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1. Introduction 

Glial cell line-derived neurotrophic factor (GDNF) was identified in 1993 (Lin et al., 1993), 
and since then it has been considered a strong survival factor for dopaminergic neurons of 
the nigrostriatal pathway that degenerate in Parkinson’s disease (PD). This has led to the 
proposal of GDNF as a potential therapy to slow down, halt or reverse neurodegeneration 
in PD. Thus, the link GDNF-PD is quite instantaneous, and difficult to keep away from. In 
this chapter we want to explore less common perspectives in this relationship, and we 
propose to look at this association from unconventional/emerging points of view, one might 
say, beyond the typical top10. We will discuss some aspects of PD pathophysiology and 
alternative therapeutic approaches in PD from a GDNF point of view. 
Epidemiological studies show a greater prevalence of PD in men than in women, and there 
are also gender differences in the progression of the symptoms and responses to L-DOPA 
treatment (Miller & Cronin-Golomb, 2010). Although the reasons for these gender 
differences in PD remain to be elucidated, there is growing evidence that estrogen may play 
a role in this phenomenon. We will present evidences that GDNF may account for the 
neuroprotection of dopaminergic neurons promoted by estrogen and thereby help to 
explain the lower incidence of PD in women. 
Neuroinflammation is recognized as a major factor in PD pathogenesis, and increasing 
evidence suggest that microglia is the main source of inflammation contributing to 
dopaminergic degeneration (Tansey & Goldberg, 2009). Astrocytes, on the other hand, can 
act as physiological regulators preventing excessive microglial responses (Lynch, 2009). We 
propose that GDNF can be a key player in astrocytes modulation of microglia activation in 
the substantia nigra. Therefore, a GDNF therapy to PD may not only act directly on 
dopaminergic neurons themselves, but also indirectly through the modulation of glial 
crosstalk and neuroinflammation. 
Several attempts have been made to increase GDNF at lesion sites aiming at 
neuroprotection/neuroregeneration. However, the delivery of GDNF to the central nervous 
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system (CNS) is challenging because GDNF is unable to cross the blood–brain barrier. One 
possibility to overcome this limitation is to conjugate or fuse GDNF with viral proteins, 
antibodies for transferrin or insulin receptors, or with a fragment of the tetanus toxin, which 
enable it to cross the blood–brain barrier. Another option is to use molecules that induce 
GDNF expression or enhance its signaling, and we will emphasize natural compounds. 
These molecules may prove to be an alternative therapeutic option for PD as herbal extracts 
are increasingly being reported to be neuroprotective in animal models of PD. 
Unconventional ways to increase GDNF levels in the brain include dietary manipulations, 
physical exercise, cognitive stimulation or acupuncture, and these may represent novel 
drug-free and non-invasive approaches for disease prevention and treatment, an issue that 
will also be addressed.  
Neurodegenerative diseases are puzzling and there is still a long way before we can have 
answers to all our questions and concerns. In this chapter we hope to disclose new links 
between GDNF and the pathophysiology of PD, and bring together data that enable a new 
view on the protective actions of several compounds and lifestyles capable of modulating 
GDNF levels, which may have therapeutic implications. We believe that this chapter may 
help in some way to draw attention to new directions of research, and to explore the GDNF-
PD route with new eyes. 

2. Gender differences in PD 

Epidemiological studies have suggested gender differences in PD risk, symptom severity, 
and treatment outcome (Miller & Cronin-Golomb, 2010).  A higher prevalence of PD in men 
(Baldereschi et al., 2000; Kurtzke & Goldberg, 1988; Marder et al., 1996; Mayeux et al., 1992; 
Wooten et al., 2004), with a two-fold greater relative risk of PD in men than women (Gillies 
& McArthur, 2010b), were also reported. In what concerns symptom severity, males present 
worse rigidity, more frequent symptoms such as writing difficulties, fumblingness, speech 
and gait problems, whereas women exhibit more levodopa-induced dyskinesia (Miller & 
Cronin-Golomb, 2010). In addition, sex differences in response to anti-parkinsonism 
medications have also been reported (Brann et al., 2007). There is greater levodopa 
bioavailability in women, with higher plasma concentration, so the mean levodopa dosage 
is lower for women than for men (reviewed by Shulman, 2007). Furthermore, the treatment 
with levodopa promotes more significant improvements of motor function in women than 
in men (reviewed by Brann et al., 2007). 
While the reason for the sex differences in PD remains to be elucidated, there is growing 
evidence that estrogen may play a neuroprotective role. This hypothesis is also supported 
by data showing that shorter exposures to estrogen during life, including fertile life length 
shorter than 36 years, and cumulative length of pregnancies longer than 30 months, are 
associated with younger age at onset of PD. In contrast, the use of postmenopausal estrogen 
replacement therapy seems to reduce the risk of developing the disease (Currie et al., 2004). 
Also supportive of the protective role of estrogen are data showing that situations 
corresponding to low endogenous estrogen levels, such onset of menses and menopause or 
withdrawal of hormone replacement therapy, result in a worsening of parkinsonian 
symptoms (Gillies & McArthur, 2010b). In contrast, the results obtained in gonadectomized 
adult male rats and mice exposed to testosterone and dihydrotestosterone indicate that 
androgens repress the expression of a midbrain dopaminergic phenotype (M.L. Johnson et 
al., 2010).  
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In addition to the pro-dopaminergic action of estrogen, an increasing amount of evidence 
suggests an inherent sex dimorphism in the nigrostriatal pathway. In vivo real-time imaging 
techniques in healthy humans showed greater amphetamine-stimulated striatal dopamine 
release in men than in women (Munro et al., 2006), and significantly higher striatal 18F-
fluorodopa uptake in women (Laakso et al., 2002). Moreover, it has been shown that the 
activation of estrogen receptors induces differentiation of human neural stem cells, giving 
rise to dopaminergic neurons (Diaz et al., 2009), a process that may facilitate the replacement 
of neurons in the course of the disease progression. In addition, the healthy male 
nigrostriatal dopaminergic pathway expresses higher levels of genes implicated in PD 
pathogenesis such as ǂ-synuclein and PTEN-induced putative kinase 1 (PINK-1) (Cantuti-
Castelvetri et al., 2007). 

2.1 Estrogen-mediated neuroprotection in PD models 

17ǃ-estradiol, the estrogen stereoisomer with female hormone activity and with high affinity 

to estrogen receptors, has been shown, both in vitro and in vivo, at least in female rodents, to 

protect dopaminergic neurons from different toxic insults such as 6-hydroxydopamine (6-

OHDA) (Murray et al., 2003), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 

methamphetamine (Bourque et al., 2009). In MPTP mouse models of PD, 17ǃ-estradiol 

prevents the depletion of striatal dopamine, the reduction of dopamine transporter (DAT) 

binding and expression, and the decrease of tyrosine hydroxylase (TH)-immunoreactive 

cells (Callier et al., 2001; D'Astous et al., 2004; Dluzen et al., 1996; Jourdain et al., 2005; 

Ramirez et al., 2003). Moreover, male mice have been reported to be more sensitive to the 

toxicity induced by MPTP or  methamphetamine than female mice (Bourque et al., 2009). In 

addition, 17ǃ-estradiol was also shown to be protective against superoxide-, H2O2- or 

glutamate-induced neurotoxicity in primary neuronal mesencephalic cultures (Sawada et 

al., 1998). 

Most studies on the neuroprotective effects of 17ǃ-estradiol have been developed in female 

rodents, and the results on the protective effects of estrogen in male rodents are still 

controverse (Bourque et al., 2009; Murray et al., 2003). Both the dose of the hormone and the 

time of administration in relation to the lesion induction seem to be determinant to the 

results achieved.  Although there are reports showing that 17ǃ-estradiol therapy reduces 

dopaminergic lesion in females but not in males (Bourque et al., 2009; B. Liu & Dluzen, 

2007), recent results from our group show that 17ǃ-estradiol, administered to male rats at a 

dose regimen that mimics the female physiological levels of the steroid  protects 

dopaminergic cells from a mild lesion induced by intrastriatal administration of 6-OHDA 

(De Campos et al., 2010). The discrepancies between the results obtained in different studies 

may also be influenced by differences in the lesion model/volume, or the use of intact or 

gonadectomized animals, thus altering the contribution of androgens.  

2.2 Estrogen receptors involved in the neuroprotection of dopaminergic neurons 

The expression of estrogen receptors (ERs) in the substantia nigra and striatum, as assessed 
by in situ hybridization, autoradiography, immunohistochemistry or Western blot analysis, 
has been reported as sparse or absent (Gillies & McArthur, 2010a). ERǃ has been reported to 
be absent from the male mouse substantia nigra, and ERǂ expression was shown not to 
colocalize with TH (Gillies & McArthur, 2010a). Moreover, in rodents the striatum seems to 
lack ERǃ, whereas ERǂ is present at low levels, although possibly at higher levels in female 
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compared with male mice (Rodriguez-Navarro et al., 2008). Nevertheless, the modulation of 
dopamine D2 receptors and DAT by 17ǃ-estradiol has been suggested to involve ERǃ, 
whereas studies using selective ER ligands favor a role for ERǂ over ERǃ in mediating 
estrogenic neuroprotection (Morissette et al., 2008). Taken together, the results may also 
suggest that the effect of 17ǃ-estradiol on the nigrostriatal pathway could involve alternative 
targets (Dluzen, 2005). 
It is now well documented that estrogen produces its effects by classic (also called genomic) 

and non-classic (or non-genomic) actions. The classic pathway involves the activation of 

intracellular receptors and the regulation of gene transcription. The non-classical pathway is 

generally associated with more rapid effects (from seconds to minutes) and is initiated by 

the interaction of  17ǃ-estradiol with receptors in the plasma membrane (Bourque et al., 

2009). In the brain, the actions of 17ǃ-estradiol mediated through membrane-associated 

receptors involve the activation of two different signaling pathways, the mitogen-activated 

protein kinase (MAPK) and the phosphatidylinositol-3 kinase (PI3-K)/Akt pathway 

(Morissette et al., 2008). 

2.3 Contribution of GDNF to estrogen-mediated neuroprotection 

The interactions between 17ǃ-estradiol and neurotrophic factors, namely the ability of the 

former to regulate the expression of neurotrophic factors such as brain-derived neurotrophic 

factor (BDNF), insulin-like growth factor-I (IGF-I), artemin, their receptors or signaling 

pathways, are well documented (Dittrich et al., 1999; Garcia-Segura et al., 2007;  Ivanova et 

al., 2001; J. Kang et al., 2010; Pan et al., 2010; Pietranera et al., 2010; J. Zhou et al., 2005). The 

expression of GDNF is also modulated by estrogens. As mentioned above, 17ǃ-estradiol, 

through membrane-associated receptors, can activate the PI3-K/Akt pathway and regulate 

transcription factors such as NF-kB and cAMP response element binding protein (CREB) 

(Bourque et al., 2009), which are known to be involved in the control of GDNF expression 

(Saavedra et al., 2008). 17ǃ-estradiol induces the expression of GDNF in spinal cord 

astrocyte cultures, and this increase in GDNF rescues spinal motoneurons from AMPA-

induced toxicity (Platania et al., 2005). In hypothalamic cultures, 17ǃ-estradiol up-regulates 

the expression of GDNF in neurons but not in astrocytes  (Ivanova et al., 2002). These 

observations suggest a region-dependent effect on the cell type responsible for GDNF 

production in response to 17ǃ-estradiol, which may be related to the presence/absence of 

estrogen receptors in different cell types depending on their location.  
The induction of GDNF expression by 17ǃ-estradiol in hypothalamic cell cultures is not 
prevented by the nuclear receptor antagonist ICI 182,780, indicating that it is mediated by 
non-classical estrogen signaling. In contrast, it is inhibited by cAMP/PKA and calcium 
signaling antagonists, suggesting that intracellular calcium and cAMP/PKA signaling are 
required for GDNF increase in neuronal cells in response to 17ǃ-estradiol. GDNF regulation 
by 17ǃ-estradiol was also investigated in neonatal astroglial and embryonic mesencephalic 
neuronal cultures (Kipp et al., 2006). In this case, the up-regulation of GDNF transcription 
occurs in astrocytes but not in neurons, and the effect is not prevented by ICI 182,780, but is 
abrogated by interrupting the intracellular calcium signaling or the MAPK signal 
transduction system (Kipp et al., 2006). In addition, unpublished results from our group 
show that 17ǃ-estradiol up-regulates GDNF levels in neuron-glia ventral midbrain postnatal 
cultures, and potentiates the reported L-DOPA- or H2O2-induced GDNF up-regulation in 
the same model (Saavedra et al., 2005, 2006). Estradiol-induced increase of GDNF levels is 
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not blocked by ICI 182,780, and can be induced by estradiol-BSA, a membrane impermeable 
form, thus supporting the idea that 17ǃ-estradiol is acting through a non-classical pathway 
(Fig. 1). Although GDNF up-regulation occurs in astrocytes, it is dependent on the presence 
of neurons indicating that neurons play a crucial role in the signaling process. GDNF 
neutralization and siRNA-mediated GDNF knockdown experiments clearly demonstrate the 
participation of this GDNF up-regulation in the neuroprotection provided by 17ǃ-estradiol 
in 6-OHDA-challenged cultures (De Campos et al., 2010).  
 

 

Fig. 1. Contribution of membrane and intracellular estrogen receptors to 17ǃ-estradiol-
induced GDNF expression in substantia nigra cultures. Cells were incubated for 48 h with 
100 nM 17ǃ-estradiol (E100) or with 10 nM membrane-impermeable conjugate estradiol-BSA 
(E-BSA) (A), or with 100 nM 17ǃ-estradiol in the absence (-) or presence (+) of 10 mM ICI 
182,780, a specific blocker of intracellular estrogen receptors (B). Cell extracts were prepared 
for Western blot analysis of GDNF levels. Data shown are the mean ± S.E.M. of up to nine 
independent experiments performed in triplicate. Statistical analysis was performed using 
one-way ANOVA followed by Dunnett’s (A) or Bonferroni’s test (B). *P < 0.05 and **P < 0.01 
as compared to control. 

2.4 Does GDNF contribute to the antioxidant actions of estrogen? 

Oxidative stress is considered an important contributor to the neurodegeneration associated 
with PD, and several markers of oxidative damage are increased in the substantia nigra pars 
compacta of PD patients (Jenner, 2003; Przedborski & Ischiropoulos, 2005). The antioxidant 
properties of estradiol have long been recognized (Mooradian, 1993),  and have been related 
with the hydroxyl group in the C3 position on the A ring of the steroid structure (Behl et al., 
1997). The ability of estrogen to potently restrain free radical production provides an 
additional mechanism for estrogen-mediated neuroprotection in PD. Accordingly, estradiol 
suppresses oxidative stress and protects neuronal cells from death induced by oxidant 
agents (Behl et al., 1997; Mooradian, 1993; Sawada et al., 1998). Interestingly, the ability of 
GDNF to protect dopaminergic neurons has also been related with antioxidant properties 
involving the up-regulation of the antioxidant enzymes glutathione peroxidase, superoxide 
dismutase and catalase (Chao & Lee, 1999; Cheng et al., 2004). Since one of the mechanisms 
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responsible for the neuroprotective effects of estradiol is a reduction in oxidative stress, and 
the protective effects of GDNF involve a decrease in oxidative stress (M.P. Smith & Cass, 
2007), it is tempting to speculate that GDNF may contribute to 17ǃ-estradiol-induced 
reduction of oxidative stress. Indeed, in a recent work from our group we demonstrate that 
pre-treatment with 17ǃ-estradiol, which increases GDNF expression, completely prevents 
the increase of 4-hydroxynonenal levels induced by 6-OHDA in the substantia nigra (De 
Campos et al., 2010). 

2.5 Anti-apoptotic role of estrogen 

Oxidative stress can cause neuronal apoptosis (Ratan et al., 1994; Tan et al., 1998) and has 
been considered as one of the major causes of dopaminergic degeneration (Mochizuki et al., 
1996; Przedborski & Ischiropoulos, 2005). The neuroprotection mediated by estrogen 
involves the modulation of apoptosis-related genes (Garcia-Segura et al., 1998; Singer et al., 
1998; Vegeto et al., 1999). Sawada and colleagues (2000) studied the anti-apoptotic 
mechanism induced by estradiol on nigral dopaminergic neurons. They show that estradiol 
suppresses gene transcription through the AP-1 element, inhibits the transcription of pro-
apoptotic genes, and up-regulates the anti-apoptotic Bcl-2, with the consequent reduction of 
caspase activation. Interestingly, GDNF is able to support the viability of postnatal nigral 
dopaminergic neurons and embryonic human mesencephalic neurons by inhibiting 
apoptotic cell death naturally occurring in vitro (Burke et al., 1998; Clarkson et al., 1997). 
Moreover, GDNF also attenuates 6-OHDA- (Ding et al., 2004), bleomycin sulfate- and L-
buthionine-[S,R]-sulfoximine-induced apoptosis in cultured dopaminergic neurons (Sawada 
et al., 2000b). Recent results from our group show a reduction in the number of annexin V-
positive dopaminergic neurons in the substantia nigra of animals treated with 17ǃ-estradiol 
before 6-OHDA injection compared with animals injected with 6-OHDA alone (De Campos 
et al., 2010). Since 17ǃ-estradiol treatment increases GDNF levels in these animals, one may 
hypothesize that GDNF up-regulation contributes to the anti-apoptotic effect of 17ǃ-
estradiol treatment upon a 6-OHDA challenge.  

2.6 Anti-inflammatory role of estrogen and dopaminergic neuroprotection 

Estrogens control glial activation and the expression of inflammatory mediators implicated 
in neuroinflammation and neurodegeneration, such as cytokines and chemokines (reviewed 
by Morale et al., 2006). 17ǃ-estradiol down-regulates glial activation promoted by MPTP in 
the substantia nigra and striatum (Tripanichkul et al., 2006), and it is also able to prevent the 
increase in the levels of inflammatory mediators, such as the inducible form of nitric oxide 
synthase (NOS) in response to lipopolysaccharide (LPS), a component of the cell wall of 
gram-negative bacteria (Vegeto et al., 2001). Activation of ERs in microglial cells blocks 
nitric oxide (NO) production (Vegeto et al., 2001) and prevents toxicity in mesencephalic 
neuronal cultures exposed to conditioned medium from LPS-activated microglia (Block & 
Hong, 2005). In mesencephalic cultures, 17ǃ-estradiol inhibits microglial activation and 
promotes neuroprotective effects through the activation of both ERǂ and ERǃ (X. Liu et al., 
2005). Therefore, estrogens were suggested to promote the switch of microglia from a 
neurotoxic to a neuroprotective state (Morale et al., 2006). GDNF may also contribute to the 
anti-inflammatory activity of estrogen. Indeed, we have shown the effectiveness of GDNF in 
maintaining microglia in a resting state (Rocha et al., 2010). Moreover, Xing and collegues 
(2010), using midbrain slice cultures, demonstrated that GDNF can inhibit both LPS-induced 
microglia activation and dopaminergic cell death (see more details in the next section). 
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3. The vigilant glia 

Microglia are the surveillance cells in the CNS, exquisitely sensitive to brain injury and 

disease, altering their morphology and phenotype to adopt an activated state in response to 

pathophysiological brain insults. In the adult healthy brain, the majority of microglia is in a 

“resting” state, monitoring for pathogens and changes in the surrounding 

microenvironment. Neurons express cell-surface ligands that interact with receptors on the 

surface of microglia to induce these highly specialized cells to adopt a resting phenotype. 

For example, CD200 expressed by neurons binds to its receptor CD200R on the microglial 

cell surface. The regulatory role of CD200-CD200R signaling has been compared to a 

“break” on innate immunity (X.J. Wang et al., 2007). Moderately activated microglia plays a 

homeostatic role in the CNS by scavenging neurotoxins, removing dying cells and cellular 

debris, and promoting collateral sprouting through the release of trophic factors (Block et 

al., 2007). The designation “activated microglia” comprises highly plastic cells with 

numerous functionally distinct phenotypes that are not readily apparent from either their 

morphology or from a limited number of cell-surface antigens that they are known to 

express (Perry et al., 2010). 

3.1 Protective microglia 

In the nigrostriatal system, activated microglia and macrophages promote axonal growth 
and sprouting of dopaminergic neurons after a mechanical lesion to the striatum (Batchelor 
et al., 1999). After striatal injury, sprouting dopaminergic fibers grow towards and surround 
macrophages expressing GDNF and BDNF mRNA (Batchelor et al., 1999). The 
dopaminergic sprouting after striatal injury was shown to involve the production of GDNF 
by macrophages at the wound site, since preventing GDNF expression with antisense 
oligonucleotides resulted in a marked decrease in the intensity of the periwound sprouting 
as revealed by immunohistochemistry and activity of DAT  (Batchelor et al., 2000).  
Moreover, dopaminergic sprouting was related to a gradient of GDNF (Batchelor et al., 
2002). These data clearly show that activated microglia and macrophages induce 
dopaminergic sprouting through synthesis of neurotrophic factors. Interleukin-1 (IL-1) is 
also involved in dopaminergic sprouting since IL-1 receptor knockout mice do not show 
neuronal sprouting after a 6-OHDA lesion (Parish et al., 2002). IL-1, produced by reactive 
microglia and macrophages, induces astrogliosis. Therefore, activated microglia and 
macrophages appear to stimulate dopaminergic sprouting both directly, by the secretion of 
neurotrophic factors, and indirectly by the secretion of IL-1 and the stimulation of reactive 
astrocytosis (Ho & Blum, 1998; Parish et al., 2002). Furthermore, a protective role of 
microglia in the dopaminergic system was also suggested by results showing that striatal 
injection of 6-OHDA increases the number of neuron/glial 2 (NG2) cells coexpressing the 
microglia marker Iba1 and GDNF, both in the striatum and substantia nigra. Morevover,  
64% of the surviving TH-positive cells are localized in the vicinity of NG2/Iba1/GDNF-
positive cells (Kitamura et al., 2010). In addition to the production of GDNF by activated 
microglia and macrophages upon a mechanical injury to the striatum (Batchelor et al., 1999; 
Liberatore et al., 1997), it was also described to occur in the injured spinal cord (Satake et al., 
2000; Widenfalk et al., 2001), and in cultured macrophages (Hashimoto et al., 2005). Ischemia 
also induces microglia in cerebral cortex to express GDNF (Wei et al., 2000a). Besides, 
blockade of ischemia-induced microglia activation leads to a decrease in GDNF production 
and, in parallel, to a decrease in the expression of the neuronal plasticity proteins 
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synaptophysin and GAP-43, which may indicate a contribution of microglia to brain 
plasticity (Madinier et al., 2009). Similarly, increased expression of BDNF by microglial cells 
may contribute to the axonal regeneration after mesencephalic trigeminal nerve injury 
(Ichikawa et al., 2011). A neuroprotective role of microglia against excitotoxic stimuli was 
also suggested by results showing that stimulation of microglia with glutamate receptor 
agonists induces the expression of GDNF, BDNF and nerve growth factor (NGF) (J. Liang et 
al., 2010). 

3.2 PD and neuroinflammation: a toxic version of microglia 

Neuroinflammation is a pathological hallmark in patients and experimental models of PD. 

Both present the classical features of inflammation, with evidence of an uncontrolled 

process. Moreover, microglia may become activated early in the disease process and remain 

primed, responding strongly to subsequent stimuli, and thereby enhancing inflammation-

induced oxidative stress and cytokine-dependent toxicity in vulnerable neuronal 

populations (Halliday & Stevens, 2011). In PD, for unknown reasons microglia become 

persistently overactivated, leading to the overproduction of cytokines (e.g. tumour necrosis 

factor (TNF)-ǂ, IL-1ǃ and IL-6), and other pro-inflammatory mediators, as well as the release 

of reactive oxygen species (ROS) (Y.S. Kim & Joh, 2006). A high number of activated 

microglia has been found in the substantia nigra pars compacta of post-mortem PD patients, in 

the vicinity of the degenerating dopaminergic neurons (Tansey & Goldberg, 2009). 

Additionally, elevated concentrations of IL-2, IL-6 and TNF-ǂ in the serum, and of IL-6 and 

IL-1ǃ in the cerebrospinal fluid have been reported in PD patients (E.C. Hirsch & Hunot, 

2009). These observations, together with positron emission tomography (PET) imaging 

studies, support a role for neuroinflammation in PD that appears early and persists 

throughout the disease course (Tansey & Goldberg, 2009). However, microglial activation in 

PD is not limited to the substantia nigra, and is also found in the putamen, hippocampus, 

transenthorinal cortex, cingulate cortex and temporal cortex (Block et al., 2007). The selective 

loss of dopaminergic neurons from the substantia nigra might be due to their glutathione 

deficiency, high content of dopamine, elevated iron concentrations and increased number of 

microglia in the substantia nigra compared with other regions. Therefore, dopaminergic 

neurons in the substantia nigra might be particularly vulnerable to inflammatory insults 

owing to their precarious redox equilibrium and the large neighboring population of 

microglia (Block et al., 2007). Indeed, a great body of evidence supports the role of microglia 

in the degeneration of dopaminergic neurons. In the MPTP mouse model, inhibition of 

microglial activation with minocycline decreases dopaminergic death (Y. He et al., 2001; 

D.C. Wu et al., 2002), and neuronal death is greatly diminished in mutant mice deficient in 

NOS (Dehmer et al., 2000; Liberatore et al., 1999), or deficient in NADPH-oxidase, the 

enzyme that catalyzes the production of superoxide (D.C. Wu et al., 2003). Moreover, a 

model of PD was created by infusing LPS in the substantia nigra, which activates microglial 

cells and selectively kills dopaminergic neurons (Block & Hong, 2005). In cell culture 

models, dopaminergic cell death induced by 1-methyl-4-phenylpyridinium (MPP+) is 

greatly reduced in neuron-enriched cultures as compared to neuron-glia cultures, and the 

addition of microglia to neuron-enriched cultures restablishes MPP+-induced dopaminergic 

death (Block & Hong, 2005). The detrimental role of microglia in PD has lead to an attempt 

of using anti-inflammatory therapies in the treatment of PD (E.C. Hirsch & Hunot, 2009). 
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3.3 Role of GDNF in controlling microglia activation 

Consistent with the role of microglia in the pathogenesis and progression of PD, it has 
been demonstrated that an attenuation of dopaminergic neurodegeneration may be 
achieved by regulating microglial activation. There is a good deal of evidence suggesting 
that astrocytes are capable of reducing the potentially damaging effects of microglia. One 
of the mechanisms may be through the regulation of microglial expression of the 
antioxidant enzyme heme oxygenase-1 (HO-1) (Min et al., 2006). Astrocytes are also able 
to reduce LPS-induced NOS expression and NO production by microglia (Lynch, 2009). 
Besides, coculture with astrocytes or exposure to astrocyte conditioned media has been 
shown to reduce microglial phagocytic activity, and the production of IL-12 induced by 
LPS or interferon (IFN)-Ǆ (Lynch, 2009). Astrocyte-derived transforming growth factor 
(TGF)-ǃ and IL-10 are known to suppress microglial activation (Y.S. Kim & Joh, 2006). 
Recent work from our group has shown that soluble mediators released by cultured 
ventral midbrain astrocytes are able to prevent microglial activation induced by the pro-
inflammatory agent Zymosan A (Rocha et al., 2010). We have found that low molecular 
weight (< 10 kDa) astrocyte-derived soluble mediators, including metallothionein-I/II, a 
small astrocytic protein with protective roles in the CNS, are able to suppress microglial 
activation induced by 0.5 µg/mL Zymosan A (Fig. 2). However, when a higher 
concentration of Zymosan A was used (5 µg/mL), these low molecular weight mediators 
were insufficient to prevent microglial activation. Under these conditions, we found that 
among three neurotrophic factors expressed by midbrain astrocytes (GDNF, cerebral 
dopamine neurotrophic factor (CDNF) and BDNF), only GDNF was able to modulate 
microglial activation induced by 5 µg/mL Zymosan A. This result was confirmed using 
several approaches, namely GDNF neutralization experiments, GDNF silencing in 
astrocyte cultures, and exogenous addition of GDNF to non-conditioned astrocyte culture 
media. Our results also show that the action of GDNF in microglial cells depends on 
GDNF family receptor (GFR)ǂ1 (Rocha et al., 2010), a component of the receptor complex 
that can comprise also the transmembrane Ret tyrosine kinase or the neural cell adhesion 
molecule (NCAM) (Ibanez, 2010). Thus, the binding of astrocyte-derived GDNF to 
microglial GFRǂ1 receptors activates intracellular signaling cascade(s) responsible for 
inhibiting microglial activation. Our results are in accordance with the finding that 
exogenous GDNF inhibits LPS-induced increase of NO production and in the number of 
OX-6-positive cells in the substantia nigra in a cortex-striatum-midbrain organotypic 
culture (Xing et al., 2010), and also with the increased microglial activation observed in 
the substantia nigra, but not in the striatum, of GDNF heterozygous mice (Boger et al., 
2010). It was also shown that the anticonvulsant and mood stabilizer valproate, and other 
histone deacetylase inhibitors, which increase the expression of GDNF and BDNF in 
astrocytes (P.S. Chen et al., 2006), are capable of reducing microglial activation (Peng et 
al., 2005; X. Wu et al., 2008). 
This regulation of microglial activation by GDNF is of particular interest since GDNF is a 
potent neurotrophic factor for dopaminergic neurons in the nigrostriatal pathway (Duarte et 
al., 2007). Previous studies from our group have shown that upon neuronal injury, astrocytic 
expression of GDNF is increased as a neuroprotective strategy (Saavedra et al., 2006). 
Astrocytic GDNF up-regulation was found to involve the release of soluble mediators, 
namely IL-1ǃ, that signal ventral midbrain astrocytes to increase GDNF expression 
(Saavedra et al., 2007). Furthermore, we have found that injured nigral neurons trigger 
GDNF up-regulation in striatal cells (Fig. 3), a mechanism that can be relevant to the 
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neuroprotection of dopaminergic terminals in the striatum. Altogether, these data raise the 
hypothesis that the neuroprotective effect of GDNF in the nigrostriatal system can result not 
only from a direct effect on dopaminergic neurons, but also from an indirect action through 
the modulation of glial crosstalk and the neuroinflammatory cascade occurring in PD. 

 

 

Fig. 2. Quantification of the number of phagocytic cells in substantia nigra microglia control 
cultures and in cultures incubated for 24 h with a low molecular weight fraction (< 10 kDa) 
of ventral midbrain astrocyte conditioned media (ACM), prior to exposure to 0.5 mg/mL 
Zymosan A (ZyA) for an additional period of 24 h. The effects of blocking the action of 
metalothionein (MT)-I/II present in ACM using a specific antibody (anti-MT-I/II; 1:1000; 
Dako), prior to exposure to 0.5 mg/mL ZyA, are presented. Data shown are the mean ± 
S.E.M. of up to four independent experiments performed in triplicate. Statistical analysis 
was performed using one-way ANOVA followed by Bonferroni’s test. *** P < 0.001 as 
compared to control; # P < 0.05 and ### P < 0.001 as compared to ZyA. 

Interestingly, inflammatory stimuli are among the candidate signals involved in the 

intercellular talk that induces glial GDNF expression after injury. Indeed, elevated GDNF 

expression is observed in response to LPS and to the pro-inflammatory cytokines IL-1ǃ, IL-6, 

TNF-ǂ and TNF-ǃ in C6 cells (Appel et al., 1997; Verity et al., 1998), and in U-87MG 

glioblastoma cells (Verity et al., 1999). In cultured astrocytes both exogenous TNF-ǂ, via 

TNF receptors, and endogenously produced TNF-ǂ induce GDNF expression suggesting 

that an autocrine loop contributes to the production of neurotrophic factors in response to 

inflammation (Kuno et al., 2006). In contrast, TNF-ǂ, TNF-ǃ, IL-1ǃ and LPS repress GDNF 

release in SK-N-AS neuroblastoma cells (Verity et al., 1999). Therefore, it has been proposed 

that GDNF synthesis and release in response to inflammatory molecules may be 

differentially regulated in cells of glial and neuronal phenotype (Verity et al., 1999). LPS also 

increases GDNF secretion (McNaught & Jenner, 2000) as well as GDNF mRNA expression in 

rodent primary astrocyte cultures (Kuno et al., 2006; Remy et al., 2003). In vivo, a high-dose 

of LPS, rather than a low dose, improves locomotor function after spinal cord injury in rats 

consistent with GDNF expression in microglia/macrophages (Hashimoto et al., 2005). This 
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Fig. 3. GDNF expression in striatal cultures exposed to conditioned media from H2O2-
challenged nigral mixed cultures (Neur+Ast) or ventral midbrain astrocyte cultures (Ast). 
Ventral midbrain astrocytes or nigral neuron-glial cells were exposed to 50 mM H2O2 or 
vehicle (control – Ctrl) for 1 h. The conditioned media were transferred to striatal cultures 
for 24 h and cell extracts were prepared for Western blot analysis of GDNF levels. Data 
shown are the mean ± S.E.M. of up to seven independent experiments performed in 
triplicate. Statistical analysis was performed using one-way ANOVA followed by Dunnett’s 
test. **P < 0.01 as compared to control. 

suggests that repair of CNS injuries can occur through GDNF produced by activated 
microglia/macrophages. Summarizing, growing evidence indicates that microglial 
activation promotes GDNF expression, and more recent data indicate that GDNF in turn 
inhibits microglia reactivity which may indicate that GDNF is involved in a process that 
self-limits microglial neurotoxicity, thus avoiding neuronal injury. These observations lead 
us to propose that this process to control microglia activation via GDNF fails in PD, and 
highlight the importance of better understanding the mechanisms implicated in the control 
of microglia activation by GDNF, and whether changes in these processes occur during the 
progression of PD.  

4. Treating PD with neurotrophic factors: the GDNF candidate 

Neurotrophic factors have emerged as key factors in the survival and phenotypic 
differentiation of neuronal cells during development, in the maintenance of mature neurons 
in the adult, as well as in their protection/repair upon injury (Benn & Woolf, 2004). It was 
proposed that changes in the levels of neurotrophic factors, due to alterations in the 
synthesis, release or activity associated with aging or genetic factors, might be involved in 
the neuronal loss observed in neurodegenerative diseases as PD (Mattson & Magnus, 2006; 
Siegel & Chauhan, 2000). The last years have registered increasing interest in the application 
of neurotrophic factors to the therapeutic field, and PD is a neurodegenerative disease 
whose treatment with trophic factors has been the focus of extensive research. The potential 
of GDNF, the prototypical neurotrophic factor for dopaminergic neurons, as a 
neuroprotective and neurorestorative agent to slow down or halt PD progression, has been 
vastly debated in the last years (e.g. Aron & Klein, 2011; Evans & Barker, 2008; Hong et al., 
2008; Peterson & Nutt, 2008; Ramaswamy et al., 2009; Vastag, 2010).  
It has been proposed that those neurons more vulnerable in PD substantia nigra (ventral tier 
versus dorsal tier) display an increased expression of proteins that may contribute to 
vulnerability, together with a deficient expression of neuroprotective molecules. 
Interestingly, GDNF is among the neurotrophic factors whose differential pattern of 
expression between the ventral and the dorsal tiers of the substantia nigra might account for 
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their distinct vulnerability in PD (Double et al., 2010). GDNF mRNA levels are significantly 
higher in the ventral striatum, the target region of the ventral tegmental area (VTA) and 
rostromedial substantia nigra cells, than in the dorsal striatum, the target region of 
dopaminergic neurons from the caudoventral substantia nigra (Barroso-Chinea et al., 2005). 
This correlates with VTA and rostromedial substantia nigra cells being more resistant to 6-
OHDA toxicity than dopaminergic neurons from the caudoventral substantia nigra as occurs 
in PD (Barroso-Chinea et al., 2005), and supports the idea that the heterogeneous expression 
of GDNF is a factor involved in the differential vulnerability of midbrain dopaminergic 
neurons in PD. 
Post-mortem studies investigating GDNF distribution in the human parkinsonian brain 
have yielded conflicting results (Saavedra et al., 2008), and clinical trials performed in 
advanced PD patients have generated quite disappointing outcomes (see below, 4.1 Clinical 
trials using GDNF), but many studies in animal models show that GDNF delivery can have 
trophic effects and restore motor function (Soderstrom et al., 2006). Additionally, GDNF is 
essential for the maintenance of adult nigrostriatal dopaminergic neurons and other central 
and peripheral nuclei affected in PD (Pascual et al., 2008). Therefore, the idea of using 
GDNF as a neuroprotective/neurorestorative therapy for PD is still being pursuited.  
Mesencephalic astrocyte-derived neurotrophic factor (MANF), identified as selectively 
trophic for dopaminergic neurons in vitro (Petrova et al., 2003), and CDNF, which exhibits 
trophic and neurorestorative effects as potent as GDNF both in vitro and in vivo (Lindholm 
et al., 2007), might also be relevant targets for the development of alternative or 
complementary therapeutic approaches for PD.  

4.1 Clinical trials using GDNF 

Several clinical trials have been performed using the direct intracerebral infusion of GDNF. 
Despite the extensive literature supporting the neuroprotective role of GDNF on the 
nigrostriatal pathway most of the clinical trials performed in advanced PD patients have 
generated  rather disappointing results (Aron & Klein, 2011). 
The first clinical trial consisted in a randomized controlled trial using recombinant GDNF (r-
metHuGDNF, Liatermin®, Amgen) and placebo delivered monthly as bolus via an 
intraventricular (ICV) catheter to patients with idiopathic PD (Nutt et al., 2003). No clinical 
benefits were registered at doses sufficient to induce side effects, and the post-mortem 
analysis of one patient revelead no evidence of rescue of dopaminergic fibers in the striatum 
or cells in the substantia nigra suggesting that insufficient GDNF reached its targets after ICV 
injection (Nutt et al., 2003). The following clinical trials addressed this issue by using 
continuous intraputaminal GDNF infusion. In an open-label clinical trial performed on five 
PD patients, Gill et al. (2003) reported excellent tolerance, few side effects, a significant 
decrease in total Unified Parkinson’s Disease Rating Score (UPDRS) in the ‘off’ state, 
elimination of severe akinetic episodes, significant reduction of dyskinesias and 
improvements in quality of life. 18F-dopa PET scanning showed a significant increase in the 
uptake around the infusion site and in the substantia nigra. A report on one patient autopsied 
43 months later showed evident increased TH-positive nerve fibers in the infused putamen 
indicating that GDNF stimulated axonal sprouting (Love et al., 2005). An independent open-
label clinical trial using a different delivery protocol performed unilaterally on ten PD 
patients also reported positive results at six months and minimal side effects (Slevin et al., 
2005). These promising results lead to the design of a randomized placebo-controlled trial 
involving 34 PD patients. Nevertheless, no significant clinical differences were detected at 
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six months between patients receiving GDNF or placebo (Lang et al., 2006), and the open-
label extension of the study was interrupted because three patients developed neutralizing 
antibodies, which could potentially cross-react with endogenous GDNF (Tatarewicz et al., 
2007). Moreover, a parallel toxicologic study showed that infusion of GDNF into the 
putamen induced cerebellar damage in some monkeys (Hovland et al., 2007).  
The overall discouraging results from these clinical trials may be related to poor diffusion of 

GDNF, the development of anti-GDNF antibodies, or other unindentified effects, while the 

different outcomes have been proposed to rely on differences in GDNF doses or catheter 

properties, patient cohort selection, or the choice of unsuitable endpoints, with suboptimal 

brain delivery of GDNF considered the major limiting factor (Aron & Klein, 2011; Sherer et 

al., 2006). 

A phase I trial involving the delivery of neurturin, another member of the GDNF family, to 

the striatum of PD patients via adeno-associated virus (AAV) vector showed tolerability, 

safety, and also potential efficacy (Marks et al., 2008), and a phase II trial was carried out. In 

this clinical trial there was no significant difference in the UPDRS motor score at 12 months 

between patients treated with AAV2-neurturin compared with control individuals, and 

some patients developed tumours (Marks et al., 2010). Currently, a new trial involving the 

delivery of a four-fold higher dose of AAV2-neurturin to both the putamen and substantia 

nigra is ongoing (Vastag, 2010). 

4.2 The ups and downs of GDNF 

Although GDNF overexpression is neuroprotective, uncontrolled GDNF levels could lead to 

unexpected side effects. High doses of exogenously delivered GDNF induce dyskinesias and 

weight loss in monkeys (Z. Zhang et al., 1997). Additionally, compensatory down-regulation 

of TH in response to GDNF overexpression in the nigrostriatal system has been reported, 

both in intact (Georgievska et al., 2004; Rosenblad et al., 2003) and lesioned (Georgievska et 

al., 2002) rats. An important issue with possible functional consequences that was not 

addressed in these studies is whether prolonged GDNF infusion alters GDNF receptors Ret, 

GFRǂ1 and/or NCAM levels. There is evidence that BDNF infusion into the hippocampus 

for 6 days (Frank et al., 1996), or prolonged BDNF treatment of primary cortical (Knusel et 

al., 1997) or hippocampal (Haapasalo et al., 2002) cultures can down-regulate TrkB receptor 

levels. However, more recent studies in cultured hippocampal slices argue against the 

possibility that sustained periods of increased BDNF levels will initiate compensatory 

responses at the receptor level, and suggest that chronic up-regulation of BDNF is 

accompanied by increased activation of the neurotrophin receptor at spine synapses 

(Lauterborn et al., 2009). Thus, it is relevant to assess the effect of sustained high levels of 

GDNF in the nigrostriatal system on GDNF receptor levels as a possible compensatory 

down-regulation can limit GDNF-mediated neuroprotection. A potential approach to 

prevent the negative consequences of chronic GDNF infusion in the brain might be to use a 

regulated viral vector system (Manfredsson et al., 2009). Once optimized, such a system will 

offer the possibility to fine-tune the therapeutic dose to each PD patient, and to quickly stop 

GDNF overexpression in case toxicity emerges by adjusting the administration of the 

controlling agent (Manfredsson et al., 2009). 
Several efforts are being made to solve the problems associated with the delivery, targeting, 
safety, and distribution of trophic factors to the CNS, which need to be overcome before 
GDNF therapy for PD becomes a reality (Sherer et al., 2006). The delivery of GDNF to the 
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CNS is challenging because GDNF is unable to cross the blood-brain barrier (Kastin et al., 
2003; Kirik et al., 2004). A possibility to overcome this limitation is to conjugate or fuse 
GDNF with other molecules that enable it to cross the blood-brain barrier. Fusion with viral 
proteins (Dietz et al., 2006), conjugation with antibodies for transferrin (Albeck et al., 1997; 
Xia et al., 2008; Q.H. Zhou et al., 2010) or insulin (Boado & Pardridge, 2009; Boado et al., 
2007) receptors, or with a fragment of the tetanus toxin (Larsen et al., 2006) provides an 
efficient way of delivering GDNF to the CNS. Recently, GDNF delivery to the CNS using 
bone marrow stem cell-derived macrophages, which are able to pass the blood-brain barrier, 
was proven to ameliorate MPTP-induced degeneration of TH-positive neurons and 
terminals, stimulate axon regeneration, and reverse hypoactivity in the open field test (Biju 
et al., 2010).  

4.3 Inducing endogenous GDNF expression/signaling 

Molecules that induce the endogenous expression of trophic factors or enhance their 
signaling are receiving increasing attention as alternative therapeutic options for PD. 
Therefore, in addition to a therapeutic tool itself, GDNF constitutes also a target for the 
development of new therapeutics. Interestingly, it was suggested that XIB4035, a non-
peptidyl small molecule that acts as a GFRǂ1 agonist and mimics the neurotrophic effects of 
GDNF in Neuro-2A cells, might have beneficial effects for the treatment of PD (Tokugawa et 
al., 2003). Leucine-isoleucine (Leu-Ile), a hydrophobic dipeptide that partially resembles the 
site on FK506 that binds to immunophilin (Schreiber, 1991), significantly increases GDNF 
and BDNF levels in the conditioned medium from cultured hippocampal neurons, and 
protects both dopaminergic and non-dopaminergic neurons from natural cell death in low 
density cultures (Nitta et al., 2004). Interestingly, the effect is lost when cultures are 
prepared from mice lacking the GDNF or BDNF gene (Nitta et al., 2004). Moreover, Leu-Ile 
increases GDNF and BDNF striatal content in mice, inhibits 6-OHDA-induced dopaminergic 
denervation, and reduces rotational behavior after methamphetamine challenge (Nitta et al., 
2004). The ability of Leu-Ile to cross the blood-brain barrier, and to promote GDNF 
expression without exhibiting immunosuppressive properties, makes it a novel tool for the 
treatment of PD or other neurodegenerative diseases. More recently, incubation with 
PYM50028 (CoganeTM; common name smilagenin), a novel non-peptide neurotrophic factor 
inducer, was shown to protect cultured dopaminergic neurons from the toxic effect of MPP+, 
an effect almost completely lost in the presence of anti-GDNF and/or anti-GFRǂ1 antibody. 
Moreover, GDNF mRNA expression was markedly increased by smilagenin treatment (Y. 
Zhang et al., 2008). Oral administration of smilagenin to MPTP-lesioned mice resulted in a 
significant elevation of striatal GDNF levels and attenuated the loss of dopaminergic 
neurons from the substantia nigra (Visanji et al., 2008). Interestingly, smilagenin is now 
undergoing phase I clinical testing (Aron & Klein, 2011). Finding molecules like XIB4035, 
Leu-Ile or smilagenin, capable of stimulating GDNF expression/signaling may prove 
beneficial to the treatment of PD, and would overcome most of the problems associated with 
the delivery of GDNF protein into the brain, with GDNF expression induced by viral 
vectors, or with the use of encapsulated GDNF producing cells (Bespalov & Saarma, 2007).  

5. Complementary and alternative ways of getting GDNF? 

PD patients commonly use complementary and alternative therapies, including altered diet, 
dietary supplements, herbal supplements, caffeine, nicotine, exercise, physical and massage 
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therapy, melatonin, bright-light therapy and acupuncture (Lokk & Nilsson, 2010; Pecci et al., 
2010; Zesiewicz & Evatt, 2009). What is the impact of these complementary and alternative 
therapies on GDNF levels? 

5.1 Is there a GDNF diet? 

Compelling evidence from epidemiological and animal studies highlights the importance of 

dietary factors in counteracting dopaminergic degeneration occurring in PD, so that healthy 

dietary choices might be relevant to reduce the risk of PD (Di Giovanni, 2009; Gao et al., 

2007). Therefore, dietary intervention on PD has emerged as a new way to halt disease 

progression, or even prevent it.  

Some studies show that caloric restriction and intermittent fasting diets are neuroprotective 

and improve functionality in animal models of stroke, Parkinson’s, Huntington’s (Mattson, 

2005) and Alzheimer’s (Halagappa et al., 2007) disease. Moreover, data from 

epidemiological studies suggest that individuals with low-calorie, low-fat diets may have 

reduced risk of PD (C.C. Johnson et al., 1999; Logroscino et al., 1996), while the potential 

association between obesity (Abbott et al., 2003; Hu et al., 2006; Ikeda et al., 2007), or 

cholesterol intake (Miyake et al., 2010) and the risk of PD have been shown. Accordingly, 

MPTP treatment produces greater striatal dopamine depletion in high-fat-fed than in control 

mice (J.Y. Choi et al., 2005). Likewise, rats under high-fat diet for 5 weeks before 6-OHDA 

infusion into the medial forebrain bundle exhibit greater dopamine depletion in the 

substantia nigra and striatum, and increased oxidative stress than control rats (Morris et al., 

2010). Confirming the protective effect of caloric restriction, susceptibility to a neurotoxic 

insult to dopaminergic neurons is exacerbated in obese mice (Sriram et al., 2002). 

Conversely, dietary restriction protects adult mice against MPTP-induced dysfunction and 

degeneration of nigrostriatal dopaminergic neurons, and deficits in motor function decrease 

markedly in these animals (Duan & Mattson, 1999). Dietary restriction mimicked using a 

non-metabolizable analogue of glucose (2-deoxy-D-glucose) reduces damage to 

dopaminergic neurons in the substantia nigra, and improves the behavioral outcome 

following MPTP treatment (Duan & Mattson, 1999). Moreover, treatment with 2-deoxy-D-

glucose protects cultured dopaminergic cells against oxidative and metabolic insults (Duan 

& Mattson, 1999). Surprisingly, caloric restriction was not neuroprotective against 6-OHDA 

toxicity in rats (Armentero et al., 2008). This lack of effect was likely due to the short 

duration of dietary restriction, and to a more pronounced neurotoxic insult compared with 

that registered in previous studies (Duan & Mattson, 1999; Maswood et al., 2004).  

Caloric restriction and reduced meal frequency/intermittent fasting are dietary 
manipulations thought to prolong the health span of the nervous system by acting upon 
important metabolic and cellular signalling pathways to stimulate the production of protein 
chaperones, antioxidant enzymes, and neurotrophic factors that help cells to deal with stress 
and resist disease (Martin et al., 2006). The effect of dietary restriction on GDNF levels was 
not addressed by Duan & Mattson (1999), but an increase in GDNF levels in the nigrostriatal 
system may play a role in the positive effect of dietary restriction on MPTP-damaged 
dopaminergic neurons and motor impairment reported by these authors. In fact, more 
recent observations indicate that a low-calorie diet reduces the loss of dopaminergic neurons 
from the substantia nigra, the severity of neurochemical deficits, and motor dysfunction in a 
non-human primate model of PD (Maswood et al., 2004). Furthermore, monkeys maintained 
for 6 months on a 30% caloric restriction diet exhibit significantly higher levels of GDNF in 
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the caudate nucleus compared with control monkeys, suggesting that the protective effect of 
reduced calorie diet may result from up-regulation of GDNF expression and consequent 
activation of neuroprotective signal transduction pathways in dopaminergic neurons 
(Maswood et al., 2004).  
Since caloric restriction increases the amount of endogenous GDNF in the brain of monkeys, 

it may be possible to ameliorate PD, at least partially, through dietary manipulations. It is 

also worthy to mention that, for instance, hippocampal BDNF levels are reduced in rats 

subjected to a saturated-fat diet (H.R. Park et al., 2010; D.C. Wu et al., 2003) which leads us 

to hypothesize that a similar reduction of GDNF levels might also occur under a high-fat 

diet. Consistent with the observation that caloric restriction attenuates MPTP-induced 

depletion of dopamine, the distance moved and speed of movement increased more than 

two-fold in caloric restricted monkeys compared with those on control diet (Maswood et al., 

2004). From an evolutionary point of view, and based on experimental data, it was 

speculated that the neuroprotective effects of caloric restriction could be due to the 

induction of growth factors by increased motor activity (Finch, 2004). In fact, activation of 

the same cellular and molecular pathways that occur in response to mild dietary restriction 

and intermittent fasting-induced stress can occur in response to physical exercise and 

cognitive stimulation (Mattson et al., 2004). 

Taken together, these evidences support the relevance that dietary intervention might 

assume as a non-invasive and drug-free strategy for PD management, and suggest that an 

amelioration of GDNF levels may be involved in the protective effects of a healthy diet and 

caloric restriction on the nigrostriatal pathway.  

5.2 Exercising for GDNF expression?  

Substantial evidence suggests a positive role of exercise in slowing the progression of PD 

(Crizzle & Newhouse, 2006; Falvo et al., 2008; Goodwin et al., 2008), and beneficial effects of 

exercise on motor and non-motor PD symptoms have been described (Gage & Storey, 2004; 

Lehman et al., 2005; Logroscino et al., 2006). In addition, epidemiological studies show a 

negative correlation between the regular practice of exercise and the prevalence of PD (H. 

Chen et al., 2005; Sasco et al., 1992; Tsai et al., 2002; Q. Xu et al., 2010). Interestingly, it has 

been recently reported that forced exercise is more beneficial for people with PD than 

voluntary exercise (Ridgel et al., 2009). Thus, exercise might constitute a non-

pharmacological neuroprotective therapy for PD contributing to slow the progressive 

degeneration of dopaminergic neurons. However, there is a lack of consensus on the 

optimal delivery and extent of exercise (dosing, type, etc) appropriate at each stage of the 

disease (Dibble et al., 2009; Goodwin et al., 2008). The mechanisms implicated in the 

beneficial effect of exercise in PD patients are now being uncovered (M.A. Hirsch & Farley, 

2009). In particular, several trophic factors might be involved in the beneficial effects of 

exercise (e.g. Cotman et al., 2007; Gomez-Pinilla et al., 1998; Widenfalk et al., 1999; Yasuhara 

et al., 2007).  
The data from animal models parallel the observations in PD patients as increased physical 
activity is neuroprotective/neurorestorative in models of nigrostriatal injury. However, 
despite the findings supporting the view that exercise protects against the behavioral effects 
of 6-OHDA and MPTP, data on the protection of dopaminergic neurons from 6-OHDA- or 
MPTP-induced toxicity are mixed (Zigmond et al., 2009). It has been reported that running 
for 3 months prior to acute MPTP administration completly protects from TH cell loss 
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(Gerecke et al., 2010). On the other hand, exercise for 2 weeks after intrastriatal injection of 6-
OHDA results in partial recovery of TH labeling and axonal fiber projection to the striatum 
(Yoon et al., 2007). Treadmill exercise starting the day after intrastriatal 6-OHDA infusion 
induces significant preservation of TH-positive fibers in the striatum and TH-positive 
neurons in the substantia nigra pars compacta as compared to the non-exercised group (Tajiri 
et al., 2010). An increase in TH labeling in the substantia nigra pars compacta of MPTP-treated 
mice receiving treadmill exercise was also recently reported (B.A. Smith et al., 2011). In 
contrast, other authors find no reduction in the loss of dopaminergic neurons in exercised 
animals (Fisher et al., 2004; O’Dell et al., 2007). Improvements in motor performance in 
animals undergoing exercise may not necessarily be accompanied by changes in total striatal 
dopamine levels after exercise (O’Dell et al., 2007; Petzinger et al., 2007). Compensatory 
changes in stimulus-evoked release and a decrease in dopamine decay might play a relevant 
role (Petzinger et al., 2007). Some studies show that exercise leads to DAT down-regulation 
in MPTP-treated mice (Fisher et al., 2004; Petzinger et al., 2007), suggesting that increased 
synaptic availability of dopamine may underlie behavioral improvements in response to 
exercise. In contrast, an increase in DAT protein expression has been recently reported in 
MPTP-treated mice receiving treadmill exercise (B.A. Smith et al., 2011). These discrepancies 
might be related to differences in the lesion regimen/extension and exercise paradigm. 
Physical exercise increases the expression of GDNF in the nigrostriatal system, and this 
correlates with the protection of dopaminergic neurons against MPTP toxicity (Faherty et 
al., 2005), and amelioration of motor impairment due to a 6-OHDA lesion (Cohen et al., 
2003; Tajiri et al., 2010). Exercise in the running-wheel markedly accelerates spontaneous 
recovery after a 6-OHDA lesion as animals exercised on the running-wheel prior or after a 
unilateral striatal 6-OHDA injection show a faster motor recovery compared to non-
exercised animals (O'Dell et al., 2007). Recently, daily treadmill exercise similar to clinical 
settings (30 min/day, 5 days/week for 4 weeks) was shown to up-regulate both GDNF and 
BDNF in the lesioned and intact sides of the striatum (Tajiri et al., 2010). In a chronic MPTP 
mouse model with moderate neurodegeneration treadmill exercise during 18 weeks 
drastically increased GDNF levels in the striatum but not in the substantia nigra, and the 
opposite was observed for BDNF (Lau et al., 2011). The improvement of motor function 
observed in many studies of forced limb use, treadmill running or running-wheel exercise in 
both 6-OHDA (Mabandla et al., 2004; Tillerson et al., 2001; 2003; Yoon et al., 2007) and MPTP 
(Fisher et al., 2004; Tillerson et al., 2003) models of PD raised the hypothesis that up-
regulation of GDNF might mediate, or at least contribute to, the protection of the 
nigrostriatal pathway observed in those reports (A.D. Smith & Zigmond, 2003). How does 
exercise increase GDNF expression? Since GDNF production is activity-dependent, 
dopamine is known to stimulate GDNF expression (Saavedra et al., 2008), and exercise 
increases dopamine in the striatum (Sutoo & Akiyama, 2003), one may envisage that 
increased dopamine levels during activity of the striatal circuitry may mediate increased 
GDNF expression in the nigrostriatal system upon physical exercise. 

5.3 A stimulating GDNF lifestyle? 

Environmental enrichment is characterized by housing conditions that facilitate sensory, 
motor and cognitive stimuli, accompanied by voluntary physical activity and social 
interactions. An enriched environment is neuroprotective in animal models of PD. Mice 
reared in an enriched environment are more resistant to MPTP compared with mice raised 
in a standard environment (Bezard et al., 2003; Faherty et al., 2005). Moreover, 
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environmental enrichement also improves motor function after unilateral 6-OHDA injection 
in rats (Jadavji et al., 2006; Steiner et al., 2006). More recently, continuous exposure to 
environmental enrichement during 3 weeks before and after 6-OHDA injection was 
reported to prevent dopaminergic neuronal death, protect the nigrostriatal pathway, and 
reduce motor impairment (Anastasia et al., 2009). The molecular mechanisms involved in 
the neuroprotective effect of environmental enrichement observed in several rodent models 
of brain disorders are not clear, but the synthesis and release of neurotrophic factors may 
play a crucial role (Nithianantharajah & Hannan, 2006). In fact, environmental enrichment 
increases GDNF mRNA in the substantia nigra and striatum, and totally protects against 
MPTP-induced parkinsonism (Faherty et al., 2005). Bezard et al. (2003) and Turner & Lewis 
(2003) showed that enriched environment also increases the expression of BDNF in the 
striatum but, unfortunately, the effect on GDNF levels was not addressed in these studies. 
In a previous work, an enriched environment was shown to induce the expression of GDNF 
and to increase the phosphorylation of the transcription factor CREB, while reducing the 
spontaneous apoptosis in the rat hippocampus by 45%, and protecting against kainate-
induced seizures and excitotoxic injury (Young et al., 1999).  
What is the relevance of the results obtained in animal models of PD to humans suffering 

the disease? Most individuals are exposed to a high degree of environmental complexity 

and novelty. However, the level of cognitive, social and physical stimulation can vary 

significantly from one person to another, so that correlative and epidemiological data shows 

that lifestyle, including occupation, leisure activities and physical exercise, has a direct effect 

on the risk of cognitive decline (Baroncelli et al., 2010). In fact, there is an association 

between higher educational accomplishment and reduced risk of PD-related dementia (Glatt 

et al., 1996). Since PD patients suffer from impaired cognitive functions (Jokinen et al., 2009 

and references therein), and GDNF contributes to synaptic transmission (Saavedra et al., 

2008). Thus, getting engaged in higher levels of mental and physical activity through 

education, occupation and recreation might constitute a non-invasive and drug-free 

approach to increase GDNF levels, which, in turn, might both protect the nigrostriatal 

pathway and reduce the cognitive impairment affecting PD patients.   

5.4 Green GDNF?  

Consistent with the considerable effort in identifying naturally occurring neuroprotective 

substances, growing evidence indicates that many oriental herbs and extracts attenuate the 

degeneration of dopaminergic neurons, and ameliorate the parkinsonism induced by MPTP 

and 6-OHDA (for a review see L.W. Chen et al., 2007). The number of reports supporting the 

neuroprotective action of several herbs and herbal extracts on PD models continues to rise, 

and here we briefly overview the most recent studies.   

In vitro, protection against 6-OHDA toxicity was demonstrated using Cyperi rhizoma, the 

rhizome of Cyperus rotundus L. (Lee et al., 2010), while Chrysanthemum morifolium Ramat (I.S. 

Kim et al., 2009) and Yi-Gan San (Doo et al., 2010b) protect cells from MPP+ toxicity. In vivo, 

Yi-Gan San (Doo et al., 2010b), Withania somnifera root extract/Ashwagandha/Indian 

ginseng (Rajasankar et al., 2009a,b), panaxatriol saponins, the main constituents extracted 

from Panax notoginseng (Luo et al., 2011), pycnogenol, an extract of Pinus maritime bark 

(Khan et al., 2010), Gynostemma pentaphyllum (H.S. Choi et al., 2010), and epigallocatechin-3-

gallate, a green tea catechin (J.S. Kim et al., 2010), were shown to be neuroprotective in the 

MPTP model of PD. 
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Several mechanisms have been proposed to contribute to the neuroprotective effect of herbs 

and herbal extracts. These include their function as antioxidants to alleviate oxidative stress, 

inhibitors of monoamine oxidase B to decrease neurotoxicity, scavengers of free radicals, 

chelators of harmful metals, modulators of cell survival genes and apoptotic signals (L.W. 

Chen et al., 2007). As a result, herbs and herbal extracts are receiving increasing attention as 

therapeutic agents for the treatment of PD. The efficacy and safety of their use in adjunct or 

monotherapy in PD management is under consideration (Chung et al., 2006). Unfortunately, 

the effect on GDNF expression has not yet been addressed for many of them. It would be 

very interesting to investigate if these and other herbal extracts are able to increase GDNF 

expression, as well as whether their protective effects in PD models are mediated, or not, by 

the up-regulation of GDNF expression. The available data on GDNF induction by herbs or 

herbal compounds is reviewed below.  

Rehmannia glutinosa, a traditional Chinese medicine herb frequently used in the therapy of 

dementia, induces GDNF gene expression in C6 cells and in primary cortical astrocytes (H. 

Yu et al., 2006). The stimulation of GDNF gene expression by Rehmannia glutinosa in C6 cells 

can be independently up-regulated through PKC and ERK1/2 pathways (H. Yu et al., 2006). 

Recently, the protective effect of catalpol, an active component extracted and purified from 

Rehmannia glutinosa was investigated in a chronic MPTP mouse model and in MPP+-treated 

mesencephalic neurons. The oral administration of catalpol for 8 weeks dose-dependently 

improves locomotor ability, significantly elevates striatal dopamine levels and the number 

of TH-positive neurons in the substantia nigra pars compacta, and the striatal DAT density. 

Interestingly, catalpol treatment also increases GDNF striatal levels, and both the number of 

dopaminergic neurons and DAT density are positively correlated with GDNF levels (G. Xu 

et al., 2010). Moreover, catalpol protects cultured mesencephalic neurons against MPP+ 

toxicity and up-regulates GDNF mRNA levels in neurons intoxicated with MPP+, but not in 

control cultures. Importantly, the protective effect of catalpol against dopaminergic 

degeneration is abolished by the presence of the GDNF receptor tyrosine kinase Ret 

inhibitor 4-amino-5-(4-methyphenyl)-7-(t-butyl)-pyrazolo-[3,4-d]pyrimidine (G. Xu et al., 

2010). Catalpol has antioxidant (Bi et al., 2008; Tian et al., 2007) and anti-apoptotic (Bi et al., 

2009) effects, properties also displayed by GDNF (Saavedra et al., 2008), which suggest that 

GDNF up-regulation could be an essential step in catalpol-induced neuroprotection, but this 

is currently unknown.  

Smilagenin is a compound extracted from Rhizoma anemarrhenae and Radix asparagi, 
medicinal herbs frequently used in the traditional Chinese medicine. A recent work shows 
that smilagenin, added prior to MPP+, protects cultured mesencephalic dopaminergic 
neurons against MPP+-induced toxicity. GDNF mRNA levels, but not those of GFRǂ1 or Ret, 
are markedly elevated in the presence of smilagenin. Moreover, the neuroprotective effect is 
partially lost in the presence of GDNF and/or GFRǂ1 antibodies (Y. Zhang et al., 2008). Oral 
administration of smilagenin to MPTP-lesioned mice elevates striatal GDNF levels and 
attenuates the loss of dopaminergic neurons (Visanji et al., 2008). Since smilagenin can be 
taken orally, readily crosses the blood-brain barrier, stimulates GDNF expression, and has 
neuroprotective effects in the MPTP mouse model of PD, hopefully it is a good candidate for 
the treatment of PD.  
Rhus verniciflua Stokes, commonly known as lacquer tree, has been used for centuries in 

Korea as a food supplement and a traditional herbal medicine. Recently, the detoxified 

extract of Rhus verniciflua was shown to induce GDNF mRNA and protein expression, both 
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in dopaminergic-like SH-SY5Y cells, and in the rat brain after oral administration (Sapkota 

et al., 2010). Moreover, GDNF immunoreactivity is markedly enhanced in the substantia 

nigra of rats treated with Rhus verniciflua extract. Interestingly, the neuroprotective effects of 

Rhus verniciflua against rotenone-induced toxicity in SH-SY5Y cells include the prevention of 

GDNF and BDNF down-regulation in rotenone-treated cells (Sapkota et al., 2011). 

Ibogaine is a psychoactive compound extracted from Tabernanthe iboga, and used for decades 

in African folklore medicine and rituals. Many studies indicate that ibogaine reduces 

craving and withdrawal symptoms of several drugs of abuse (Ron & Janak, 2005). This anti-

addiction drug increases GDNF levels in SH-SY5Y cells, and up-regulates the GDNF 

pathway as assessed by the phosphorylation of the GDNF receptor Ret and the downstream 

kinase ERK1 (D.Y. He et al., 2005). A MEK inhibitor impede ibogaine-induced GDNF up-

regulation (D.Y. He & Ron, 2006). In addition, after systemic administration to rodents, 

ibogaine increases GDNF expression in the VTA (D.Y. He et al., 2005). Since GDNF has been 

implicated as a negative regulator of drug and alcohol addiction (Ron & Janak, 2005), the 

effect of ibogaine on GDNF expression likely contributes to its positive impact on the 

treatment of addiction. Despite its properties, ibogaine is not approved as an addiction 

treatment because it induces hallucinations, which will impede its use in PD therapeutics 

too.  

Given the neuroprotective effect of some herbal extracts on animal and cellular models of 

PD, and the ability to induce GDNF expression reported for some of them, it may prove 

useful to screen traditional therapies for their effect on GDNF levels in the nigrostriatal 

system, as they might reveal to be valuable GDNF inducers and alternative therapeutic 

approaches to PD. 

5.5 ‘GDNF-Acupuncture’? 

Acupuncture is among the complementary and/or alternative therapies most widely used 
by PD patients (Lokk & Nilsson, 2010; Pecci et al., 2010). Interestingly, increasing evidence 
supports a beneficial effect of acupuncture on MPTP (Y.G. Choi et al., 2011; Doo et al., 2010a; 
Jeon et al., 2008; J.M. Kang et al., 2007), 6-OHDA (Y.K. Kim et al., 2005; H.J. Park et al., 2003; 
Y.P. Yu et al., 2010) and medial forebrain bundle transection (Jia et al., 2009, 2010; X.B. Liang 
et al., 2003) PD models, and also in PD patients (Chang et al., 2008; Zhuang & Wang, 2000). 
Acupuncture can enhance the therapeutic effects of western medicine and reduce the need 
of medication (Ren, 2008). Relevant in the context of the present sinopsis is the fact that 
acupuncture therapy increases various neuroprotective agents (Joh et al., 2010), namely 
GDNF. In medial forebrain bundle-transected rats, high frequency electroacupunture 
stimulation up-regulates GDNF mRNA levels in both sides of the globus pallidus, 
suggesting that the retrograde nourishment of GDNF to dopaminergic neurons may 
contribute to the behavioral improvement observed in these rats (X.B. Liang et al., 2003). 
Another study shows that the number of GDNF-positive cells and the content of Ret 
receptor increased significantly in 6-OHDA-injected rats subjected to electroacupuncture 
(Y.C. Wang et al., 2010). At this point it is also worthy to mention that acupuncture 
attenuates microglial activation and inflammatory events in MPTP-treated mice (J.M. Kang 
et al., 2007). Since acupuncture increases GDNF expression, and GDNF is an important 
inhibitor of microglia activation (see section 3.3 Role of GDNF in controlling microglia 
activation), it is tempting to speculate that acupuncture might reduce microglia activity 
through GDNF up-regulation. Interestingly, electroacupuncture increases GDNF signaling 
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in other disease models. Electroacupuncture activates the endogenous GDNF signaling 
system by increasing the mRNA and protein levels of GDNF and its receptor GFRǂ1 in 
dorsal root ganglions of neuropathic pain rats (Dong et al., 2005). In contrast, 
electroacupuncture-induced analgesia in a rat model of neuropathic pain is significantly 
attenuated by the down-regulation of GFRǂ1 expression with antisense 
oligodeoxynucleotides (Dong et al., 2006). Electroacupuncture also up-regulates GDNF 
expression in a model of transient focal cerebral ischemia, thereby extending the duration of 
the endogenous GDNF up-regulation, which may be one of the pathways involved in the 
protective effect of electroacupuncture against ischemic injury (Wei et al., 2000b). Since the 
stimulatory effects of electroacupuncture on GDNF/GFRǂ1 levels have been demonstrated 
in different models, it would be relevant to address whether they underlie the beneficial 
effects of electroacupuncture in PD animals models. 

6. Conclusion 

Male gender, together with the sex dimorphism in the nigrostriatal system, can contribute to 

the gender differences in PD. The estrogen 17ǃ-estradiol plays a determinant protective role 

through its antioxidant, anti-inflammatory, and anti-apoptotic actions. Moreover, 17ǃ-

estradiol is capable of inducing the expression of neurotrophic factors, namely GDNF, 

which can have a determinant contribution to the aforementioned protective effects of 17ǃ-

estradiol. Although the protective effect of 17ǃ-estradiol in females is consensual, the role of 

this hormone in males is still not broadly accepted. 

Microglia plays a protective role by removing apoptotic neurons and by promoting 

neuronal survival through the release of neurotrophic factors. However, microglia 

activation can also play a particularly deleterious role in the nigrostriatal system, 

contributing to further enhance neuronal injury in PD. Substantial evidence suggests that 

microglial activation is capable of inducing GDNF expression, and more recent data indicate 

that GDNF in turn inhibits microglia activation. This may indicate that GDNF is involved in 

a process that self-limits microglial neurotoxicity thus preventing neuronal injury. The 

extensive neuroinflammation observed in PD brain indicates that this mechanism of control 

is no longer effective in the diseased brain. Although the results obtained so far with anti-

inflammatory drugs were not conclusive, it would be important to determine what causes 

the disruption or alteration of this feedback mechanism in the course of PD.  

The possibility of manipulating endogenous GDNF expression can have clinical 

implications for the management of PD, and prove to be useful as an alternative or a 

complement to pharmacological or more invasive approaches. Growing evidence shows the 

possibility of reducing the risk for age-related neurodegenerative disorders through dietary 

and behavioral changes inducing neuronal survival and plasticity. Thus, dietary 

manipulations, physical exercise and cognitive stimulation, which are known to induce 

GDNF up-regulation, represent novel drug-free and non-invasive approaches that may help 

preventing the onset of degeneration or, in combination with pharmacological treatments, 

reduce the severity of the motor symptoms through the modulation of GDNF levels. 

Moreover, the use of alternative therapies like herbal supplements and acupuncture might 

also prove to be neuroprotecive via GDNF up-regulation in the nigrostriatal system. Thus, 

these approaches to increase endogenous GDNF levels deserve further investigation. 

Likewise, the impact on GDNF levels of other complementary and alternative therapies 
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used by PD patients should also be addressed in the future. Moreover, given its 

involvement in synaptic plasticity and synaptogenesis, GDNF also plays a role in learning 

and memory. One may therefore speculate that increasing the endogenous GDNF 

expression would also contribute to fight the cognitive decline observed in PD patients. 

Additionally, it would be interesting to examine the effect of caloric restriction, physical 

exercise, enriched environment, herbal extracts or acupuncture, which increase GDNF 

expression in the nigrostriatal system and are neuroprotective in PD models, on the levels of 

MANF and CDNF, two other dopaminotrophic factors. 
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