. rubescens, Scenedesmus rubescens (Mandal and Mallick, 2009); T. suecica,  
Tetraselmis suecica (Rodolfi et al., 2009).    

The important properties of biodiesel such as cetane number, viscosity, cold flow, oxidative 
stability, are largely determined by the composition and structure of fatty acid esters which in 
turn are determined by the characteristics of fatty acids of biodiesel feedstocks, for exmaple 
carbon chain length and unsaturation degree (Knothe, 2005b). Fatty acids are either in 
saturated or unsaturated form, and the unsaturated fatty acids may vary in the number and 
position of double bones on the acyl chain. Based on the number of double bones, unsaturated 
fatty acids are clarified into monounsaturated fatty acids (MUFAs) and polyunsaturated fatty 
acids (PUFAs). The fatty acid profile of a great many algal species has been investigated and is 
shown in Table 2. The synthesized fatty acids in algae are commonly in medium length, 
ranging from 16 to 18 carbons, despite the great variation in fatty acid composition. 
Specifically, the major fatty acids are C16:0, C18:1 and C18:2 or C18:3 in green algae, C16:0 and 
C16:1 in diatoms and C16:0, C16:1, C18:1 and C18:2 in cyanobacteria. It is worthy to note that 
these data are obtained from algal species under specific conditions and vary greatly when 
algal cells are exposed to different environmental or nutritional conditions such as 
temperature, pH, light intensity, or nitrogen concentration (Guedes et al 2010; James et al., 
2011; Sobczuk & Chisti, 2010; Tatsuzawa et al., 1996). Generally, saturated fatty esters possess 
high cetane number and superior oxidative stability; whereas unsaturated, especially 
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Chlorophyta                     

Botryococcus braunii    29.5 3.4     1 44.9 21.2        Yoo et al., 2010 

Botryococcus sp.   3.95 1.56 30.04 0.94    1.54 12.02 37.68 5.01 7.35  0.63     
Yeesang and 
Cheirsilp, 2011  

Chlamydomonas 
reinhardtii  

   30.7 3 1.8 1.6 2.7  3.2 27.2 18.3 11  0.5     James et al., 2011 

Chlorella ellipsoidea  2  26       4 40 23   5    
Abou-Shanab et 
al 2011 

Chlorella 
protothecoides 

   14.3 1    0.32 2.7 71.6 9.7        Cheng et al 2009 

Chlorella pyrenoidosa  0.7  17.3 0.8 7 9.3   1.2 3.3 18.5 41.8       D'Oca et al 2011 

Chlorella sorokiniana    25.4 3.1 10.7 4.1   1.4 12.4 34.4 7.1       
Chen and Johns, 
1991 

Chlorella sp. 3.78  5.24 16.1 10.88 9.79   4.74 4.35 8.45 14.36 18.79       Li et al., 2011b  

Chlorella vulgaris     24 2.1     1.3 24.8 47.8        Yoo et al., 2010 

Chlorella zofingiensis     22.62 1.97 7.38 1.94 0.22  2.09 35.68 18.46 7.75 0.49      Liu et al., 2010 

Chlorocuccum littorale     20.9 5.6   14.4   29.7 7.2 22.2       Ota et al., 2009 

Choricystis minor    36     0.4 12.3 31.2 9.9 3.8  1.9     
Sobczuk and 
Chisti, 2010 

Dictyochloropsis 
splendida  

 13.88  69.59     1.21 0.38 1.11 12.14 0.42       Afify et al 2010 

Dunaliella tertiolecta    26.4  2.3 1.27   0.6 16.8 13.1 39.6       Chen et al 2011 

Haematococcus 
pluvialis  

0.21 1.25  22.5 0.64    0.19 3.15 19.36 26.9 17.04  0.2 0.89 0.57   
Damiani et al 
2010 

Micractinium 
pusillum 

   33 1      31 17 18       
Abou-Shanab et 
al 2011 

Neochloris 
oleabundans 

   23.3 0.6 1.6 2.4  0.2 4.5 43 17.8 5.8       Levine et al., 2011 

Neochloris sp.  5.22  29.4     5.2 6.6 17.5 23.6 12.6       
Moazami et al., 
2011 

Ourococcus 
multisporus 

 2  19 1     5 26 11 36       
Abou-Shanab et 
al 2011 

Parietochloris incise    9.1 0.7 0.6    2.1 15.1 9.3 1.6 1.2  58.9    
Khozin-Goldberg 
et al., 2002 

Scenedesmus obliquus   1.48  21.8 5.95 3.96 0.68 0.43  0.45 17.93 21.74 3.76 0.21      
Gouveia and 
Oliveira, 2009 

Scenedesmus sp.     36.3 4     2.7 25.9 31.1        Yoo et al., 2010 

Tetraselmis sp.     0.6  27.8      0.9 28.2 9.3 23.9 3.7  0.9 3.4   
Huerlimann et 
al., 2010 

Bacillariophyceae                     

Chaetoceros sp.  23.6  9.2 36.5 6.9 2.6  2  3  1.4 0.6  4.1 8  1 
Renaud et al., 
2002 

Cyclotella cryptica  1.4  15.2 10.7      3.9 1.2 3.5    9.7  1.7 Pahl et al., 2010 

Navicula sp.     45 52.7     0.6 1.1 0.6        
Matsumoto et al., 
2010 

Nitzschia cf. pusilla  6  31 57 0.27       6       
Abou-Shanab et 
al 2011 

Nitzschia laevis  16.9  28.5 23.9     0.7 5.1 3.4 4.1   5 11.7   Chen et al 2008 

Nitzschia sp.  9 3.5 37.4     4.6 5.3 16.9 11.6        
Moazami et al., 
2011 

Cyanobacteria                     

Nostoc commune    23.5 22.5      5.6 21.1 14.1       
Pushparaj et al., 
2008 

Nostoc flagelliforme  0.65  21.27 14.91     6.2 22.59 15.03 19.35       Liu et al., 2005 

Spirulina    49.2 5.9     1.7 2.9 22.7 17.5       Chaiklahan et al 
2008 

Spirulina maxima   0.34  40.16 9.19  0.42 0.16  1.18 5.43 17.89 18.32 0.08 0.06     Gouveia and 
Oliveira, 2009 

Synechocystis 
PCC6803 

   52 3    1  3 9 29 3      
Wada and 
Murata, 1990 

Eustigmatophyceae                     

Monodus subterraneus  3.3  19.8 34.3     9.7 9 0.8 0.7   2.8 15.5   
Khozin-Goldberg 
and Cohen, 2006  

Nannochloropsis 
oculata  

   62      11 5 8 15       
Converti et al 
2009 

Nannochloropsis sp.    23.4      7.14 45.4 11.7 12.2       
Moazami et al., 
2011 
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Prymnesiophyceae                     

Isochrysis  
galbanan 

 19.3  18.1       29.5 2.6 3.6 13.8    4.1 7.5 Lin et al., 2007 

Isochrysis sp.  8.9 0.4 13.7 5.1     0.2 22.8 2.3 4.8 22.5  0.1 0.6 1.7 12.7 
Huerlimann et 
al., 2010 

Pavlova lutheri  5.54  19 31.46     1.11 2.55 4.46 5.37 6.63   16.07  7.8 Guedes et al 2010 

Pavlova viridis  19.9  13.9 16.1            21.2  8.7 Hu et al 2008a 

Pavlova viridis  10.34  17.3 17.87     3.16 1.33 2.48 2.23    10.46  14.78 Li et al., 2005 

Rhodophyta                     

Porphyridium 
cruentum 

   14.5 8.5     10.5 14    10.8 6.1   10.5 Oh et al., 2009 

Others                     

Crypthecodinium 
cohnii  

2.9 13.4  22.9 0.4     2.6 7.6       0.5 49.5 Couto et al., 2010 

Glossomastrix 
chrysoplasta 

 22  4.4 4      6.6 3.9    5.5 39.2 13.3  
Kawachi et al., 
2002 

Rhodomonas sp.   7.8 0.4 19.7 1.5     3 8.4 3 29.8 11.7  0.6 8.6 1.7 3 
Huerlimann et 
al., 2010 

Schizochytrium 
limacinum 

 3.96  54.61      3.86        6.47 31.09 Ethier et al 2011 

Table 2. Fatty acid composition of various algal species (% of total fatty acids) 

polyunsaturated, fatty esters have improved low-temperature properties (Knothe, 2008).  
In this regard, it is suggested that the modification of fatty esters, for example the 
enhanced proportion of oleic acid (C18:1) ester, can provide a compromise solution 
between oxidative stability and low-temperature properties and therefore promote the 
quality of biodiesel (Knothe, 2009). Thus, microalgae with high oleic acid are suitable for 
biodiesel production.  
Currently the commercial production of biodiesel is mainly from plant oils and animal fats. 
However, the plant oil derived biodiesel cannot realistically meet the demand of transport 
fuels because large arable lands are required for cultivation of oil plants, as demonstrated in 
Table 3. Based on the oil yield of different plants, the cropping area needed is calculated and 
expressed as a percentage of the total U.S. cropping area. If soybean, the popular oil crop in 
United States is used for biodiesel production to meet the existing transport fuel need, 5.2 
times of U.S. cropland will need to be employed. Even the high-yielding oil plant palm is 
planted as the biodiesel feedstock, more than 50% of current U.S. arable lands have to be 
occupied. The requirement of huge arable lands and the resulted conflicts between food and 
oil make the biodiesel from plant oils unrealistic to completely replace the petroleum 
derived diesel in the foreseeable future. It is another case, however, if microalgae are used to 
produce biodiesel. As compared with the conventional oil plants, microalgae possess 
significant advantages in biomass production and oil yield and therefore the biodiesel 
productivity. In terms of land use, microalgae need much less than oil plants, thus 
eliminating the competition with food for arable lands (Table 3). 
In addition to biodiesel, microalgae can serve as sources of other renewable fuels such as 
biogas, bioethanol, bio-oil and syngas (Chisti, 2008; Demirbas, 2010; Mussgnug et al., 2010). 
Moreover, microalgal biomass contains significant amounts of proteins, carbohydrates and 
other high-value compounds that can be potentially used as feeds, foods and pharmaceuticals 
(Chisti, 2007). Thus, integrating the production of such co-products with biofuels will provide 
new insight into improving the production economics of microalgal biodiesel. Microalgae can 
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also be used for sequestration of carbon dioxide from industrial flue gases and wastewater 
treatment by removal of nutrients (Chinnasamy et al 2010; Fulke et al., 2010; Levine et al., 2011; 
Yang et al., 2011). Coupled with these environment-beneficial approaches, the production 
potential of microalgae derived biodiesel is desirable.     
 

Feedstocks 
Oil content  
(% dry weight)

Oil yeild 
(L/ha year) 

Land area 
needed (M ha)a

Percentage of existing 
US cropping areaa 

Corn 44 172 3480 1912 
Hemp 33 363 1650 906 
Soybean 18 636 940 516 
Jatropha 28 741 807 443 
Camelina 42 915 650 357 
Canola 41 974 610 335 
Sunflower 40 1070 560 307 
Castor  48 1307 450 247 
Palm oil 36 5366 110 60.4 
Microalgae (low oil content) 30 58,700 10.2 5.6 
Microalgae (medium oil content) 50 97,800 6.1 3.4 
Microalgae (high oil content) 70 136,900 4.4 2.4 

a For meeting all transport fuel needs of the United States. Adapted from Chisti, 2007 and Mata et al., 2010. 

Table 3. Comparison of microalgae with other biodiesel feedstocks. 

3. Biodiesel production from microalgae 

The biodiesel production from microalgal oil shares the same processes and technologies as 
those used for other feedstocks derived oils. However, microalgae are microorganisms living 
essentially in liquid environments and thus have particular cultivation, harvesting, and 
downstream processing techniques for efficient biodiesel production. The microalgal biodiesel 
production pipeline is schematically presented in Figure 5, including strain selection, mass 
culture, biomass harvesting and processing, oil extraction and transesterification. 
 

 
Fig. 5. Microalgal biodiesel production pipeline 
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3.1 Microalgae selection 
There are more than 50,000 microalgal species around the world. Selection of an ideal 
species is of fundamental importance to the success of algal biodiesel production. 
Theoretically, an ideal species should own the following desirable characteristics: rapid 
growth rate, high oil content, wide tolerance of environmental conditions, CO2 tolerance 
and uptake, large cell size, easy of disruption, etc. However, it is unlikely for a single species 
to excel in all above mentioned characteristics. Thus, prioritization is required. Commonly, 
fast-growing strains with high oil content are placed on the priority list for biodiesel 
production. Fast growth makes sure the high biomass productivity and reduces the 
contamination risk owing to out-competition of slower growers. High oil content helps 
increase the process yield coefficient and reduce the cost of downstream extraction and 
purification. The selected species should be suitable for mass cultivation under local 
geographic and climatic conditions, for example, the inland prefers freshwater algae while 
the coastal place desires marine algal species. Ease of harvesting is an often-overlooked 
criterion and should be taken into account. Algal biomass harvest requires significant capital 
and accounts for up to 30% of total biomass production cost (Molina Grima et al., 2003). 
Therefore, it is desirable to choose algal species with properties that simplify harvesting, 
including large cell size, high specific gravity and autofloculation potential (Griffiths & 
Harrison, 2009). These properties can greatly influence the process economics for biodiesel 
production from algae. An additional algal characteristic is the suitability of lipids for 
biodiesel production; for example, neutral lipids in particular TAG are superior to polar 
lipids (phospholipids and glycolipids) for biodiesel and C18:1 has advantages over other 
fatty acids for improving biodiesel quality (Knothe, 2009).  

3.2 Microalgae cultivation 
3.2.1 Factors affecting algal lipids and fatty acids 

Microalgae require several things to grow, including a light source, carbon dioxide, water, 
and inorganic salts. The lipid content and fatty acid composition are species/strain-
specific and can be greatly affected by a variety of medium nutrients and environmental 
factors. Carbon is the main component of algal biomass and accounts for ca 50% of dry 
weight. CO2 is the common carbon source for algal growth. But some algal species are 
also able to utilize organic carbon sources, for example sugars and glycerol (Easterling et 
al., 2009; Liu et al., 2010). Sugars particularly glucose are preferred and can be used to 
boost production of both algal biomass and lipids (Liu et al., 2010). Nitrogen is an 
important nutrient affecting lipid metabolism in algae. The influence of nitrogen 
concentration on lipid and fatty acid production has been investigated in numerous algal 
species. Nitrate was suggested to be superior to other nitrogen sources such as urea and 
ammonium for algal lipid production (Li et al., 2008). Generally, low concentration of 
nitrogen in the medium favors the accumulation of lipids particularly TAGs and total 
fatty acids. But in some cases, nitrogen starvation caused decreased synthesis of lipids 
and fatty acids (Saha et al., 2003). Nitrogen concentration also affects algal fatty acid 
composition. For example, in cyanobacteria, increased levels of C16:0 and C18:1 and 
decreased C18:2 levels were observed in response to nitrogen deprivation (Piorreck & 
Pohl, 1984). In the marine alga Pavlova viridis, nitrogen depletion resulted in an increase in 
saturated, monounsaturated fatty acids and C22:6 (n-3) contents (Li et al., 2005). Nitrogen 
starvation brought about a strong increase in the proportion of C20:4 (n-6) in the green 
algal Parietochloris incisa (Solovchenko et al., 2008). Similar to nitrogen, silicon is a key 
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nutrient that affects lipid metabolism of diatoms, and can promote the accumulation of 
neutral lipids as well as of saturated and monounsaturated fatty acids when depleted 
from culture medium (Roessler, 1988). Other types of nutrient deficiency include 
phosphorus and sulfur limitations are also able to enhance lipid accumulation in algae 
(Khozin-Goldberg & Cohen, 2006; Li et al., 2010b; Sato et al., 2000). These types of nutrient 
deficiency, however, do not always lead to elevated overall lipid production, because they 
at the same time exert negative effect on algal growth and contribute to the reduced algal 
biomass production that compromises the enhanced lipid yield resulting from increased 
lipid content. Therefore, the manipulation of these nutrients needs to be optimized to 
induce lipid accumulation while maintaining algal growth for maximal production of 
lipids. Iron is a micro-nutrient required in a tiny amount for ensuring algal growth. 
Within a certain range of concentrations, high concentrations of iron benefit algal growth 
as well as cellular lipid accumulation and thus the overall lipid yield in the green alga 
Chlorella vulgaris (Liu et al., 2008). 
Among the environmental factors, light is an important one that has a marked effect on the 
lipid production and fatty acid composition in algae (Brown et al., 1996; Damiani et al., 2010; 
Khotimchenko & Yakovleva, 2005; Napolitano, 1994; Sukenik et al., 1989; Zhekisheva et al., 
2002, 2005). Generally, low light intensity favors the formation of polar lipids such as the 
membrane lipids associated with the chloroplast; whereas high light intensity benefits the 
accumulation of neutral storage lipids in particular TAGs. In H. pluvialis, for example, high 
light intensity resulted in a great increase of both neutral and polar lipids, but the increase 
extent of neutral lipids was much greater than that of polar lipids, leading to the dominant 
proportion of neutral lipids in the total lipids (Zhekisheva et al., 2002, 2005). Although the 
effect of light intensity on fatty acid composition differs among the algal species and/or 
strains, there is a general trend that the increase of light intensity contributes to the 
enhanced proportions of saturated and monounsaturated fatty acids and the concurrently 
the reduced proportion of polyunsaturated fatty acids (Damiani et al., 2010; Sukenik et al., 
1989; Zhekisheva et al., 2002, 2005). Temperature is another important environmental factor 
that affects profiles of algal lipids and fatty acids. In response to temperature shift, algae 
commonly alter the physical properties and thermal responses of membrane lipids to 
maintain fluidity and function of membranes (Somerville, 1995). In general, increased 
temperature causes increased fatty acid saturation and at the same time decreased fatty acid 
unsaturation. For example, C14:0, C16:0, C18:0 and C18:2 increased and C18:3 (n-3), C18:4, 
C20:5 and C22:6 decreased in Rhodomonas sp., and C16:0 increased and C18:4 decreased in 
Cryptomonas sp. when temperature increased (Renaud et al., 2002). As for the effect of 
temperature on cellular lipid content, it differs in a species-dependent manner. In response 
to increased temperature, algae may show an increase (Boussiba et al., 1987), no significant 
change or even a decrease (Renaud et al., 2002) in lipid contents. Other environmental 
factors such as salinity, pH and dissolved O2 are also important and able to affect algal lipid 
metabolism.  
In addition to the nutritional and environmental factors, growth phase and aging of the 
culture affect algal lipids and fatty acids. Commonly, algae accumulate more lipids at 
stationary phase than at logarithmic phase (Bigogno et al., 2002; Mansour et al., 2003). 
Associated with the growth phase transition from logarithmic to stationary phase, 
increased proportions of C16:0 and C18:1 and decreased proportions of PUFAs are often 
observed. Besides, it is suggested that algal lipids and fatty acids can be greatly affected 
by cultivation modes. Algae growing under heterotrophic mode usually produce more 
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lipids in particular TAG and higher proportion of C18:1 than under photoautotrophic 
mode (Liu et al., 2011).  

3.2.2 Raceway ponds and photobioreactors 
Currently, the commonly used culture systems for large-scale production of algal biomass 
are open ponds and enclosed photobioreactors. An open pond culture system usually 
consists of a series of raceways-type of ponds placed outdoors. In this system, the shallow 
pond is usually about one foot deep; algae are cultured under conditions identical to their 
natural environment. The pond is designed in a raceway configuration, in which a paddle 
wheel provides circulation and mixing of the algal cells and nutrients (Chisti, 2007). The 
raceways are typically made from poured concrete, or they are simply dug into the earth 
and lined with a plastic liner to prevent the ground from soaking up the liquid. Compared 
with photobioreactors, open ponds cost less to build and operate, and are more durable with 
a large production capacity. However, the open pond system has its intrinsic disadvantages 
including rapid water loss due to evaporation, contamination with unwanted algal species 
as well as organisms that feed on algae, and low biomass productivity. In addition, optimal 
culture conditions are difficult to maintain in open ponds and recovering the biomass from 
such a dilute culture is expensive.   
Unlike open ponds, enclosed photobioreactors are flexible systems that can be employed to 
overcome the problems of evaporation, contamination and low biomass productivity 
encountered in open ponds (Mata et al., 2010). These systems are made of transparent 
materials with a large surface area-to-volume ratio, and generally placed outdoors using 
natural light for illumination. The tubular photobioreactor is the most widely used one, which 
consists of an array of straight transparent tubes aligned with the sun’s rays (Chisti, 2007). The 
tubes are generally no more than 10 cm in diameter to maximize sunlight penetration. The 
medium broth is circulated through a pump to the tubes, where it is exposed to light for 
photosynthesis, and then back to a reservoir. In some photobioreactors, the tubes are coiled to 
form what is known as a helical tubular photobioreactor. Artificial illumination can be used for 
photobioreactor. But it adds to the production cost and thus is used for the production of high 
value products instead of biodiesel feedstock. The algal biomass is prevented from settling by 
maintaining a highly turbulent flow within the reactor using either a mechanical pump or an 
airlift pump (Chisti, 2007). The result of photosynthesis will generate oxygen. The oxygen 
levels will accumulate in the closed photobioreactor and inhibit the growth of algae. Therefore, 
the culture must periodically be returned to a degassing zone, an area where the algal broth is 
bubbled with air to remove the excess oxygen. In addition, carbon dioxide must be fed into the 
system to provide carbon source and maintain culture pH for algal growth. Photobioreactors 
require cooling during daylight hours and temperature regulation in night hours. This may be 
done through heat exchangers located either in the tubes themselves or in the degassing 
column. 
Table 4 shows the comparison between open ponds and photobioreactors for microalgae 
cultivation. 
Photobioreactors have obvious advantages over open ponds: offer better control, prevent 
contamination and evaporation, reduce carbon dioxide losses and allow to achieve higher 
biomass productivities. However, enclosed photobioreactors cost high to build and operate 
and the scale-up is difficult, limiting the number of large-scale commercial systems 
operating globally to high-value production runs (Greenwell et al., 2010). In this context, a 
hybrid photobioreactor-open pond system is proposed: using photobioreactors to produce 
contaminant-free inoculants for large open ponds. 
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Culture systems Open ponds Enclosed bioreactors 

Contamination control Difficult  Easy  
Contamination risk High Reduced  
Sterility  None Achievable  
Process control Difficult  Easy  
Species control Difficult  Easy  
Mixing  Very poor Uniform  
Operation regime Batch or semi-continuous Batch or semi-continuous 
Area/volume ration Low High 
Algal cell density Low  High 
Investment  Low  Hight  
Operation cost Low  High  
Light utilization efficiency Poor  High  
Temperature control difficult More uniform temperature 
Productivity  Low  High  
Hydrodynamic stress on algae Very low Low-high 
Evaporation of growth medium High  Low  
Gas transfer control Low  High 
O2 inhibition < bioreactors Great problem 
Scale-up Difficult  Difficult  

Table 4. Comparison of open ponds and photobioreactors for microalgae cultivation (Mata 
et al., 2010) 

3.3 Biomass harvesting and concentration 
Algal harvesting is the concentration of diluted algal suspension into a thick algal paste, 
with the aim of obtaining slurry with at least 2–7% algal suspension on dry matter basis. 
Biomass harvest is a very challenging process and may contribute to 20-30% of the total 
biomass production cost (Molina Grima et al., 2003). The most common harvesting methods 
include sedimentation, filtration, centrifugation, sometimes with a pre-step of flocculation or 
flocculation-flotation. Flocculation is employed to aggregate the microalgal cells into larger 
clumps to enhance the harvest efficiency by gravity sedimentation, filtration, or 
centrifugation (Molina Grima et al., 2003). The selection of a harvesting process for a 
particular strain depends on size and properties of the algal strain. The selected harvest 
method must be able to handle a large volume of algal culture broth.  
Filtration is the most commonly used method for harvesting algal biomass. The process can 
range from micro-strainers to pressure filtration and ultra-filtration systems. Vacuum 
filtration is feasible for harvesting large microalgae such as Coelastrum proboscideum and 
Spirulina platensis but unsuitable for recovering small size algal cells such as Scenedesmus, 
Dunaliella, or Chlorella (Molina Grima et al., 2003). Membrane-based microfiltration and 
ultrafiltration have also been used for harvesting algal cells for some specific application 
purposes, but overall, they are more expensive. Centrifugation is an accelerated 
sedimentation process for algae harvesting. Generally, centrifugation has high capital and 
operation costs, but its efficiency is much higher than natural sedimentation. Because of its 
high cost, centrifugation as an algae harvesting method is usually considered only feasible 
for high value products rather than biofuels.  

3.4 Biomass processing for oil extraction 

After harvesting, chemicals in the biomass may be subject to degradation induced by the 
process itself and also by internal enzyme in the algal cells. For example, lipase contained in 
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the cells can rapidly hydrolyze cellular lipids into free fatty acids that are not suitable for 
biodiesel production. Therefore, the harvested biomass need be processed rapidly. Drying is a 
major step to keep the quality of the oil. In addition, the solvent-based oil extraction can be 
difficult when wet biomass is used. Various drying methods such as sun drying, spray drying, 
freeze drying, and drum drying can be used for drying algal biomass (Mata et al., 2010). Due 
to the high water content of algal biomass, sun-drying is not a very effective method for algal 
powder production. Spray drying and freeze drying are rapid and effective, but also expensive 
and not economically feasible for biofuel production. Because of the high energy required, 
drying is considered as one of the main economical bottlenecks in the entire process. 
There are several approaches for extracting oil from the dry algal biomass, including 
solvent extraction, osmotic shock, ultrasonic extraction and supercritical CO2 extraction. 
Oil extraction from dried biomass can be performed in two steps, mechanical crushing 
followed by solvent extraction in which hexane is the main solvent used. For example, 
after the oil extraction using an expeller, the leftover pulp can be mixed with cyclohexane 
to extract the remaining oil. The oil dissolves in the cyclohexane and the pulp is filtered 
out from the solution. These two stages are able to extract more than 95% of the total oil 
present in the algae. Oil extraction from algal cells can also be facilitated by osmotic shock 
or ultrasonic treatment to break the cells. Osmotic shock is a sudden reduction in osmotic 
pressure causing cells to rupture and release cellular components including oil. The algae 
lacking the cell wall are suitable for this process. In the ultrasonic treatment, the 
collapsing cavitation bubbles near to the cell walls cause cell walls to break and release 
the oil into the solvent. Supercritical CO2 is another way for efficient extraction of algal 
oil, but the high energy demand is a limitation for commercialization of this technology 
(Herrero et al., 2010). 

3.5 Oil transesterification 

Algal oil contained in algal cells can be converted into biodiesel through transesterification. 
Transesterification is a chemical conversion process involving reacting triglycerides of 
vegetable oils or animal fats catalytically with a short-chain alcohol (typically methanol or 
ethanol) to form fatty acid esters and glycerol (Figure 6). This reaction occurs stepwise with 
the first conversion of triglycerides to diglycerides and then to monoglycerides and finally 
to glycerol. The complete transesterification of 1 mol of triglycerides requires 3 mol of 
alcohol, producing 1 mol of glycerol and 3 mol of fatty esters. Considering that the reaction 
is reversible, large excess of alcohol is used in industrial processes to ensure the direction of 
fatty acid esters. Methanol is the preferred alcohol for industrial use because of its low cost, 
although other alcohols like ethanol, propanol and butanol are also commonly used.   
 

 
Fig. 6. Transesterification of oil to biodiesel. R1-3 indicates hydrocarbon groups.   
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In addition to heat, a catalyst is needed to facilitate the transesterification. The 
transesterification of triglycerides can be catalyzed by acids, alkalis or enzymes. Acid 
transesterification is considered suitable for the conversion of feedstocks with high free fatty 
acids but its reaction rate is low (Gerpen, 2005). In contrast, alkali-catalyzed transesterification 
has a much higher reaction rate, approximately 4000 times faster than the acid-catalyzed one 
(Fukuda et al., 2001). In this context, alkalis (sodium hydroxide and potassium hydroxide) are 
preferred as catalysts for industrial production of biodiesel. The use of lipases as 
transesterification catalysts has also attracted much attention as it produces high purity 
product and enables easy separation from the byproduct glycerol (Ranganathan et al., 2008). 
However, the cost of enzyme is still relatively high and remains a barrier for its industrial 
implementation. In addition, it has been proposed that biodiesel can be prepared from oil via 
transesterification with supercritical methanol (Demirbas, 2002). 

4. Genetic engineering of microalgae 

4.1 Microalgal lipid biosynthesis 

Although lipid metabolism, in particular the biosynthesis of fatty acids and TAG, is poorly 
understood in algae, it is generally recognized that the basic pathways for fatty acid and 
TAG biosynthesis are similar to those demonstrated in higher plants. 
Algae synthesize the de novo fatty acids in the chloroplast using a single set of enzymes. A 
simplified schedule for saturated fatty acid biosynthesis is shown in Figure 7. Acetyl-CoA is 
the basic building block of the acyl chain and serves as a substrate for acetyl CoA 
 
 

 
Fig. 7. Simplified overview of saturated fatty acid biosynthesis in algal chloroplast. ACCase, 
acetyl-CoA carboxylase; ACP, acyl carrier protein; CoA, coenzyme A; ENR, enoyl-ACP 
reductase; HD, 3-hydroxyacyl-ACP  dehydratase;  KAR,  3-ketoacyl-ACP  reductase;  KAS,  
3-ketoacyl-ACP  synthase; MAT, malonyl-CoA:ACP transacylase.  
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carboxylation and as well as a substrate for the initial condensation reaction. The formation 
of malonyl CoA from acetyl CoA is generally regarded as the first reaction of fatty acid 
biosynthesis, which is catalyzed by acetyl CoA carboxylase (ACCase). The malonyl group of 
malonyl CoA is transferred to a protein co-factor, acyl carrier protein (ACP), resulting in the 
formation of malonyl ACP that enters into a series of condensation reactions with acyl ACP 
(or acetyl CoA) acceptors. The first condensation reaction is catalyzed by 3-ketoayl ACP 
synthase III (KAS III), forming a four-carbon product. KAS I and KAS II catalyze the 
subsequent condensations. After each condensation, the 3-ketoacyl-ACP product is reduced, 
dehydrated, and reduced again, by 3-ketoacyl-ACP reductase, 3-hydroxyacyl-ACP 
dehydratase, and enoyl-ACP reductase, respectively, to form a saturated fatty acid. To 
produce an unsaturated fatty acid, a double bond is introduced onto the acyl chain by the 
soluble enzyme stearoyl ACP desaturase (SAD). Unlike plants, some algae produce long-
chain acyl ACPs (C20-C22) that derive from the further elongation and/or desaturation of C18. 
The fatty acid elongation is terminated when the acyl group is released from ACP by an 
acyl-ACP thioesterase that hydrolyzes the acyl ACP and produces free fatty acids or by 
acyltransferases that transfer the fatty acid from ACP to glycerol-3-phosphate or 
monoacylglycerol-3-phosphate. These released fatty acids serve as precursors for the 
synthesis of cellular membranes and neutral storage lipids like TAG. 
It has been proposed that the biosynthesis of TAG occurs in cytosol via the direct glycerol 
pathway (Figure 8). Generally, acyl-CoAs sequentially react with the hydroxyl groups in 
glycerol-3-phosphate to form phosphatidic acid via lysophosphatidic acid. These two 
reactions are catalyzed by glycerol-3-phospate acyl transferase and lysophosphatidic acid 
acyl transferase respectively. Dephosphorylation of phosphatidic acid results in the release 
of DAG which accepts a third acyl from CoA to form TAG. This final step is catalyzed by 
diacylglycerol acyltransferase, an enzymatic reaction that is unique to TAG synthesis. In 
addition, an alternative pathway that is independent of acyl-CoA may also be present in 
algae for TAG biosynthesis (Dahlqvist et al., 2000). This pathway employs phospholipids as 
acyl donors and diacylglycerols as the acceptors and might be activated when algal cells are 
exposed to stress conditions, under which algae usually undergo rapid degradation of the 
photosynthetic membranes and concurrent accumulation of cytosolic TAG-enriched lipid 
bodies (Hu et al., 2008b). 
 
 

 
Fig. 8. Simplified illustration of the TAG biosynthesis in algae. DAG, diacylglycerol; LPA, 
lysophosphatidic acid; LPC, lysophosphatidylcholine; G-3-P, glycerol-3-phosphate; PA, 
phosphatidic acid; PC, phosphatidylcholine; TAG, triacylglycerol. (1) glycerol-3-phosphate 
acyl transferase, (2) lysophosphatidic acid acyl transferase, (3) phosphatidic acid 
phosphatase, (4) diacylglycerol acyl transferase, and (5) phospholipid:diacylglycerol 
acyltransferase.  
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4.2 Genetic engineering of microalgal lipids 

Genetic engineering is a feasible and complimentary approach to increase algal productivity 
and improve the economics of algal biodiesel production. This has long been recognized but 
it seems that so far little progress has been made. The lack of full or near-full genome 
sequences and robust transformation systems makes genetic engineering of algae lag much 
behind that of bacteria, fungi and higher eukaryotes. Although certain algal species have 
been reported for efficient transformation, it proves to be difficult to produce stable 
transformants of algae. Currently, sophisticated genetic engineering whereby several genes 
are concurrently down-regulated or overexpressed is only really applicable to the green alga 
Chlamydomonas reinhardtii. This situation, however, is likely to change because of the 
growing scientific and commercial interest in other algal species that are of great potential 
for industrial applications. 
Understanding the algal lipid biosynthesis is of great help to engineer algal lipid 
production. Although lipid metabolism in algae is not as fully understood as that in higher 
plants, they have similar lipid biosynthetic pathway as mentioned above. Theoretically, 
overexpression of the genes involved in fatty acid synthesis is able to increase lipid 
accumulation, in that fatty acids required as precursors for lipid biosynthesis are produced 
in excess. However, overexpressoin of the native ACCase, the rate-limiting enzyme 
catalyzing the first committed step of fatty acid biosynthesis in many organisms, could not 
increase the lipid production in diatom (Dunahay et al., 1995). It is possible that under high 
flux conditions through ACCase, the condensing enzymes or other factors may begin to 
limit fatty acid synthesis rate. Therefore, more complete control may come from certain 
transcription factors that can increase expression of the entire pathway. Another feasible 
approach of increasing cellular lipid contents is to inhibit metabolic pathways that lead to 
other carbon storage compounds, such as starch. Starch synthesis shares common carbon 
precursors with lipid synthesis in algae. Blocking starch synthesis is able to redirect carbon 
flux to lipid biosynthetic pathway, resulting in overproduction of fatty acids and thus total 
lipids (Li et al., 2010a). Neutral lipids in particular TAG surpass other lipids for biodiesel 
production, attracting the interest of enhancing cellular TAG contents through genetic 
engineering. Overexpression of genes involved in TAG assembly, e.g., glycerol-3-phosphate 
acyltransferase, lysophosphatidic acid acyltransferase, or diacylglycerol acyltransferase, all 
significantly increase TAG production in plants. Such strategies may also be applicable to 
algae for enhancing TAG levels. Commonly, algae produce larger amounts of lipids under 
unfavorable conditions than logarithmic growing condition. Enhancing lipid biosynthesis 
through genetic engineering, therefore, is likely to reduce algal proliferation and biomass 
production. In this context, the use of inducible promoters could overcome the problem 
because the transgenic expression can only be activated when a high cell density is achieved.   
The important properties of biodiesel such as cetane number, viscosity, cold flow, oxidative 
stability, are largely determined by the composition and structure of fatty acid esters which 
in turn are determined by the characteristics of fatty acids of biodiesel feedstocks, for 
example carbon chain length and unsaturation degree (Knothe, 2005b). Thus, the genetic 
modification of algal fatty acid composition is of also great interest. Generally, saturated 
fatty esters possess high cetane number and superior oxidative stability; whereas 
unsaturated, especially polyunsaturated fatty esters have improved low-temperature 
properties (Knothe, 2008). In this regard, it is suggested that the modification of fatty esters, 
for example the enhanced proportion of oleic acid (C18:1) ester, can provide a compromise 
solution between oxidative stability and low-temperature properties and therefore promote 
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the quality of biodiesel (Knothe, 2008, 2009). Oleic acid is converted to linoleic acid (C18:2) 
in a single desaturation step, catalyzed by a Δ12 desaturase enzyme encoded by the FAD2 
gene. Inactivation of this desaturation step can greatly increase the proportion of oleic acid 
in soybean and may represent a possible strategy for elevated accumulation of oleic acid in 
algae. 
Genetic engineering can also be used potentially to improve tolerance of algae to stress 
factors such as temperature, salinity and pH. These improved attributes will allow for the 
cost reduction in algal biomass production and be beneficial for growing selected algae 
under extreme conditions that limit the proliferation of invasive species. Photoinhibition is 
another technical challenge to be addressed by genetic engineering. When the light 
intensities exceed the value for maximum photosynthetic efficiency, algae show 
photoinhibition, a common phenomenon for phototrophy under which the growth rate 
slows down. Engineered algae with a higher threshold of light inhibition will significantly 
improve the economics of biodiesel production.  
Engineering algae for biodiesel production is currently still in its infancy. Significant 
advances have only been achieved in the genetic manipulation of some model algae. It is 
likely that many of these advances can be extended to industrially important algal species in 
the future, making it possible to use modified algae as cell factories for commercial biodiesel 
production. Nevertheless, many challenges yet remain open and should be addressed before 
profitable algal biodiesel become possible.    

5. Conclusion and perspectives 

Microalgae have the potential for the production of profitable biodiesel that can eventually 
replace petroleum based fuel. Algal-biodiesel production, however, is still too expensive to 
be commercialized as no algal strains are available possessing all the advantages for 
achieving high yields of oil via the economical open pond culturing system. Current studies 
are still limited to the selection of ideal microalgal species, optimization of mass cultivation, 
biomass harvest and oil extraction processes, which contribute to high costs of biodiesel 
production from microalgae. Future cost-saving efforts for algal-biofuel production should 
focus on the production technology of oil-rich algae via enhancing algal biology (in terms of 
biomass yield and oil content) and culture-system engineering coupled with advanced 
genetic engineering strategies and utilization of wastes. In addition to oils, microalgae also 
contain large amounts of proteins, carbohydrates, and other nutrients or bioactive 
compounds that can be potentially used as feeds, foods and pharmaceuticals. Integrating the 
production of such co-products with biodiesel is an appealing way to lowering the cost of 
algal-biofuel production.  

6. Acknowledgment 

This work was supported by a grant from Seed-Funding Programme for Basic Research of 
the University of Hong Kong. 

7. References 

Abdullah, A.Z.; Salamatinia, B.; Mootabadi, H.& Bhatia, S. (2009). Current status and 
policies on biodiesel industry in Malaysia as the world's leading producer of palm 
oil. Energy Policy, 37, 5440-5448. 

www.intechopen.com



 
Microalgae as Feedstocks for Biodiesel Production 

 

153 

Abou-Shanab, R.A.I.; Hwang, J.-H.; Cho, Y.; Min, B.& Jeon, B.-H. (2011). Characterization of 
microalgal species isolated from fresh water bodies as a potential source for 
biodiesel production. Applied Energy, In Press, DOI: 10.1016/j.apenergy.2011.01.060. 

Afify, A.; Shalaby, E.A.& Shanab, S.M.M. (2010). Enhancement of biodiesel production from 
different species of algae. Grasas Y Aceites, 61, 416-422. 

Ahmad, A.L.; Yasin, N.H.M.; Derek, C.J.C.& Lim, J.K. (2011). Microalgae as a sustainable 
energy source for biodiesel production: A review. Renewable and Sustainable Energy 
Reviews, 15, 584-593. 

Araujo, G.S.; Matos, L.J.B.L.; Gonçalves, L.R.B.; Fernandes, F.A.N.& Farias, W.R.L. (2011). 
Bioprospecting for oil producing microalgal strains: Evaluation of oil and biomass 
production for ten microalgal strains. Bioresource Technology, In Press, DOI: 
10.1016/j.biortech.2011.01.089. 

Banerjee, A.& Chakraborty, R. (2009). Parametric sensitivity in transesterification of waste 
cooking oil for biodiesel production--A review. Resources, Conservation and 
Recycling, 53, 490-497. 

Bigogno, C.; Khozin-Goldberg, I.; Boussiba, S.; Vonshak, A.& Cohen, Z. (2002). Lipid and 
fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest 
plant source of arachidonic acid. Phytochemistry, 60, 497-503. 

Boussiba, S.; Vonshak, A.; Cohen, Z.; Avissar, Y.& Richmond, A. (1987). Lipid and biomass 
production by the halotolerant microalga Nannochloropsis salina. Biomass, 12, 37-47. 

Brennan, L.& Owende, P. (2010). Biofuels from microalgae--A review of technologies for 
production, processing, and extractions of biofuels and co-products. Renewable and 
Sustainable Energy Reviews, 14, 557-577. 

Brown, M.R.; Dunstan, G.A.; Norwood, S.J.& Miller, K.A. (1996). Effects of harvest stage and 
light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal 
of Phycology, 32, 64-73. 

Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. 
Bioresource Technology, 98, 183-190. 

Chaiklahan, R.; Chirasuwan, N.; Loha, V.& Bunnag, B. (2008). Lipid and fatty acids 
extraction from the cyanobacterium Spirulina. Scienceasia, 34, 299-305. 

Checkbiotech (2009) Massive increase in global biofuel production. Available from: 
http://bioenergy.checkbiotech.org/news/massive_increase_global_biofuel_produ
ction. 

Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.& Chang, J.-S. (2011). Cultivation, 
photobioreactor design and harvesting of microalgae for biodiesel production: A 
critical review. Bioresource Technology, 102, 71-81. 

Chen, F.& Johns, M. (1991). Effect of C/N ratio and aeration on the fatty acid composition of 
heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 3, 203-209. 

Chen, G.-Q.; Jiang, Y.& Chen, F. (2008). Salt-induced alterations in lipid composition of 
diatom Nitzshia laevis (Bacillariophyceae). Journal of Phycology, 44, 1309-1314. 

Cheng, Y.; Zhou, W.; Gao, C.; Lan, K.; Gao, Y.& Wu, Q. (2009). Biodiesel production from 
Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae 
Chlorella protothecoides. Journal of Chemical Technology & Biotechnology, 84, 777-781. 

Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.& Das, K.C. (2010). Microalgae cultivation in a 
wastewater dominated by carpet mill effluents for biofuel applications. Bioresource 
Technology, 101, 3097-3105. 

www.intechopen.com



 
Biodiesel – Feedstocks and Processing Technologies 

 

154 

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. 
Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26, 126-

31. 
Chiu, S.Y.; Kao, C.Y.; Chen, C.H.; Kuan, T.C.; Ong, S.C.& Lin, C.S. (2008). Reduction of CO2 

by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. 
Bioresource Technology, 99, 3389-3396. 

Chiu, S.-Y.; Kao, C.-Y.; Tsai, M.-T.; Ong, S.-C.; Chen, C.-H.& Lin, C.-S. (2009). Lipid 
accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 
aeration. Bioresource Technology, 100, 833-838. 

Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.& Del Borghi, M. (2009). Effect of 
temperature and nitrogen concentration on the growth and lipid content of 
Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical 
Engineering and Processing: Process Intensification, 48, 1146-1151. 

Couto, R.M.; Simoes, P.C.; Reis, A.; Da Silva, T.L.; Martins, V.H.& Sanchez-Vicente, Y. 
(2010). Supercritical fluid extraction of lipids from the heterotrophic microalga 
Crypthecodinium cohnii. Engineering in Life Sciences, 10, 158-164. 

da Cunha, M.E.; Krause, L.C.; Moraes, M.S.A.; Faccini, C.S.; Jacques, R.A.; Almeida, S.R.; 
Rodrigues, M.R.A.& Caramao, E.B. (2009). Beef tallow biodiesel produced in a pilot 
scale. Fuel Process Technology, 90, 570-575. 

Dahlqvist, A.; Stahl, U.; Lenman, M.; Banas, A.; Lee, M.; Sandager, L.; Ronne, H.& Stymne, 
H. (2000). Phospholipid : diacylglycerol acyltransferase: An enzyme that catalyzes 
the acyl-CoA-independent formation of triacylglycerol in yeast and plants. 
Proceedings of the National Academy of Sciences, 97, 6487-6492. 

Damiani, M.C.; Popovich, C.A.; Constenla, D.& Leonardi, P.I. (2010). Lipid analysis in 
Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresource 
Technology, 101, 3801-3807. 

De la Hoz Siegler, H.; Ben-Zvi, A.; Burrell, R.E.& McCaffrey, W.C. (2011). The dynamics of 
heterotrophic algal cultures. Bioresource Technology, In Press, DOI: 
10.1016/j.biortech.2011.01.081. 

de Oliveira, D.; Di Luccio, M.; Faccio, C.; Dalla Rosa, C.; Bender, J.; Lipke, N.; Amroginski, 
C.; Dariva, C.& de Oliveira, J. (2005). Optimization of alkaline transesterification of 
soybean oil and castor oil for biodiesel production. Applied Biochemistry and 
Biotechnology, 122, 553-560. 

Demirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical 
methanol. Energy Conversion and Management, 43, 2349-2356. 

Demirbas, A. (2008). Biodiesel-a realistic fuel alternative for diesel engines. Springer - Verlag, 
London. 

Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and 
Management, 50, 14-34. 

Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51, 
2738-2749. 

Dias, J.M.; Alvim-Ferraz, M.C.M.& Almeida, M.F. (2009). Production of biodiesel from acid 
waste lard. Bioresource Technology, 100, 6355-6361. 

Diaz-Felix, W.; Riley, M.R.; Zimmt, W.& Kazz, M. (2009). Pretreatment of yellow grease for 
efficient production of fatty acid methyl esters. Biomass and Bioenergy, 33, 558-563. 

www.intechopen.com



 
Microalgae as Feedstocks for Biodiesel Production 

 

155 

D'Oca, M.G.M.; Viêgas, C.V.; Lemões, J.S.; Miyasaki, E.K.; Morón-Villarreyes, J.A.; Primel, 
E.G.& Abreu, P.C. (2011). Production of FAMEs from several microalgal lipidic 
extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass and 
Bioenergy, In Press, DOI: 10.1016/j.biombioe.2010.12.047. 

Dunahay, T.G.; Jarvis, E.E.& Roessler, P.G. (1995). Genetic transformation of the diatoms 
Cyclotella cryptica and Navicula saprophila. Journal of Phycology, 31, 1004-1012. 

Easterling, E.R.; French, W.T.; Hernandez, R.& Licha, M. (2009). The effect of glycerol as a 
sole and secondary substrate on the growth and fatty acid composition of 
Rhodotorula glutinis. Bioresource Technology, 100, 356-361. 

Ethier, S.; Woisard, K.; Vaughan, D.& Wen, Z. (2011). Continuous culture of the microalgae 
Schizochytrium limacinum on biodiesel-derived crude glycerol for producing 
docosahexaenoic acid. Bioresource Technology, 102, 88-93. 

Fan, K.-W.; Jiang, Y.; Faan, Y.-W.& Chen, F. (2007). Lipid characterization of Mangrove 
thraustochytrid - Schizochytrium mangrovei. Journal of Agricultural and Food 
Chemistry, 55, 2906-2910. 

Feng, Y.; Li, C.& Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in 
artificial wastewater medium. Bioresource Technology, 102, 101-105. 

Fukuda, H.; Kondo, A.& Noda, H. (2001). Biodiesel fuel production by transesterification of 
oils. Journal of Bioscience and Bioengineering, 92, 405-416. 

Fulke, A.B.; Mudliar, S.N.; Yadav, R.; Shekh, A.; Srinivasan, N.; Ramanan, R.; 
Krishnamurthi, K.; Devi, S.S.& Chakrabarti, T. (2010). Bio-mitigation of CO2, calcite 
formation and simultaneous biodiesel precursors production using Chlorella sp. 
Bioresource Technology, 101, 8473-8476. 

Gao, C.; Zhai, Y.; Ding, Y.& Wu, Q. (2010). Application of sweet sorghum for biodiesel 
production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87, 
756-761. 

Gerpen, J.V. (2005). Biodiesel processing and production. Fuel Process Technology, 86, 1097-
1107. 

Gouveia, L.; Marques, A.; da Silva, T.& Reis, A. (2009). Neochloris oleabundans UTEX #1185: a 
suitable renewable lipid source for biofuel production. Journal of Industrial 
Microbiology and Biotechnology, 36, 821-826. 

Gouveia, L.& Oliveira, A. (2009). Microalgae as a raw material for biofuels production. 
Journal of Industrial Microbiology and Biotechnology, 36, 269-274. 

Graef, G.; LaVallee, B.J.; Tenopir, P.; Tat, M.; Schweiger, B.; Kinney, A.J.; Gerpen, J.H.V.& 
Clemente, T.E. (2009). A high-oleic-acid and low-palmitic-acid soybean: agronomic 
performance and evaluation as a feedstock for biodiesel. Plant Biotechnology Journal, 
7, 411-421. 

Graham, L.E.; Wilcox, L.W.& Graham, J. (2009). Algae. 2nd ed. Benjamin Cummings, San 
Francisco, CA. 

Greenwell, H.C.; Laurens, L.M.L.; Shields, R.J.; Lovitt, R.W.& Flynn, K.J. (2010). Placing 
microalgae on the biofuels priority list: a review of the technological challenges. 
Journal of The Royal Society Interface, 7, 703-726. 

Griffiths, M.& Harrison, S. (2009). Lipid productivity as a key characteristic for choosing 
algal species for biodiesel production. Journal of Applied Phycology, 21, 493-507. 

www.intechopen.com



 
Biodiesel – Feedstocks and Processing Technologies 

 

156 

Guedes, A.; Meireles, L.; Amaro, H.& Malcata, F. (2010). Changes in lipid class and fatty acid 
composition of cultures of Pavlova lutheri, in response to light intensity. Journal of the 
American Oil Chemists' Society, 87, 791-801. 

Hawash, S.; Kamal, N.; Zaher, F.; Kenawi, O.& Diwani, G.E. (2009). Biodiesel fuel from 
Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel, 88, 
579-582. 

Herrero, M.; Mendiola, J.A.; Cifuentes, A.& Ibáñez, E. (2010). Supercritical fluid extraction: 
Recent advances and applications. Journal of Chromatography A, 1217, 2495-2511. 

Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.& Tiffany, D. (2006). Environmental, economic, 
and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the 
National Academy of Sciences, 103, 11206-11210. 

Ho, S.-H.; Chen, W.-M.& Chang, J.-S. (2010). Scenedesmus obliquus CNW-N as a potential 
candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101, 
8725-8730. 

Hsieh, C.-H.& Wu, W.-T. (2009). Cultivation of microalgae for oil production with a 
cultivation strategy of urea limitation. Bioresource Technology, 100, 3921-3926. 

Hu, C.; Li, M.; Li, J.; Zhu, Q.& Liu, Z. (2008a). Variation of lipid and fatty acid compositions 
of the marine microalga Pavlova viridis (Prymnesiophyceae) under laboratory and 
outdoor culture conditions. World Journal of Microbiology and Biotechnology, 24, 1209-
1214. 

Hu, Q. (2004). Environmental effects on cell composition. in: Handbook of microalgal culture, 
(Ed.) Richmond, A., Blackwell. Oxford, pp. 83-93. 

Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.& Darzins, A. 
(2008b). Microalgal triacylglycerols as feedstocks for biofuel production: 
perspectives and advances. Plant Journal, 54, 621-639. 

Huang, G.; Chen, F.; Wei, D.; Zhang, X.& Chen, G. (2010). Biodiesel production by 
microalgal biotechnology. Applied Energy, 87, 38-46. 

Huerlimann, R.; de Nys, R.& Heimann, K. (2010). Growth, lipid content, productivity, and 
fatty acid composition of tropical microalgae for scale-Up production. Biotechnology 
and Bioengineering, 107, 245-257. 

Jain, S.& Sharma, M.P. (2010). Prospects of biodiesel from Jatropha in India: A review. 
Renewable and Sustainable Energy Reviews, 14, 763-771. 

James, G.O.; Hocart, C.H.; Hillier, W.; Chen, H.; Kordbacheh, F.; Price, G.D.& Djordjevic, 
M.A. (2011). Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen 
deprivation. Bioresource Technology, 102, 3343-3351. 

Kawachi, M.; Inouye, I.; Honda, D.; O'Kelly, C.J.; Bailey, J.C.; Bidigare, R.R.& Andersen, R.A. 
(2002). The Pinguiophyceae classis nova, a new class of photosynthetic 
stramenopiles whose members produce large amounts of omega-3 fatty acids. 
Phycological Research, 50, 31-47. 

Khozin-Goldberg, I.; Bigogno, C.; Shrestha, P.& Cohen, Z. (2002). Nitrogen starvation 
induces the accumulation of arachidonic acid in the freshwater green alga 
Parietochloris incisa (trebuxiophyceae). Journal of Phycology, 38, 991-994. 

Khozin-Goldberg, I.& Cohen, Z. (2006). The effect of phosphate starvation on the lipid and 
fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. 
Phytochemistry, 67, 696-701. 

www.intechopen.com



 
Microalgae as Feedstocks for Biodiesel Production 

 

157 

Knothe, G. (2005b). Dependence of biodiesel fuel properties on the structure of fatty acid 
alkyl esters. Fuel Process Technology, 86, 1059-1070. 

Knothe, G. (2005a). Introduction: what is biodiesel. in: The biodiesel handbook, (Eds.) Knothe, 
G.;Gerpen, J.V.&Krahl, J., AOCS Press. Champaign, pp. 1-3. 

Knothe, G. (2008). "Designer" biodiesel: Optimizing fatty ester composition to improve fuel 
properties. Energy & Fuel, 22, 1358-1364. 

Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. 
Energy and Environmental Science, 2, 759-766. 

Lee, R.E. (2008). Phycology. Forth ed. Cambridge University Press, Cambridge. 
Levine, R.B.; Costanza-Robinson, M.S.& Spatafora, G.A. (2011). Neochloris oleoabundans 

grown on anaerobically digested dairy manure for concomitant nutrient removal 
and biodiesel feedstock production. Biomass and Bioenergy, In Press, DOI: 
10.1016/j.biombioe.2010.08.035. 

Li, M.; Gong, R.; Rao, X.; Liu, Z.& Wang, X. (2005). Effects of nitrate concentration on growth 
and fatty acid composition of the marine microalga Pavlova viridis 
(Prymnesiophyceae). Annals of Microbiology, 55, 51-55. 

Li, X.; Hu, H.-Y.; Gan, K.& Sun, Y.-X. (2010a). Effects of different nitrogen and phosphorus 
concentrations on the growth, nutrient uptake, and lipid accumulation of a 
freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494-5500. 

Li, Y.; Chen, Y.-F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.& Ruan, R. (2011b). 
Characterization of a microalga Chlorella sp. well adapted to highly concentrated 
municipal wastewater for nutrient removal and biodiesel production. Bioresource 
Technology, In Press, DOI: 10.1016/j.biortech.2011.01.091. 

Li, Y.; Han, D.; Hu, G.; Sommerfeld, M.& Hu, Q. (2010b). Inhibition of starch synthesis 
results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and 
Bioengineering, 107, 258-268. 

Li, Y.; Han, D.; Sommerfeld, M.& Hu, Q. (2011a). Photosynthetic carbon partitioning and 
lipid production in the oleaginous microalga Pseudochlorococcum sp. 
(Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102, 
123-129. 

Li, Y.; Horsman, M.; Wang, B.; Wu, N.& Lan, C. (2008). Effects of nitrogen sources on cell 
growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol 
Biotechnol, 81, 629-636. 

Liang, Y.; Sarkany, N.& Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris 
under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology 
Letters, 31, 1043-1049. 

Lin, Q.& Lin, J. (2011). Effects of nitrogen source and concentration on biomass and oil 
production of a Scenedesmus rubescens like microalga. Bioresource Technology, 102, 
1615-1621. 

Lin, Y.-H.; Chang, F.-L.; Tsao, C.-Y.& Leu, J.-Y. (2007). Influence of growth phase and 
nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch 
photoreactor. Biochemical Engineering Journal, 37, 166-176. 

Liu, J.; Huang, J.; Fan, K.W.; Jiang, Y.; Zhong, Y.; Sun, Z.& Chen, F. (2010). Production 
potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 
101, 8658-8663. 

www.intechopen.com



 
Biodiesel – Feedstocks and Processing Technologies 

 

158 

Liu, J.; Huang, J.; Sun, Z.; Zhong, Y.; Jiang, Y.& Chen, F. (2011). Differential lipid and fatty 
acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: 
Assessment of algal oils for biodiesel production. Bioresource Technology, 102, 106-
110. 

Liu, X.-J.; Jiang, Y.& Chen, F. (2005). Fatty acid profile of the edible filamentous 
cyanobacterium Nostoc flagelliforme at different temperatures and developmental 
stages in liquid suspension culture. Process Biochemistry, 40, 371-377. 

Liu, Z.-Y.; Wang, G.-C.& Zhou, B.-C. (2008). Effect of iron on growth and lipid accumulation 
in Chlorella vulgaris. Bioresour Technol, 99, 4717-4722. 

Mandal, S.& Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for 
biodiesel production. Applied Microbiology and Biotechnology, 84, 281-291. 

Mansour, M.P.; Volkman, J.K.& Blackburn, S.I. (2003). The effect of growth phase on the 
lipid class, fatty acid and sterol composition in the marine dinoflagellate, 
Gymnodinium sp. in batch culture. Phytochemistry, 63, 145-153. 

Mata, T.M.; Martins, A.A.& Caetano, N.S. (2010). Microalgae for biodiesel production and 
other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217-232. 

Matsumoto, M.; Sugiyama, H.; Maeda, Y.; Sato, R.; Tanaka, T.& Matsunaga, T. (2010). 
Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella 
sp. strain NKG400014 as potential sources for biodiesel production. Applied 
Biochemistry and Biotechnology, 161, 483-490. 

Meher, L.C.; Naik, S.N.; Naik, M.K.& Dalai, A.K. (2008). Biodiesel production using karanja 
(Pongamia pinnata) and jatropha (Jatropha curcas) seed oil. in: Handbook of plant-based 
biofuels, (Ed.) Pandey, A., CRC Press. Boca Raton, FL pp. 255-266. 

Miao, X.& Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource 
Technology, 97, 841-846. 

Moazami, N.; Ranjbar, R.; Ashori, A.; Tangestani, M.& Nejad, A.S. (2011). Biomass and lipid 
productivities of marine microalgae isolated from the Persian Gulf and the Qeshm 
Island. Biomass and Bioenergy, In Press, DOI: 10.1016/j.biombioe.2011.01.039. 

Molina Grima, E.; Belarbi, E.H.; Acién Fernández, F.G.; Robles Medina, A.& Chisti, Y. (2003). 
Recovery of microalgal biomass and metabolites: process options and economics. 
Biotechnology Advances, 20, 491-515. 

Mussgnug, J.H.; Klassen, V.; Schlüter, A.& Kruse, O. (2010). Microalgae as substrates for 
fermentative biogas production in a combined biorefinery concept. Journal of 
Biotechnology, 150, 51-56. 

Nakpong, P.& Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential 
feedstock for biodiesel production in Thailand. Renewable Energy, 35, 1682-1687. 

Napolitano, G.E. (1994). The relationship of lipids with light and chlorophyll measurements 
in freshwater algae and periphyton. Journal of Phycology, 30, 943-950. 

Oh, S.H.; Han, J.G.; Kim, Y.; Ha, J.H.; Kim, S.S.; Jeong, M.H.; Jeong, H.S.; Kim, N.Y.; Cho, 
J.S.; Yoon, W.B.; Lee, S.Y.; Kang, D.H.& Lee, H.Y. (2009). Lipid production in 
Porphyridium cruentum grown under different culture conditions. Journal of 
Bioscience and Bioengineering, 108, 429-434. 

Oner, C.& Altun, S. (2009). Biodiesel production from inedible animal tallow and an 
experimental investigation of its use as alternative fuel in a direct injection diesel 
engine. Applied Energy, 86, 2114-2120. 

www.intechopen.com



 
Microalgae as Feedstocks for Biodiesel Production 

 

159 

Órpez, R.; Martínez, M.E.; Hodaifa, G.; El Yousfi, F.; Jbari, N.& Sánchez, S. (2009). Growth of 
the microalga Botryococcus braunii in secondarily treated sewage. Desalination, 246, 
625-630. 

Ota, M.; Kato, Y.; Watanabe, H.; Watanabe, M.; Sato, Y.; Smith Jr, R.L.& Inomata, H. (2009). 
Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the 
presence of inorganic carbon and nitrate. Bioresource Technology, 100, 5237-5242. 

Pahl, S.L.; Lewis, D.M.; Chen, F.& King, K.D. (2010). Heterotrophic growth and nutritional 
aspects of the diatom Cyclotella cryptica (Bacillariophyceae): Effect of some 
environmental factors. Journal of Bioscience and Bioengineering, 109, 235-239. 

Patil, P.D.& Deng, S. (2009). Optimization of biodiesel production from edible and non-
edible vegetable oils. Fuel, 88, 1302-1306. 

Phan, A.N.& Phan, T.M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490-
3496. 

Piorreck, M.& Pohl, P. (1984). Preparatory experiments for the axenic mass-culture of 
microalgae. 2. Formation of biomass, total protein, chlorophylls, lipids and fatty-
acids in green and blue green-algae during one growth-phase. Phytochem, 23, 217-
223. 

Pruvost, J.; Van Vooren, G.; Cogne, G.& Legrand, J. (2009). Investigation of biomass and 
lipids production with Neochloris oleoabundans in photobioreactor. Bioresource 
Technology, 100, 5988-5995. 

Pruvost, J.; Van Vooren, G.; Le Gouic, B.; Couzinet-Mossion, A.& Legrand, J. (2011). 
Systematic investigation of biomass and lipid productivity by microalgae in 
photobioreactors for biodiesel application. Bioresource Technology, 102, 150-158. 

Pushparaj, B.; Buccioni, A.; Paperi, R.; Piccardi, R.; Ena, A.; Carlozzi, P.& Sili, C. (2008). Fatty 
acid composition of Antarctic cyanobacteria. Phycologia, 47, 430-434. 

Queiroz, M.I.; Hornes, M.O.; da Silva-Manetti, A.G.& Jacob-Lopes, E. (2011). Single-cell oil 
production by cyanobacterium Aphanothece microscopica Nägeli cultivated 
heterotrophically in fish processing wastewater. Applied Energy, In Press, DOI: 
10.1016/j.apenergy.2010.12.047. 

Rabbani, S.; Beyer, P.; Lintig, J.v.; Hugueney, P.& Kleinig, H. (1998). Induced beta -carotene 
synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella 
bardawil. Plant Physiology, 116, 1239-1248. 

Radakovits, R.; Jinkerson, R.E.; Darzins, A.& Posewitz, M.C. (2010). Genetic Engineering of 
Algae for Enhanced Biofuel Production. Eukaryotic Cell, 9, 486-501. 

Ranganathan, S.V.; Narasimhan, S.L.& Muthukumar, K. (2008). An overview of enzymatic 
production of biodiesel. Bioresource Technology, 99, 3975-3981. 

Rashid, U.& Anwar, F. (2008). Production of biodiesel through optimized alkaline-catalyzed 
transesterification of rapeseed oil. Fuel, 87, 265-273. 

REN21. (2010) Renewables Global Status Report. Available from: 
 http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR_2010_full_revised%20Sept

2010.pdf. 
Renaud, S.M.; Thinh, L.-V.; Lambrinidis, G.& Parry, D.L. (2002). Effect of temperature on 

growth, chemical composition and fatty acid composition of tropical Australian 
microalgae grown in batch cultures. Aquaculture, 211, 195-214. 

Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.& Tredici, M.R. 
(2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor 

www.intechopen.com



 
Biodiesel – Feedstocks and Processing Technologies 

 

160 

mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengneering, 102, 
100-112. 

Roessler, P.G. (1988). Changes in the activities of various lipid and carbohydrate 
biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon 
deficiency. Archives of Biochemistry and Biophysics, 267, 521-528. 

Ross, A.B.; Jones, J.M.; Kubacki, M.L.& Bridgeman, T. (2008). Classification of macroalgae as 
fuel and its thermochemical behaviour. Bioresource Technology, 99, 6494-6504. 

Saha, S.K.; Uma, L.& Subramanian, G. (2003). Nitrogen stress induced changes in the marine 
cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiolgy Ecolology, 45, 263-
72. 

Sahoo, P.K.& Das, L.M. (2009). Process optimization for biodiesel production from Jatropha, 
Karanja and Polanga oils. Fuel, 88, 1588-1594. 

Saka, S.& Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical 
methanol. Fuel, 80, 225-231. 

Sato, N.; Hagio, M.; Wada, H.& Tsuzuki, M. (2000). Environmental effects on acidic lipids of 
thylakoid membranes. in: Recent advances in biochemistry of plant lipids, (Eds.) 
Harwood, J.L.&Quinn, P.J., Portland Press. London, pp. 912-914. 

Shafiee, S.& Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37, 
181-189. 

Sheehan, J.; Dunahay, T.; Benemann, J.& Roessler, P. 1998. A look back at the U.S. 
Department of Energy's aquatic species programme - Biodiesel from algae, Report 
No. NREL/TP-580-24190; National Renewable Energy Laboratory: Golden, CO. 

Singhania, R.R.; Parameswaran, B.& Pandey, A. (2008). Plant-based bioufuels: an 
introduction. in: Handbook of plant-based biofuels, (Ed.) Pandey, A., CRC Press. Boca 
Raton, FL, pp. 3-12. 

Sobczuk, T.M.& Chisti, Y. (2010). Potential fuel oils from the microalga Choricystis minor. 
Journal of Chemical Technology and Biotechnology, 85, 100-108. 

Solovchenko, A.; Khozin-Goldberg, I.; Didi-Cohen, S.; Cohen, Z.& Merzlyak, M. (2008). 
Effects of light intensity and nitrogen starvation on growth, total fatty acids and 
arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied 
Phycology, 20, 245-251. 

Somerville, C. (1995). Direct tests of the role of membrane lipid composition in low-
temperature-induced photoinhibition and chilling sensitivity in plants and 
cyanobacteria. Proceedings of the National Academy of Sciences, 92, 6215-8. 

Sukenik, A.; Carmeli, Y.& Berner, T. (1989). Regulation of fatty acid composition by 
irradiance level in the eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25, 
686-692. 

www.intechopen.com



Biodiesel - Feedstocks and Processing Technologies

Edited by Dr. Margarita Stoytcheva

ISBN 978-953-307-713-0

Hard cover, 458 pages

Publisher InTech

Published online 09, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book "Biodiesel: Feedstocks and Processing Technologies" is intended to provide a professional look on

the recent achievements and emerging trends in biodiesel production. It includes 22 chapters, organized in

two sections. The first book section: "Feedstocks for Biodiesel Production" covers issues associated with the

utilization of cost effective non-edible raw materials and wastes, and the development of biomass feedstock

with physical and chemical properties that facilitate it processing to biodiesel. These include Brassicaceae

spp., cooking oils, animal fat wastes, oleaginous fungi, and algae. The second book section: "Biodiesel

Production Methods" is devoted to the advanced techniques for biodiesel synthesis: supercritical

transesterification, microwaves, radio frequency and ultrasound techniques, reactive distillation, and optimized

transesterification processes making use of solid catalysts and immobilized enzymes. The adequate and up-

to-date information provided in this book should be of interest for research scientist, students, and

technologists, involved in biodiesel production.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jin Liu, Junchao Huang and Feng Chen (2011). Microalgae as Feedstocks for Biodiesel Production, Biodiesel -

Feedstocks and Processing Technologies, Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-713-0, InTech,

Available from: http://www.intechopen.com/books/biodiesel-feedstocks-and-processing-

technologies/microalgae-as-feedstocks-for-biodiesel-production



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


