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1. Introduction 

The gas turbine is an engine which produces a great amount of energy depending upon its 

size and weight. Gas turbines are used for aircraft propulsion and land based power 

generation. Thermal efficiency and power output (power density) of gas turbines increase 

with increasing turbine rotor inlet temperatures (RIT). Today there are gas turbines, which 

run on natural gas, diesel fuel, naphtha, methane, crude, low-Btu gases, vaporized fuel oils, 

and biomass gases. The last 20 years has seen a large growth in gas turbine technology 

which is mainly due to growth of materials technology, new coatings, and new cooling 

schemes. In a simple gas turbine cycle (Figure 1), low pressure air is drawn into a 

compressor (state 1) where it is compressed to a higher pressure (state 2). Fuel is added to 

the compressed air and the mixture is burnt in a combustion chamber. The resulting hot 

products enter the turbine (state 3) and expand to state 4 and the air exhausts. Most of the 

work produced in the turbine is used to run the compressor and the rest is used to run 

auxiliary equipment and to produce power. Figure 2 shows schematic of cross section of a 

small gas turbine. 

 

 

Fig. 1. Schematic of open Gas turbine cycle. 

www.intechopen.com



 
Advances in Gas Turbine Technology 

 

192 

 

Fig. 2. A schematic of a cutaway of a small gas turbine.  

2. Concept and the need for turbine blade cooling 

The gas turbine engines operate at high temperatures (1200-1600 °C) to improve thermal 
efficiency and power output. As the turbine inlet temperature increases, the heat transferred 
to the turbine blades increases. The above operating temperatures are far above the 
permissible metal temperatures. Therefore, there is a need to cool the turbine blades for safe 
operation. The blades are cooled by extracted air from the compressor of the engine. Gas 
turbine blades are cooled internally and externally. Internal cooling is achieved by passing 
the coolant through several enhanced serpentine passages inside the blades and extracting 
the heat from outside the blades. Both jet impingement cooling and pin fin cooling are used 
as a method of internal cooling. External cooling is also called film cooling. Figure 3 and 4 
show different types of turbine blade cooling. The cooling system must be designed to 
ensure that the maximum blade surface temperatures during operation are compatible with 
the maximum blade thermal stress.  
 

 

Fig. 3. Schematic of the modern gas turbine with common cooling blade techniques. 
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3. Typical turbine cooling system 

The cooling air is bled from the compressor and is directed to the stator, the rotor, and other 
parts of the turbine rotor and casing to provide adequate cooling. The effect of coolant on 
the aerodynamics depends on the type of cooling involved. An example of a typical cooling 
system is shown in Figure 4. 
 

 

Fig. 4. Typical cooled aircraft gas turbine blade of three dimensions. 

4. Jet impingement cooling  

Jet impinging on the inner surfaces of the airfoil through tiny holes in the impingement 

insert is a common, highly efficient cooling technique for first-stage vanes. Impingement 

cooling is very effective because the cooling air can be delivered to impinge on the hot 

region. Jet impingement cooling can be used only in the leading-edge of the rotor blade, due 

to structure constraints on the rotor blade under high speed rotation and high centrifugal 

loads. Schematic of the impingement jet of the leading edge gas turbine blade is shown in 

Figure 5.  

Several arrangements are possible with cooling jets and different aspects need to be 

considered before optimizing an efficient heat transfer design. Some of the research studies 

have focused on the effects of jet-hole size and distribution, cooling channel cross-section, 

and the target surface shape on the heat transfer coefficient distribution. 

Wide range of parameters affect the heat transfer distribution, like impinging jet Re, jet size, 
target surface geometry, spacing of the target surface from the jet orifices, orifice-jet plate 
configuration, outflow orientation, etc. Literature indicates that many of these parameters 
have been studied in appreciable depth [1-20].  
Chupp et al. [1] studied the heat transfer characteristics for the jet impingement cooling of 

the leading edge region of a gas turbine blade. Flourscheutz et al. [2] investigated the heat 

transfer characteristics of jet array impingement with the effect of initial crossflow. Metzger 

and Bunker [3] and Flourscheutz et al [4] used the liquid crystal technique to study the local 

heat transfer coefficients. The authors observed that the jet Nusselt number depends mainly 

on the jet Re.   
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Fig. 5. Schematic of the impingement jet of the leading edge gas turbine blade. 

Dong et al [5] determined experimentally the heat transfer characteristics of a premixed 
butane/air flame jet impinging upwards on an inclined flat plate at different angles of 
inclination and fixed Reynolds number (Re = 2500) and a plate to nozzle distance of 5d. It 
was found that  decrease in angle of incidence reduced the average heat transfer. Rasipuram 
and Nasr [6] studied air jet issuing out of defroster's nozzles and impinging on inclined 
windshield of a vehicle. The overall heat transfer coefficient of the inclined surface for the 
configuration with one rectangular opening was found to be 16% more than that for the 
configuration with two rectangular openings. Beitelmal et al [7] investigated the effect of 
inclination of an impinging air jet on heat transfer characteristics. They found that 
maximum heat transfer shifts towards the uphill side of the plate and the maximum Nusselt 
number (Nu) decreases as the inclination angle decreases. Roy and Patel [8] studied the 
effect of jet angle impingement on local Nu and nozzle to target plane spacing at different 
Re. They found that heat transfer is the maximum through the shear layer formed near the 
jet attachment stagnation region. Ekkad et al [9] studied the effect of impinging jet angle ±45 
on target surface by using transient liquid crystal technique for single Re = 1.28×104. It has 
been noted that the orthogonal jets provide higher Nu as compared to angled jets.  
Tawfek [10] investigated the effect of jet inclination on the local heat transfer under an 
obliquely impinging round air jet striking on circular cylinder. Their results indicated that 
with increase in inclination, the upstream side of heat transfer profile dropped more rapidly 
than the downstream side. Seyedein et.al. [11] performed numerical simulation of two 
dimensional flow fields and presented the heat transfer due to laminar heated multiple slot 
jets discharging normally into a converting confined channel by using finite difference 
method with different Re(600-1000) and angle of inclination (0-20°). Yang and Shyu [12] 
presented numerical predictions of heat transfer characteristics of multiple impinging slot 
jets with an inclined confinement surface for different angles of inclination and different Re. 
Yan and Saniei [13] dealt with measurement of heat transfer coefficient of an impinging 
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circular air jet to a flat plate for different oblique angles (45-90°) and different Re (10000 & 
23000) by using transient liquid crystal technique.  
Hwang et. al [14] studied the heat transfer in leading edge triangular duct by an array of 
wall jets with different Re (3000-12600) and jet spacing s/d (1.5-6) by using transient liquid 
crystal technique on both principal walls forming the apex. Results show that an increase in 
Re increases the Nu on both walls. Ramiraz et al [15] investigated the convective heat 
transfer of an inclined rectangular plate with blunt edge at various Re (5600-38500) and 
angle of inclination (60-70°). The heat transfer distribution over a finite rectangular plate 
was found to be very much dependent on the orientation of the plate. Stevens and Webb 
[16] examined the effect of jet inclination on local heat transfer under an obliquely 
impinging round free liquid jet striking at different Re, angle of inclination, and nozzle sizes. 
It was found that the point of maximum heat transfer along the x-axis gets shifted upstream.  
Hwang and Cheng [17] performed an experimental study to measure local heat transfer 
coefficients in leading edge using transient liquid crystal technique. Three right triangular 
ducts of the same altitude and different apex angles (30º, 45º & 60º) were tested for various 
jet Re (3000 ≤Re≤12000) and different jet spacing (s/d=3 and 6). Hwang and Cheng [18] 
measured experimentally local heat transfer coefficients on two principal walls of triangular 
duct with swirl motioned airflow induced by multiple tangential jets from the side entry of 
the duct by using transient liquid crystal technique. Hwang and Chang [19] measured heat 
transfer coefficients on two walls by using transient liquid crystal technique in triangular 
duct cooled by multiple tangential jets. The results show that an increase in Re, increases 
heat transfer of both walls. Hwang and Cheng [20] studied heat transfer characteristics in a 
triangular duct cooled by an array of side-entry tangential jets. 
It is evident from the published literature that no study has been conducted to show the 
effect of different orifice-jet plate configurations on feed channel aspect ratio with different 
jet Re, for a given outflow orientation (diameter of jet, d = 0.5 cm) on heat transfer in a 
channel with inclined heated target surface. Therefore, the following sections include 
investigation of the above effects by conducting the experimental work. Specifically, the 
work includes the effect of three orifice-jet plate configurations (centered holes, staggered 
holes, tangential holes) and three feed channel aspect ratios (H/d=5, 7, and 9) on the heat 
transfer characteristics for a given outflow orientation (with outflow passing in both the 
directions) and for a different Reynolds number with inclined heated target surface. The 
motivation behind this work is that the channel of turbine blade internal cooling circuit at 
the leading edge is inclined. 

4.1 Description of the experimental set-up  

The schematic of the experimental set-up is depicted in Figure 6. The test rig used to study 
the heat transfer characteristics has been constructed using Plexi-glass. The test section 
consists of two channels, impingement (10) and the feed channel (9). Air enters the test 
section in the feed channel and is directed onto the heated copper plates in the impingement 
channel to study the heat transfer characteristics. The target plates (11), made of copper, 
were heated using a constant flux heater. The other side of the heater was insulated to get 
the heat transferred only in one direction. The mass flow rate of the compressed air (1) 
entering the test section was passed through a settling chamber (5) and was controlled with 
the help of valves (2). The pressure drop was measured using the pressure gauges (4). Gas 
flow meter (7) was used to measure the mass flow rate entering the test rig which was 
protected by the air filters (6) of 50 capacity. 
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The average surface temperature of each copper plate was determined from the readings of 
two T-type thermocouples (12) installed in the holes drilled at the back surface of the plates 
to within 1 mm of the surface in depth. The analog signals generated by these temperature 
sensors were transmitted to the signal-conditioning unit where they were selectively 
processed. The resulting analog signals were converted into digital signals by a DAQ (13) 
card and recorded with application software developed in LabView. 
 

 

Fig. 6. Schematic of the test section 

Figure 7.shows the three-dimensional sketch of the test section. It consists of two channels 

joined by the orifice plate, which has a single array of equally spaced (centered or staggered 

or tangential) orifice jets shown in Figure 8. The jet orifice plate thickness is twice the jet 

diameter. There are 13 jets on the orifice plate. The jet-to-jet spacing is 8 times the jet 

diameter and the orifice jet diameter 0.5d cm . The length of the test section is 106.5 cm. The 

width of the feed channel (H) was varied from 2.5 to 4.5 cm (i.e. H/d=5, 7, 9, d=0.5 cm). The 

impingement target surface constitutes a series of 13 copper plates, each with 4.2   4.1 cm in 

size, arranged in accordance with the orifice jets such that the impingement jet hits the 

geometric center of the corresponding plate (however, first and last copper plates are 

slightly different in sizes). All the copper plates are separated from each other by 1 mm 

distance to avoid the lateral heat conduction, thus dividing the target surface into segments. 

The thickness of the copper plate is 0.5 cm. As shown in Figure 9, the length of impingement 

surface L is 57.3 cm (the target surface is inclined at angle 1.5º,  the width of parallel flow 

side “S2” is 2 cm and the width of the opposite flow side  “S1” is 3.5 cm).   
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Fig. 7. Three-dimensional view of the test section 

 
 
 

 

Fig. 8. Illustration of three orifice-jet configurations with single array of jets (d = 5 mm) (Fig. 
8a Centered holes, Fig. 8b Staggered holes, Fig. 8c Tangential holes) 
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θ

 

Fig. 9. Inclination angle of the target surface 

Figure 10 shows the schematic of the three different outflow orientations. The upper channel 
is called as the feed channel and the lower channel in which the jets impinge on the target 
surface is called as the impingement channel. The exit of jets in three different outflow 
orientations from the impingement channel creates different cross-flow effects as shown in 
Fig. 10. However, in the present study, attention is focused on Case – 3.  
Case - 1 (Outflow coincident with the entry flow),  
Case - 2 (Outflow opposing to the entry flow),  
Case - 3 (Outflow passes out in both the directions). 
 

 

Fig. 10. Illustration of three exit outflow orientations Figure 10a, Case-1 (Outflow Coincident 
with the inlet flow). Figure 10b, Case-2 (Outflow Opposing to the inlet flow). Figure 10c, 
Case-3 (Outflow Passes out in both directions). 
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Figure 11 shows the details of the construction of the target surface. The copper plate is 
heated with a constant flux heater held between the wooden block and the copper plate by 
glue (to reduce contact resistance). The ends were sealed with a rubber material to avoid 
lateral heat losses. The wooden block was 3 cm thick to minimize the heat lost to the 
surroundings, so that the heat is transferred completely to copper plates only. 
 

0.5 cm

3 cm

Wood insulation

Impingement plates

Constant flux heater

Heat transfer

to jets, actQ
radQRadiation,

condQConduction,
 

Fig. 11. Overall energy balance over a small element of the impingement plate 

4.2 Experimental procedure  

To start with, tests were carried out using a given orifice-jet plate (centered or staggered or 

tangential holes) with jet diameter 0.5d cm  for a given jet Reynolds numbers Re = 18800 

(for a given H/d ratio, for outflow passing in both directions) and for a constant heat flux 

power input. The heated target plate was oriented at a pre-defined angle (1.5º). The mass 

flow rate was adjusted to the required value for the experiment to be conducted and the air 

was blown continuously into the test section. Heat was supplied to the copper plates with 

electric resistive constant flux heaters from backside to provide uniform heat flux. The 

temperature of the copper plates was measured by two thermocouples mounted in a groove 

of 2.5 mm on the back of the copper plates. Thus the temperature of a particular plate has 

been taken as the average of the reading of two thermocouples. The temperature of the 

copper plates, pressure, temperature of the air at the inlet, and the mass flow rate were 

continuously monitored. After the temperature of the copper plates reached the steady state 

condition, all the data was collected with Lab VIEW program. The Nusselt number was then 

calculated based upon the collected data. The same procedure was repeated for the three 

different orifice-jet plates described in Figures 8a, 8b & 8c and for different aspect ratios 

(H/d = 5, 7, 9). 

4.3 Data reduction and uncertainty analysis 

The collected data was subjected to uncertainty analysis. The method for performing the 

uncertainty analysis for the present experimental investigation has been taken from Taylor 

B.N. [21]. The theory for the current uncertainty analysis is summarized in the following 

discussion: 
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4.4 Jet reynolds number calculations 

The average velocity used to calculate the jet Reynolds number is calculated using the 
following equation 

 avg
2

V π
13 d

4





 (1) 

The data reduction equation for the jet Reynolds number is taken as: 

 
avg

2

ρV d ρ d
Re πμ μ

13 d
4


 


 (2) 

4.5 Uncertainty in jet reynolds number 

Taking into consideration only the measured values, which have significant uncertainty, the 
jet Reynolds number is a function of orifice jet diameter and volume flow rate and is 
expressed mathematically as follows: 

 Re f( ,d)   (3) 

Density and dynamic viscosity of air is not included in the measured variables since it has 
negligible error in the computation of the uncertainty in jet Reynolds number. The 
uncertainty in Reynolds number has been found to be about 2.2 %.  

4.6 Nusselt number calculations 

The total power input to all the copper plates was computed using the voltage and current, 

the former being measured across the heater, using the following equation: 

 
2

total

V
Q VI

R
   (4) 

The heat flux supplied to each copper plate was calculated using: 

 " total

total

Q
q

A
  (5) 

The heater gives the constant heat flux for each copper plate. The heat supplied to each 

copper plate from the heater is calculated using the following procedure: 

 "
cp,i cp,iQ q A   (6) 

Where, i is the index number for each copper plate. The heat lost by conduction through the 

wood and to the surrounding by radiation is depicted in Figure 5 and has been estimated 

using the following equations for each plate. 

 
s,i w

cond,i wood cp,i

(T T )
Q k A

t


  (7) 
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 4 4
rad,i cp,i s,i surrQ εσA (T T )   (8) 

The actual heat supplied to each copper plate has been determined by deducting the losses 
from the total heat supplied to the heater. 

 
actual,i cp,i cond,i rad,iQ Q (Q Q )    (9) 

The local convective heat transfer coefficient for each of the copper plate has been calculated 
using: 

 actual,i

i
cp,i s,i in

Q
h

A (T T )



 (10) 

The average temperature of the heated target surface ,s iT  has been taken as the average of 

the readings of the two thermocouples fixed in each copper plate. To calculate h, inT  has 

been considered instead of the bulk temperature or the reference temperature. For a given 

case (for a given Re, H/d, and orifice-jet plate) Tin is fixed. It is measured at the test section 

inlet, where the air first enters the feed channel. The non-dimensional heat transfer 

coefficient on the impingement target surface is represented by Nusselt number as follows: 

 i
i

air

h d
Nu

k
  (11) 

The hydraulic diameter has been taken as the diameter of the orifice jet. The data reduction 
equation for the Nusselt number is considered along with the heat losses by conduction and 
radiation. 

 

2
4 4w

s,i w s,i Surr
total

i
air s,i in

kV
(T T ) εσ(T T )

R A td
Nu

k (T T )

 
    

   
  
 

 (12) 

4.7 Uncertainty in nusselt number  

Temperature of the wood has a very less effect on the uncertainty of heat transfer coefficient 

due to the large thickness of the wood and also due to the insulation material attached to the 

wooden block. Temperature of the surroundings and emissivity also has less effect on the 

uncertainty as the work was carried out in a controlled environment and the temperature of 

the surroundings was maintained within 21-23 C  through out the experiment. The 

standard uncertainty in the Nusselt number neglecting the covariance has been calculated 

using the following equation: 

 

 
i s,i

in total

22 2
2

i i i
c,Nu V R T

s,i

222

i i i
T A d

in total

Nu Nu Nu
U u u u

V R T

Nu Nu Nu
u u u

T A d

                      

     
      

       

 (13) 
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Uncertainty propagation for the dependent variable in terms of the measured values has 

been calculated using the Engineering equation Solver (EES) software. The measured 

variables 1 2,x x  etc. have a random variability that is referred to as its uncertainty. The 

uncertainty in Nusselt number in the present study has been found to vary between ± 6 % 

depending upon the jet velocity. 

5. Results and discussions 

Jet impingement heat transfer is dependent on several flow and geometrical parameters. The 
jet impingement Nusselt number is presented in a functional form as follows: 

 
 i

i
air

X HRe, , ,h d d dNu f
k

  
   
    outflow orientation

 (14) 

Where, Re is the flow parameter, jet spacing to the diameter ratio (X/d) is the geometric 
parameter. The flow exit direction and target surface geometry are also important 
parameters having a considerable impact on impingement heat transfer.  
The X location starts from the supply end of the channel as shown in Figure 7. For the case 1 
shown in Figure 10a, flow enters at X/d = 109.3 and exits at X/d = 0. For case 2 (Figure 10b), 
flow exits at X/d = 109.3. For case 3 (Figure 10c), flow exits at both ends (X/d = 0 and X/d = 
109.3). The flow is fully developed before entering the orifice jets. However, in the present 
study attention is focused on Case – 3 (out- flow passing out in both directions).  

5.1 Effect of orifice-jet-plate configuration on feed channel aspect ratio    

Figures 12-14 show the local Nusselt number distribution for three orifice-jet plate 
configurations and for three H/d ratios as a function of non-dimensional location X/d on 
the heated target surface (for outflow passing in both directions as shown in Figure 10c, and 
for a given Re= 18800). 
Figure 12 shows the effect of feed channel aspect ratio (H/d) on local Nusselt number for 
Re=18800 for orifice jet plate with centered holes. It can be observed that, H/d=9 gives the 
maximum heat transfer over the entire length of the target surface as compared to all feed 
channel aspect ratio studied. H/d=9 gives 1% more heat transfer from the target surface as 
compared to H/d=5. Whereas H/d=5 gives of 1% increase in heat transfer as compared to 
H/d=7. 
Figure 13 shows the effect of feed channel aspect ratio (H/d) on local Nusselt number for 
Re=18800 for orifice jet plate with staggered jets. It can be observed that, H/d=9 gives the 
maximum heat transfer over the entire length of the target surface as compared to all feed 
channel aspect ratio studied. H/d=9 gives 1% more heat transfer from the target surface as 
compared to H/d=5,  whereas H/d=5 gives of 6% increase in heat transfer as compared to 
H/d=7.  
Figure 14 shows the effect of feed channel aspect ratio (H/d) on local Nusselt number for 
Re=18800 for orifice jet plate with tangential holes. It can be observed that, H/d=9 gives the 
maximum heat transfer over the entire length of the target surface as compared to other feed 
channel aspect ratio studied. H/d=9  gives 3% more heat transfer from the target surface as 
compared to H/d=7, whereas H/d=7 gives of 6% increase in heat transfer as compared to 
H/d=5.  
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Fig. 12. Nusselt number variation for different aspect ratios and for  outflow passing in both 
directions (for jet-orifice plate with  centered holes and for Re =18800) 
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Fig. 13. Nusselt number variation for different  aspect ratios and for outflow passing out in 
both directions (for jet-orifice plate  with staggered holes and for Re =18800) 
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Fig. 14. Nusselt number variation for different aspect ratios and for  outflow passing in both 
directions (for jet-orifice plate  with tangential holes and for Re =18800) 

5.2 Effect of orifice-jet-plate configuration on local nusselt number   

Figures 12-14 also show the effect of the orifice jet plate configurations for different feed 

channel aspect ratios on local Nusselt number (Nu) along the surface of target surface. 

Orifice jet plate with centered holes has been found to give better heat transfer 

characteristics as compared to other plates. For H/d=5, Nu increases in percentage from 

staggered orifice plate to centered orifice plate by 7% and Nu increases in percentage from 

tangential orifice plate to staggered orifice plate by 18%. For H/d=7, Nu increases in 

percentage from staggered orifice plate to centered orifice plate by 11% and Nu increases in 

percentage from tangential orifice plate to staggered orifice plate by 6%. For H/d=9, Nu 

increases in percentage from staggered orifice plate to centered orifice plate by 6% and Nu 

increases in percentage from tangential orifice plate to staggered orifice plate by 10%. 

For a given situation (H/d=9, Re=18800 and Case-3) the peak value of local Nusselt number 

is 36.63 at X/d=49.2 for centered jets. Nu is 34.69 at X/d=66 for staggered jets. Nu is 31.03 at 

X/d=49.2 for tangential jets. 

www.intechopen.com



 
Jet Impingement Cooling in Gas Turbines for Improving Thermal Efficiency and Power Density 

 

205 

5.3 Effect of orifice-jet-plate configuration and re on averaged nusselt number  

The average Nu is the average of Nu of all 13 copper plates on the target surface for a given 

situation (i.e. for a given Re, H/d, orifice-jet configuration, outflow orientation). 

Figure 15 shows the effect of different orifice jet plate configurations on average Nusselt 

number for outflow orientation Case-3 (outflow passing out in both directions), for different 

jet Reynolds numbers and for H/d=9. The Nusselt number has been found to increase with 

increase in Reynolds number. In general, the percentage increase in average Nusselt number 

in going from Plate-3 to Plate-2 is 11% and in going from Plate-2 to Plate-1 is 11%. This 

indicates that Plate-1 (centered orifice-jet configuration) gives higher average Nu as 

compared to other plates. 
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Fig. 15. Average Nusselt number distribution for different jet Re and for different orifice-jet 
plate configurations (for aspect ratio H/d=9, for outflow passing out in both directions – 
Case 3) 
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It is difficult to find out the exact experimental set-up in the literature which has been 

developed in the present study for comparison of results, however, attempt has been made 

to make some comparison. Figure 16 compares the results of the present study with archival 

results of Huang et.al [22] for different jet Re and for different outflow orientations (for a 

given jet-orifice plate with centered jets). Huang’s study focused on multiple array jets, 

however our study concentrated on single array of centered/staggered/tangential jets (with 

an inclined target surface). Florschuetz [4] studied experimentally heat transfer distributions 

for jet array impingement. He considered circular jets of air impinging on heat transfer 

surface parallel to the jet orifice plate. The air after impingement was constrained in a single 

direction. Florschuetz presented Nu for centered and staggered hole patterns. 
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Fig. 16. Comparison of Average Nusselt number of present study with other studies for 
different jet Re and different orifice-jet plate configurations (for aspect ratio H/d=9, outflow 
in both directions – Case 3) 
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6. Conclusions 

The above experimental work has discussed in appreciable depth the effect of orifice-jet 
plate configurations on feed channel aspect ratios (H/d) and on Nusselt number in a 
channel with inclined target surface cooled by single array of impinging jets (with outflow 
passing out in both radial directions). In general, it has been observed that Nu is high for 
higher aspect ratios. For a given plate-1 with single array of equally spaced centered jets 
and for Re=18800 (outflow passing in both directions), the local Nu for H/d=9 has been 
found to be greater than Nu of H/d=7 by 5%. The average Nu of plate-1 (centered holes) 
has been observed to be greater as compared to the Nu of other plate configuration (for a 
given Re, H/d, and outflow orientation parallel to inlet flow). The averaged Nusselt 
number has been found to increase with in jet Re regardless of orifice-jet plate 
configuration. The percentage increase in average Nu has been found to be about 11% 
with centered holes as compared staggered orifice-jet plate. The percentage increase in 
average Nu has been found to be about 11% with staggered jet-plate as compared to 
tangential orifice-jet plate configuration. It can be inferred that from the above results that 
invariably (for different combinations impinging jet Re, feed channel aspect ratio, spacing of the 
target surface from the jet orifices, orifice-jet plate configuration, outflow orientation, etc)  
averaged Nu increases with jet impingement cooling. This implies that jet impingement 
cooling is effective. This eventually results in increase in thermal efficiency and power 
density of the gas turbines.  The observations of the above experimental work offer 
valuable information for researchers and designers. 
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8. Nomenclature 

Acp,i Area of each copper plate [m2] 

Atotal Area of all copper plate [m2] 

d Diameter of the orifice jet [m] 

hi Local convective heat transfer co-efficient [W/m2K] 

H Width of the feed channel [m] 

I Current supplied to heater [Amp] 

l Length of the copper plate [m] 

kair Thermal conductivity of air [W/m.K] 

kwood Thermal conductivity of wood [W/m.K] 

Nui Local Nusselt number for each copper plate 

Nuavg Average Nusselt number  

q'' Heat flux from the heater [W/m2] 

Qcp,i Heat input for each copper plate [W] 

Qactual Actual heat released from target surface [W] 

Qcond,I Heat lost due to conduction [W] 
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Qrad,i Heat lost due to radiation [W] 

Qtotal Total heat input [W] 

Re Jet Reynolds number 

R Resistance of the heater [ohm] 

t Thickness of wood block behind the heater [m] 

Tin Inlet temperature [ºC] 

Ts,i Surface temperature [ºC] 

Tsurr Temperature of the surroundings [ºC] 

Tw Wood block temperature [ºC] 

U Uncertainty 

V Voltage supplied to the heater [V] 

Vavg Average velocity of all jets [m/s] 

  Volume flow rate [m3/s] 

X Distance in the x-direction [m] 

θ  Inclination Angle [1.5º] 

9. Subscripts 

cp  Copper plate 

i  Index number for each copper plate 

j  Jet 

w  Wood 

10. Greek symbols 

ε   Emissivity 

σ  Stefan-Boltzman constant  [W/(m2K4] 

µ Dynamic Viscosity [kg/(ms)] 
ρ Density [kg/m3] 
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