
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



9

Multicriteria Optimal Humanoid 
Robot Motion Generation 

Genci Capi1, Yasuo Nasu2, Mitsuhiro Yamano2, Kazuhisa Mitobe2

University of Toyama1

Yamagata University2

Japan 

1. Introduction 

Humanoid robots, because of their similar structure with humans, are expected to operate in 
hazardous and emergency environments. In order to operate in such environments, the 
humanoid robot must be highly autonomous, have a long operation time and take decisions 
based on the environment conditions. Therefore, algorithms for generating in real time the 
humanoid robot gait are central for development of humanoid robot. 
In the early works, the humanoid robot gait is generated based on the data taken from 
human motion (Vukobratovic et al. 1990). Most of the recent works (Roussel 1998, Silva & 
Machado 1998, Channon 1996) consider minimum consumed energy as a criterion for 
humanoid robot gait generation. Roussel (1998) considered the minimum consumed energy 
gait synthesis during walking. The body mass is concentrated on the hip of the biped robot. 
Silva & Machado (1998) considered the body link restricted to the vertical position and the 
body forward velocity to be constant. The consumed energy, related to the walking velocity 
and step length, is analyzed by Channon (1996). The distribution functions of input torque 
are obtained by minimizing the joint torques. 
In our previous works, we considered the humanoid robot gait generation during walking 
and going up-stairs (Capi et al. 2001) and a real time gait generation (Capi et al. 2003). In 
addition of minimum consumed energy (MCE) criteria, minimum torque change (MTC) 
(Uno et al. 1989, Nakano et al. 1999) was also considered. The results showed that MCE and 
MTC gaits have different advantages. Humanoid robot motion generated based on MCE 
criterion was very similar with that of humans. Another advantage of MCE criterion is the 
long operation time when the robot is actuated by a battery. On the other hand, MTC 
humanoid robot motion was more stable due to smooth change of torque and link 
accelerations. 
Motivated from these observations, it will be advantageous to generate the humanoid robot 
motion such that different criteria are satisfied. This belongs to a multiobjective optimization 
problem. In a multiobjective optimization problem there may not exist one solution that is 
the best with respect to all objectives. Usually, the aim is to determine the tradeoff surface, 
which is a set of nondominated solution points, known as Pareto-optimal or noninferior 
solutions. 
The multiobjective problem is almost always solved by combining the multiple objectives 
into one scalar objective using the weighting coefficients. Therefore, to combine different 

Source: Humanoid Robots, New Developments, Book edited by: Armando Carlos de Pina Filho
ISBN 978-3-902613-02-8, pp.582, I-Tech, Vienna, Austria, June 2007
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objectives in a single fitness function, an a-priori decision is needed about the relative 
importance of the objectives, emphasizing a particular type of solution. These techniques 
often require some problem-specific information, such as total range each objective covers. 
In complex problems, such as humanoid robot gait generation, this information is rarely 
known in advance, making the selection of single objective weighting parameters difficult. 
In addition, there is no rational basis of determining adequate weights and the objective 
function so formed may lose significance due to combining non-commensurable objectives. 
To avoid this difficulty, the e-constraint method for multiobjective optimization was 
presented (Becerra & Coello). This method is based on optimization of the most preferred 
objective and considering the other objectives as constraints bounded by some allowable 
levels. These levels are then altered to generate the entire Pareto-optimat set. The most 
obvious weaknesses of this approach are that it is time-consuming and tends to find weakly 
nondominated solutions. 
In this paper, we present a multiobjective evolutionary algorithm (MOEA) (Coello 1999, 
Herrera et al. 1998) technique for humanoid robot gait synthesis. The main advantage of the 
proposed algorithm is that in a single run of evolutionary algorithm, humanoid robot gaits 
with completely different characteristics are generated. Therefore, the humanoid robot can 
switch between different gaits based on the environment conditions. In out method, the 
basic idea is to encode the humanoid robot gait parameters in the genome and take the 
parameters of the non-dominated optimal gaits in the next generation. The specific 
questions we ask in this study are: 1) whether MOEA can successfully generate the 
humanoid robot gait that satisfies different objective functions in a certain degree, 2) 
whether the humanoid robot gait optimized by MOEA in simulation can indeed be helpful 
in hardware implementation. 
In order to answer these questions, we considered the MCE and MTC cost functions as 
criteria for “Bonten-Maru” humanoid robot gait synthesis. We employed a real number 
MOEA. Simulation and experimental results show a good performance of the proposed 
method. The non-dominated optimal Pareto optimal solutions have a good distribution and 
humanoid robot gait varies from satisfying each of both considered objectives to satisfying 
both of them. Therefore, as a specific contribution of proposed method is that in a single run 
of MOEA are generated humanoid robot gaits with completely different characteristics, 
making it possible to select the appropriate gait based on our preferences. In order to further 
verify how the optimized gait will perform on real hardware, we implemented the optimal 
gait using the “Bonten-Maru” humanoid robot. The results show that in addition of energy 
consumption, the optimized gait was stable and with a small impact due to the smooth 
change of the joint torques. 

2. Multiobjective Evolutionary Algorithm 

2.1 Multiobjective Optimization Problem 

In multiobjective optimization problems there are many (possibly conflicting) objectives to be 
optimized, simultaneously. Therefore, there is no longer a single optimal solution but rather a 
whole set of possible solutions of equivalent quality. In contrast to fully ordered scalar search 
spaces, multidimensional search spaces are only partially ordered, i.e. two different solutions 
are related to each other in two possible ways: either one dominates the other or none of them 
is dominated. Consider without loss of generality the following multiobjective maximization 
problem with m decision variables x (parameters) and n objectives:
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The decision vector a is called Pareto-optimal if and only if a is nondominated regarding the 
whole parameter space X. Pareto-optimal parameter vectors cannot be improved in any 
objective without causing degradation in at least one of the other objectives. They represent 
in that sense globally optimal solutions. Note that a Pareto-optimal set does not necessarily 
contain all Pareto optimal solutions in X. The set of objective vectors corresponding to a set 
of Pareto-optimal parameter vectors is called “Pareto-optimal front”.  
In extending the ideas of SOEAs to multiobjective cases, two major problems must be 
addressed: -- How to accomplish fitness assignment and selection in order to guide the 
search towards the Pareto-optimal set? -- How to maintain a diverse population in order to 
prevent premature convergence and achieve a well distributed, wide spread trade-off front? 
Note that the objective function itself no longer qualifies as fitness function since it is a 
vector valued and fitness has to be a scalar value. Different approaches to relate the fitness 
function to the objective function can be classified with regard to the first issue. The second 
problem is usually solved by introducing elitism and intermediate recombination. Elitism is 
a way to ensure that good individuals do not get lost (by mutation or set reduction), simply 
by storing them away in an external set, which only participates in selection. Intermediate 
recombination, on the other hand, averages the parameter vectors of two parents in order to 
generate one offspring. 

2.2 Nondominated Sorting Genetic Algorithm 

NSGA was employed to evolve the neural controller where the weight connections are 
encoded as real numbers. Dias & Vasconcelos (2002) compared the NSGA with four others 
multiobjective evolutionary algorithms using two test problems. The NSGA performed 
better than the others did, showing that it can be successfully used to find multiple Pareto-
optimal solutions. In NSGA, before selection is performed, the population is ranked on the 
basis of domination using Pareto ranking, as shown in Fig. 1. All nondominated individuals 
are classified in one category with a dummy fitness value, which is proportional to the 
population size (Srivinas, & Deb 1995). After this, the selection, crossover, and mutation 
usual operators are performed. 
In the ranking procedure, the nondominated individuals in the current population are first 
identified. Then, these individuals are assumed to constitute the first nondominated front 
with a large dummy fitness value (Srivinas, & Deb 1995). The same fitness value is assigned 
to all of them. In order to maintain diversity in the population, a sharing method is then 
applied. Afterwards, the individuals of the first front are ignored temporarily and the rest of 
population is processed in the same way to identify individuals for the second 
nondominated front. A dummy fitness value that is kept smaller than the minimum shared 
dummy fitness of the previous front is assigned to all individuals belonging to the new 
front. This process continues until the whole population is classified into nondominated 
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fronts. Since the nondominated fronts are defined, the population is then reproduced 
according to the dummy fitness values.  

Fig. 1. Flowchart of NSGA. 

Fitness Sharing: In genetic algorithms, sharing techniques aim at encouraging the formation 
and maintenance of stable subpopulations or niches (Zitzler et al. 2000). This is achieved by 
degrading the fitness value of points belonging to a same niche in some space. 
Consequently, points that are very close to, with respect to some space (decision space X in 
this paper), will have their dummy fitness function value more degraded. The fitness value 
degradation of near individuals can be executed using (3) and (4), where the parameter dij is 
the variable distance between two individuals i and j, and shared is the maximum distance 
allowed between any two individuals to become members of a same niche. In addition, dfi is 
the dummy fitness value assigned to individual i in the current front and df’i is its 
corresponding shared value. Npop is the number of individuals in the population. The 
sharing function (Sh) measures the similarity level between two individuals. The effect of 
this scheme is to encourage search in unexplored regions. For details about niching 
techniques, see Sareni et al. (1998). 
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3. Optimal Gait Generation 

During motion, the arms of the humanoid robot will be fixed on the chest. Therefore, it 
can be considered as a five-link biped robot in the saggital plane, as shown in Fig. 2. 
The motion of the biped robot is considered to be composed from a single support 
phase and an instantaneous double support phase. The friction force between the 
robot’s feet and the ground is considered to be great enough to prevent sliding. During 
the single support phase, the ZMP must be within the sole length, so the contact 
between the foot and the ground will remain. In our work, we calculate the ZMP by 
considering the link mass concentrated at one point. To have a stable periodic walking 
motion, when the swing foot touches the ground, the ZMP must jump in its sole. This is 
realized by accelerating the body link. To have an easier relative motion of the body, the 
coordinate system from the ankle joint of the supporting leg is moved transitionally to 
the waist of the robot (O1X1Z1). Referring to the new coordinate system, the ZMP 
position is written as follows: 

,

)gzz(m

)zz)(xx(mx)gzz(m

X
5

1i

zwii

5

1i

5

1i

wiwiiizwii

ZMP
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where mi is mass of the particle “i”, xw and zw are the coordinates of the waist with respect 

to the coordinate system at the ankle joint of supporting leg, ii zandx  are the coordinates 

of the mass particle “i” with respect to the O1X1Z1 coordinate system, 
i

zand
i

x  are the 

acceleration of the mass particle “i” with respect to the O1X1Z1 coordinate system. 

Based on the formula (3), if the position, ii z,x , and acceleration, ii z,x , of the leg part 

(i=1,2,4,5), the body angle, 3 , and body angular velocity, 3 , are known, then because 

33 z,x are functions of l3, 3 , 3 , 3 , it is easy to calculate the body angular acceleration 

based on the ZMP position. Let (0) and (f) be the indexes at the beginning and at the end of 

the step, respectively. At the beginning of the step, 30 causes the ZMP to be in the position 

ZMPjump. At the end of the step, the angular acceleration 3f is calculated in order to have 

the ZMP at the position ZMPf, so that the difference between 3f and 30 is minimal. 

Therefore, the torque necessary to change the acceleration of the body link will also be 
minimal. 

3.1 Objective Functions 

The gait synthesis problem, with respect to walking or going up-stairs, consists on finding 
the joint angle trajectories, to connect the first and last posture of the biped robot for 
which the consumed energy and torque change are minimal. For the MCE cost function, it 
can be assumed that the energy to control the position of the robot is proportional to the 
integration of the square of the torque with respect to time, because the joint torque is 
proportional with current. Therefore, minimizing the joint torque can solve the MCE 
problem (Capi 2002). 
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Fig. 2. Five-link humanoid robot. 
The cost function J, which is a quantity proportional to the energy required for the motion, is 
defined as follows: 
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where: tf is the step time, is the torque vector, jump and t are the addition torque 

applied to the body link to cause the ZMP to jump and its duration time, and C is the 
constraint function, given as follows:  

satisfied,notaresconstraint theif-c

satisfied,aresconstraint theif-0
C

i

c denotes the penalty function vector. We consider the following constraints for our system. 
1) The walking to be stable or the ZMP to be within the sole length. 
2) The distance between the hip and ankle joint of the swing leg must not be longer then 
the length of the extended leg. 
3) The swing foot must not touch the ground prematurely. 
The torque vector is calculated from the inverse dynamics of the five-link biped robot as : 

Z(YX(J( ))) 2 .  (7) 

where )(J is the  mass matrix (5x5), )(X   is the matrix of centrifugal coefficients (5x5), Y 

is the  matrix of Coriolis coefficients (5x5), )(Z is the vector of gravity terms (5x1), is the 

generalized torque vector (5x1), and ,,  are 5x1 vectors of joint variables, joint angular 

velocities and joint angular accelerations, respectively. 
The MTC model (Uno 1989, Nakano 1999) is based on smoothness at the torque level. The 
cost is the integrated squared torque change summed over the joints and the movement. In 
the MTC, the objective function to be minimized is expressed by:
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4. Boundary Conditions and GA Variables 

To have a continuous periodic motion, the humanoid robot posture has to be the same at the 
beginning and at the end of the step. Therefore, the following relations must be satisfied:  

10= 5f, 20= 4f, 1f= 50, 2f= 40, 30  = 3f.  (9) 

In order to find the best posture, the optimum value of 10, 20 and 30 must be 

determined by GA. For a given step length, it is easy to calculate 40 and 50. When 

referring to Figure 2, it is clear that links 1, 2, 4 at the beginning of the step and links 2, 4, 5 at 
the end of the step, change the direction of rotation. Therefore, we can write:  

10= 20= 40= 2f= 4f= 5f=0.  (10) 

The angular velocity of link 1 at the end of the step and link 5 at the beginning of the step is 
considered to be the same. In order to find the best value of angular velocity, we consider it 
as one variable of GA, because the rotation direction of these links does not change. GA will 
determine the optimal value of the angular velocity of the body link, which is considered to 
be the same at the beginning and at the end of the step. The following relations are 
considered for the angular acceleration:  

.,,, 402f501f4f205f10   (11) 

In this way, during the instantaneous double support phase, we don’t need to apply an 
extra torque to change the angular acceleration of the links. To find the upper body angle 

trajectory, an intermediate angle 3p and its passing time t3 are considered as GA variables. 

To determine the angle trajectories of the swing leg, the coordinates of an intermediate point 
P(xp,zp) and their passing time tp, are also considered as GA variables. The searching area 
for this point is shown in Figure 2. Based on the number of constraints, the degree of the 

time polynomial for 1, 2, 3, 4 and 5 are 3, 3, 7,6 and 6, respectively.  

 Body Lower leg Upper leg Lower leg + foot 

Mass [kg] 12 2.93 3.89 4.09 

Inertia [kg m2] 0.19 0.014 0.002 0.017 

Length [m] 0.3 0.2 0.204 0.284 

CoM dist.[m] 0.3 0.09 0.1 0.136 

Table 1. “Bonten-Maru” humanoid robot link parameters.

5. Results 

5.1 “Bonten-Maru” Humanoid Robot 

In the simulations and experiments, we use the the “Bonten-Maru” humanoid robot (Nasu 
et al. 2002, Takeda et al. 2001). The parameter values are presented in Table 1 and the robot 
is shown in Fig. 3(a). The “Bonten-Maru I” humanoid robot is 1.2 m high and weights 32 kg, 
like an 8 years old child. The “Bonten-Maru I” is a research prototype, and as such has 
undergone some refinement as different research direction are considered. During the 
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design process, some predefined degree of stiffness, accuracy, repeatability, and other 
design factors have been taken into consideration. The link dimensions are determined such 
that to mimic as much as possible the humans. In the “Bonten-Maru” humanoid robot, a DC 
motor actuates each joint. The rotation motion is transmitted by a timing belt and harmonic 
drive reduction system. Under each foot are four force sensors, two at the toe and two across 
the heel. These provide a good indication of both contact with the ground, and the ZMP 
position. The head unit has two CCD cameras (542x492 pixels, Monochrome), which are 
connected to the PC by video capture board. A Celeron based microcomputer (PC/AT 
compatible) is used to control the system.  
The dof are presented in Fig. 3(b). The high number of dof gives the “Bonten-Maru I” 
humanoid robot the possibility to realize complex motions. The hip is a ball-joint, permitting 
three dof; the knee joint one dof; the ankle is a double-axis design, permitting two. The 
shoulder has two dof, the elbow and wrist one dof. The DC servomotors act across the three 
joints of the head, where is mounted the eye system, enabling a total of three dof. The 
distribution of dof is similar with the dof in human limbs. 

 (a)  (b) 

Fig. 3. “Bonten-Maru” humanoid robot. 

5.2 Simulation and Experimental Results 

Due to difficulties of binary representation when dealing with continuous search space with 
large dimension, real coded GA (Herrera 1998) is used in this study. The decision variables 
are represented by real numbers within their lower and upper limits. We employed a 
standard crossover operator and the non-uniform mutation. In all optimization runs, 
crossover and mutation probabilities were chosen as 0.9 and 0.3, respectively. On all 
optimization runs, the population size was selected as 50 individuals and the optimization 
terminated after 100 generations. The maximum size of the Pareto-optimal set was chosen as 
50 solutions. 



Multicriteria Optimal Humanoid Robot Motion Generation 165

Fig. 4. Pareto optimal solution for different generations. 

Fig. 5. Pareto front of nondominated solutions after 100 generations. 

Based on the parameters of the “Bonten-Maru” humanoid robot the step length used in the 
simulations varies from 0.2m to 0.55m. The bounds, within which the solution is sought, 
change according to the step length and step time. In the following, we present the results 
for the step length 0.42m and step time 1.2s. 
Fig. 4 shows the Pareto optimal front for generations 1, 50 and 100. During the first 50 
generations there is a great improvement on the quality and distribution of Pareto optimal 
solutions. From this figure, it can be deduced that the MOEA is equally capable of finding 
the best solution for each objective when two conflicting objectives are considered 
simultaneously. 
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(a) Box 1 result (MCE). 

(b)  Box 5 result (MTC). 

(c)  Box 3 results. 

Fig. 6. Different results from Pareto-front solutions. 

Fig. 5 shows the Pareto-optimal trade-off front after 100 generations. We can observe the 
existence of a clear tradeoff between the two objectives. In addition, the obtained reference 
solution set has a good distribution (similar to uniform distribution). One of the interesting 
features of the resulting Pareto front is the almost exponential relation between the MCE 
and MTC cost functions. Results in Box 1 and Box 5 are at the extreme ends of the Pareto 
front. Box1 represents Pareto solutions with high value of MTC function, but low energy 
consumption. Based on the Pareto-optimal solutions, we can choose whether to go for 
minimal CE (Box 1 in Fig. 4) at the expense of a less smoothens in the torque or choose some 
intermediate result. If we are interested for a low consumed energy humanoid robot gait, 
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without neglecting the smoothness in the torque change, the results shown in Boxes 2, 3 are 
the most important. The results in Box 2, show that by a small increase in the energy 
consumption (2.2%), we can decrease the MTC fitness function by around 12.1%. Also, the 
energy can be reduced by 14.5% for a small increase in the MTC cost function (Box 4). 
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Fig. 7. ZMP trajectory. 

Fig. 8. Video capture of robot motion. 
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The torque vector ( i) and the optimal gaits for different results of Pareto front solutions are 

shown in Fig. 6. The robot posture is straighter, similar to humans, for MCE cost function 

(Fig.6(a)). Torque value is low for MCE gait and the torques change smoothly for MTC gait 

(Fig. 6(b)). The optimal gait generated by Box 3 solutions satisfies both objective functions. 

The energy consumption is increased by 9% but on the other hand the value of MTC cost 

function is decreased by 19.2%. 

The ZMP trajectory is presented in Fig. 7 for humanoid robot gait generated by Box 3 

result. The ZMP is always between the dotted lines, which present the length of the foot. 

At the end of the step, the ZMP is at the position ZMPf, as shown in Fig. 2. At the 

beginning of the step, the ZMP is not exactly at the position ZMPjump because of the 

foot’s mass. It should be noted that the mass of the lower leg is different when it is in 

supporting leg or swing leg. 

In order to investigate how the optimized gaits in simulation will perform in real hardware, 

we transferred the optimal gaits that satisfy both objective functions on the “Bonten-Maru” 

humanoid robot (Fig. 8). The experimental results show that in addition of reduction in 

energy consumption, the humanoid robot gait generated by Box 3 solutions was stable. The 

impact of the foot with the ground was small. 

6. Conclusion 

This paper proposed a new method for humanoid robot gait generation based on 

several objective functions. The proposed method is based on multiobjective 

evolutionary algorithm. In our work, we considered two competing objective 

functions: MCE and MTC. Based on simulation and experimental results, we 

conclude: 

Multiobjective evolution is efficient because optimal humanoid robot gaits with 

completely different characteristics can be found in one simulation run.

The nondominated solutions in the obtained Pareto-optimal set are well distributed 

and have satisfactory diversity characteristics.

The optimal gaits generated by simulation gave good performance when they were 

tested in the real hardware of “Bonten-Maru” humanoid robot. 

The optimal gait reduces the energy consumption and increases the stability during 

the robot motion. 

In the future, it will be interesting to investigate if the robot can learn in real time to switch 

between different gaits based on the environment conditions. In uneven terrains MTC gaits 

will be more  
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