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Spectral Effects on CIS Modules 
 While Deployed Outdoors 

Michael Simon and Edson L. Meyer 
Fort Hare Institute of Technology, University of Fort Hare 

South Africa  

1. Introduction  

The effect of spectral distribution on the performance of photovoltaic (PV) modules is often 
neglected. The introduction of multi-junction devices such as Copper Indium Diselenide 
(CIS) necessitated a concerted investigation into the spectral response on these devices. In 
part this attributed to the wider spectral response resulting from a combination of different 
energy band gaps. This in turn implies that the device should have a relatively lower 
dependence on outdoor spectral content, which depends on a number of factors such as year 
time, location, day time and material composition in the atmosphere. 
The availability of outdoor spectral data, which in most cases is not available, allows for the 
evaluation of the outdoor response of the CIS technology as the spectrum shifts during the 
course of the day, during cloud/clear sky condition and seasons. This study reports on the 
effect of outdoor spectrum, which is different from the reference AM 1.5, on the CIS 
performance parameters. 

2. Different outdoor methodologies currently adopted 

2.1 The concept of average photon energy  

In trying to quantify the ‘blueness’ or ‘redness’ of outdoor spectrum, Christian et. al. 
adopted the concept of Average Photon Energy (APE) as an alternative (Christian et al., 
2002). He defined APE as a measure of the average hue of incident radiation which is 
calculated using the spectral irradiance data divided by the integrated photon flux density, 
as in equation 1. 
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 (1) 

where :  qe = electronic charge 
  Ei(λ) = Spectral irradiance 
  i(λ) = Photon flux density 
As an indication of the spectral content, high values of average APE indicate a blue-shifted 
spectrum, whilst low values correspond to red shifted spectrum. Although this concept at 
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first approximation characterizes the spectral content at a particular time-of-the day, no 
direct feedback of the device information is obtained since it is independent of the device. 
The concept of Average Photon Energy (APE) has also been adopted to illustrate the 
seasonal variation of PV devices (Minemoto et al., 2002; Christian et al., 2002). 

2.2 The Air Mass concept  

The mostly commonly adopted procedure (Meyer, 2002; King et al., 1997) is to calculate the 
Air Mass (AM) value at a specific location and relate the module’s electrical parameters. It is 
standard procedure for PV manufacturers to rate the module’s power at a specific spectral 
condition, AM 1.5 which is intended to be representative of most indoor laboratories and is 
not a typical spectral condition of most outdoor sites. The question that one has to ask is, 
why then is AM 1.5 spectrum not ideal?  What conditions were optimized in the modeling 
of AM 1.5 spectra?  What are the cost implications on the customer’s side when the PV 
module is finally deployed at spectra different from AM 1.5? 
The modeled AM 1.5 spectrum commonly used for PV module rating was created using a 

radiative transfer model called BRITE (Riordan et al., 1990). The modeled conditions used 

for example the sun-facing angle, tilted 37o from the horizontal, was chosen as average 

latitude for the United States of America. The 1.42 cm of precipitable water vapor and 0.34 

cm of ozone in a vertical column from sea level are all gathered from USA data. Ground 

reflectance was fixed at 0.2, a typical value for dry and bare soil. In principle this spectra is a 

typical USA spectrum and therefore makes sense to rate PV modules which are to be 

deployed in USA and the surrounding countries. 

AM is simply defined as the ratio of atmospheric mass in the actual observer - sun path to 

the mass that would exist if the sun was directly overhead at sea level using standard 

barometric pressure (Meyer, 2002). Although the concept of AM is a good approximation 

tool for quantifying the degree of ‘redness’ or ‘blueness’ of the spectrum, the major draw 

back is that it is applied under specific weather conditions, i.e., clear sky, which probably is 

suitable for deserts conditions. 

2.3 The spectral factor concept  

Another notion also adopted to evaluate the effect of outdoor spectrum, is the concept of 

Spectral Factor. As described by Poissant (Poissant et al., 2006), Spectral Factor is defined as 

a coefficient of the short-circuit current (Isc) at the current spectrum to the short-circuit 

current at STC (ISTC). 
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From equation 2, the Isc and the ISTC is obtained using the equation 3 and 4 respectively. 
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     (4) 

where:  E(λ) = Irradiance as function of wavelength 
  ESTC(λ) = Irradiance at STC 
  R(λ)    = Reflectivity 
The spectral factor quantifies the degree of how the solar spectrum matches the cell spectral 
response at any given time as compared to the AM1.5 spectrum. 

2.4 The useful fraction concept  

With regard to changes in the device parameters, the concept of Useful Fraction used by 
Gottschalg et al (Gottschalg et al., 2003) clearly demonstrates the effect of varying outdoor 
spectrum. Useful fraction is defined as the ratio of the irradiance within the spectrally useful 
range of the device to the total irradiance. 
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     (5) 

Where Eg is the band-gap of the device (normally the cut - off wavelength) and G is the total 
irradiance determined as: 

 
0
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   (6) 

where G(λ) is the spectral irradiance encountered by a PV cell. 

3. Methodology used in this study 

Before the CIS module was deployed outdoors, the module underwent a series of testing 

procedures in order to establish the baseline characteristics. Visual inspection was adopted 

to check for some physical defects e.g. cracks, and incomplete scribes due to manufacturing 

errors. Infrared thermography revealed that no hot spots were present before and after 

outdoor exposure. These procedures were used to isolate the spectral effects with respect to 

the performance parameters of the module. To establish the seasonal effects on the module’s 

I-V curves, three I-V curves were selected. One I-V curve for a winter season and the 2nd I-V 

curve for summer season were measured. The 3rd I-V curve was used to establish whether 

the module did not degrade when the winter curve was measured. All curves were 

measured at noon on clear days so that the effect of cloud cover would be negligible. For 

accurate comparison purposes all I-V curves had to be normalized to STC conditions so that 

the variations in irradiance and temperature would be corrected. Firstly the Isc values were 

STC corrected by using equation 1 (Gottschalg et al., 2005). 

  mod100 25sc
sc ule

I
I T

G
      

 
 (7) 

where ┙ is the module temperature coefficient [A/oC]. 
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Each point on the I-V curve had to be adjusted according to equation 8. 

  2 1 mod

1000
1 25sc uleI I I T

G


           
 (8) 

where:  I1  = measured current at any point 
  I2 = new corrected current 
  G = measured irradiance 
The corresponding voltage points were also corrected according to equation 9. 

    2 1 2 1 mod25s uleV V R I I T        (9) 

where:  V1  = measured voltage at a corresponding point  for I1 
  Rs = internal series resistance of the module [Ω] 
  ┚ = voltage temperature coefficient of the module [V/oC] 
  V2 = new corrected voltage 
The outdoor spectrum was also measured for winter and summer periods in order to 
compare them for possible changes in the quality of the two spectra (figure 5). With regard 
to changes in the device parameters, the concept of Weighted Useful Fraction (WUF) (Simon 
and Meyer, 2008; Simon and Meyer, 2010) was used to clearly demonstrate the effect of 
varying outdoor spectrum. This concept was developed due to some limitations noted with 
other outdoor spectral characterization techniques (Christian et al., 2002). 
The methodology used by Gottschalg et al (Gottschalg et al, 2002) makes use the assumption 
that the energy density (W/m2/nm) within the spectral range of the device at a specific 
wavelength is totally absorbed (100%). But in reality the energy density at a specific 
wavelength has a specific absorption percentage, which should be considered when 
determining the spectral response within the device range. It was therefore necessary to 
introduce what is referred to as the Weighted Useful Fraction (WUF) (Simon and Meyer, 
2008; Simon and Meyer, 2010). 

    
0

1
( )

gE

WUF G d SR
Gtot

                  (10) 

where: G(λ) is the integrated energy density within device spectral range with its 
corresponding absorption percentage evaluated at each wavelength. 
As a quick example, at 350 nm for a-Si device, its corresponding energy density (W/m2/nm) 
is 20% of the irradiance (W/m2) received which contribute to the electron-hole (e-h) creation 
and for mc-Si at the same wavelength, 60% is used to create e-h pairs. But the concept of 
Useful Fraction considers that at each wavelength, all the energy received contributes to the 
e-h, which is one of the short comings observed from this methodology. The idea of using 
Weighted Useful Faction was to address these short falls which tend to over estimate the 
overall device spectral response.  
The data obtained using the concept of Weighted Useful Fraction represents a statistical 
phenomenon of occurrences. Therefore the Gaussian distribution as a statistical tool was 
used to interpret the data simply because of a mathematical relationship (Central Limit 
Theorem). In this case the theorem holds because the sample is large (major condition of the 
theorem) and therefore the Gaussian distribution is suitable to be applied. In this study, the 
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3rd parameter Gaussian distribution function was used to describe the distribution pattern 
and to accurately determine the variance of points from the peak value (central value). The 
peaks of the Gaussian distribution was obtained by firstly creating frequency bins for the 
WUF and determine the frequency of the points in each bin expressed as a percentage. The 
bins were imported into SigmaPlot 10 and the peak 3rd Gaussian distribution function was 
used to accurately generate the peak WUF. Figure 1 illustrates the frequency distribution 
bins for a-Si:H module. 
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Fig. 1. Frequency distribution of WUF for a-Si:H module 

Evident from figure 1 is an increase in WUF frequency at specific WUF value. This 
percentage frequency represents the number of data points measured at a specific WUF 
during the study period. 
The centre of the points, which corresponds to the spectrum the device “prefers” most, was 
obtained using the peak Gaussian distribution of the form: 

   2
exp 0.5 /of a x x b     

            (11) 

where:  a = highest frequency 
  x = WUF value 
  xo = WUF centre value 

  b = deviation (2)   
Figure 2 illustrates a typical Gaussian distribution used to accurately determine the mean 
Weighted Useful Fraction.  
Also illustrated is the width of the distribution as measured by the standard deviation or 
variance (standard deviation squared = 2). In order to interpret the results generated from 
each Gaussian distribution, two main terminologies had to be fully understood so that the 
results have a physical meaning and not just a statistical meaning. The standard deviation 
() quantifies the degree of data scatter from one another, usually it is from the mean value. 
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In simple statistics, the data represented by the Gaussian distribution implies that 68% of the 
values (on either side) lie within the 1st standard deviation (1) and 95% of the values lie 
within the 2nd standard deviation. The confidence interval level was also analyzed when 
determining the mean value. The confidence interval quantifies the precision of the mean, 
which was vital in this analysis since the mean represents the WUF spectrum from which 
the devices responds best during the entire period of outdoor exposure. The increase in 
standard deviation means that the device spends less time on the corresponding WUF 
spectrum. Ideally it represents the error margin from the mean value. The percentage 
frequency value corresponding to the mean WUF value represents the percentage of the 
total time of outdoor exposure to which the device was responding best to that spectrum. 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 

Fig. 2. Illustration of Gaussian distribution used to determine the mean WUF. 

Depending on how the data is distributed, the Gaussian curve ‘tails’ differently from each 
side of the mean value. The increase in  in this case reveals two crucial points regarding the 
statistical data in question. Firstly, it quantifies the total time spent at a specific spectrum as 
the  increases during the entire period of monitoring. Secondly it reveals the entire spectral 
range to which PV devices respond. From figure 2, the standard deviation increases from 1 
to 8 on one side of the mean WUF and from the other side varies from 1 to 3. The total 
range of the WUF is from 0.64 to 0.7 although it spends less time from spectral range where 
standard deviation  is greater than a unit. A high confidence level of each Gaussian 
distribution indicates the accuracy of the determined mean. All results presented in this 
work showed a high confidence level. 
Normalization of Isc was achieved by dividing the module’s Isc with the total irradiance 
within the device spectral range (GSpectral Range). The commonly adopted correlation existing 
between the module’s Isc and back-of-module temperature is of the form  

 0 1sc device SpectralRangeI C C T G    (Gottschalg et al., 2004). Firstly, the relationship between 

sc

SpectralRange

I
G

(which is referred to as SpectralRange from this point onwards) is plotted against 

back-of-module temperature. The empirical coefficient C0 and C1 are obtained. The second 
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aspect is to plot  1 ( )SpectralRange o deviceC C T f WUF     versus the Weighted Useful 

Fraction (WUF), from which the predominant effect of the spectrum can be observed and 
analyzed. Due to a large number of data obtained, all results analyses were made using only 
data corresponding to global irradiance (Gglobal) > 100 W/m2. This was done to reduce 
scatter without compromising the validity of the results 

4. Results and discussion 

Although the outdoor parameters might ‘mimic’ the STC conditions, the performance of the 
PV device will not perform to that expectation. By analyzing the effect of outdoor 
environment, the spectrum received is largely influenced by solar altitude and atmospheric 
composition, which in turn affect device performance. 
Figure 3 illustrates the seasonal effects on the CIS module current-voltage (I-V) 
characteristics when deployed outdoor, first on 31 January 2008 and later on 12 June 2008. 
 

 

Fig. 3. Comparison of the CIS I-V characteristics for a typical summer clear sky and winter 
clear sky. The accompanying table lists the conditions before corrections to STC. 

The January I-V curve was taken a few days after deployment of the modules while 

operating at outdoor conditions. Two aspects needed to be verified with this comparative 

analysis of the I-V curves for that time frame:  Firstly the state of the module, i.e. whether 

it did not degrade within this time frame needed to be ascertained so that any effect on 

device Isc, FF and efficiency would be purely attributed to spectral effects. Secondly, this 

was done to see the effect of seasonal changes on the I-V characteristics. Since the outdoor 

conditions are almost the same when the measurements were taken, the I-V curves were 

normalized to STC conditions using the procedure mentioned in section 2. Since the 3 I-V 

curves had been corrected for both temperature and irradiance, therefore any 
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modification or changes on the Isc values is purely due to spectral effect. The difference in 

module’s Isc is largely attributed to the outdoor spectral composition, which as have been 

mentioned earlier on, depends on season and time of the year amongst other factors. The 

CIS module was also simulated using Solar Studio Design. At each AM value, the 

module’s I-V curve was obtained. Figure 4 illustrates the effects on the simulated CIS I-V 

curves as the Air Mass was varied. 
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Fig. 4. The effect of varying Air mass on the simulated CIS module. 

The change in outdoor spectrum as characterized by the AM values affect the module’s I-V 

curves, mostly the Isc. Although this module is rated at STC using the AM1.5 spectrum, the 

CIS module is performing less at AM1.5 as compared to AM 9.15. The I-V curve at AM 1.5 

coincides with the I-V curve at AM 16.0. It should be noted that the change in AM value is 

an indication of the spectral content dominating. The ΔIsc = 7.5% difference between Isc at 

AM 1.5 and Isc at AM 9.15 is purely due to spectral changes. Returning back to figure 1, the 

difference in Isc between winter and summer spectrum is due to spectral changes. The 

typical winter and summer spectra were compared with the view of finding any variation in 

the profiles. All values were divided by the highest energy density in each curve so as to 

normalize them. Figure 5 presents the normalized spectral distribution corresponding to the 

two I-V curves in figure 3. 

Clearly there is a difference in the spectral content primarily due to the difference in solar 

altitude and hence air mass. In the absence of the device degradation, similar irradiance and 

module temperatures, the reduction in module performance is attributed to the difference in 

spectral distribution associated with the seasonal variation. To further verify whether 

indeed the reduction in the module’s Isc was due to spectral changes associated with 

seasonal changes, the device WUF for the entire year was analyzed. The monthly average 

WUF was considered to be sufficient to provide evidence, if any in its profile. Figure 6 

shows the evolution of the monthly average WUF of the CIS module. 
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Fig. 5. Normalized spectral distribution for January and June months. 
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Fig. 6. Evolution of daily average Weighted Useful Fraction versus timeline. Inset is an 
average daily profile for the period from January to June 2008. 

Evident from figure 6 is the high values of CIS WUF for the entire period which indicates 
that the device performs well under full spectrum. Taking the average values of the upper 
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(summer) and the lower for winter, a 1.5% drop in WUF is noticed (inset figure). A small 
change in WUF results in large change of the device’s Isc. In order to verify this assumption, 
the change in WUF versus Air Mass was established as is presented in figure 7. 
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Fig. 7. Influence of the air mass on device spectral variations as characterized by WUF for 
CIS module. 

The relationship established in figure 7 was used to calculate the change in WUF at different 

Air Mass values, a typical change in season. Values for low air mass (indication of a summer 

spectrum) and high air mass (indication of winter) were used to calculate the % change in 

WUF and later compared to the simulated % change in Isc at different AM values, the same 

values that has been used in previous calculation. Equations 12 and 13 illustrate the 

equations used for this calculation. 

 1.0 0.002 1.0 0.9856WUF AM                (12) 

 9.15 0.002 9.15 0.9856WUF AM                (13) 

where: WUF1.0 is the calculated value of WUF at AM 1.0 and the WUF9.15 is the calculated 
value of WUF at AM 9.15. 
From figure 4 the value for Isc (AM 1.0) and Isc (AM 9.15) were used to calculate the % 

change in Isc as the spectrum changes. The ΔWUF = WUF1.0 – WUF9.15 expressed as a %, was 

found to be 1.66%, while the ΔIsc = 11.88%. From this analysis, one can conclude that a small 

% change in ΔWUF result in large % difference of the module’s Isc, which explains the 17% 

decrease in Isc due to a ΔWUF of 1.5%. The slight difference in the two results is due to the 

difference in the actual operating conditions in which case the simulated conditions are 

different from the actual conditions when the two I-V curves in figure 4 were measured. 

A 10 point moving average was applied so that a clear correlation can be seen. By fitting a 

3rd order polynomial fit, a functional relationship between FF and WUF is observed. The FF 

of the device is an indication of the series and junction quality of the device cells; therefore 
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by plotting the FF with WUF a functional relationship can be established. Figure 8 shows the 

slight increase in FF as the WUF varies.  
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Fig. 8. Effect on CIS average Fill factor due to outdoor irradiance and spectral changes. Inset 
is the variation of FF vs. Air Mass for the same device. 

Observed from figure 6, a 6.5% increase in FF is observed within the WUF range 0.960 - 
0.983 (considering the % difference between the averages of the upper and low values of the 
FF). It should however be noted that this percentage increase value is just an indication of 
the change in FF. The increase in FF as observed is attributed to the quality of the spectrum 
dominating which result in ‘supplying’ sufficient energy for the electron-hole creation, with 
less energy losses, which in most cases is dissipated as heat. From the inset figure, a 
decrease in FF as AM values increase from AM 1.5 is evident. Closely analyzing the two 
graphs, the spectrum dominating under the WUF range of the CIS module is a blue rich 
spectrum which explains a slight increase in FF. From the inset figure, the FF is higher at 
AM 1.5 and decrease as the spectrum becomes longer wavelength dominated. Clearly the 
change in outdoor spectrum has an effect on the FF of the CIS module. Often reported is the 
relationship between efficiency and global irradiance as measured by the pyranometer. For 
CIS module, the variation of aperture efficiency with WUF is visible described by a 
logarithmic fit into the scattered data. Both WUF and irradiance affect device performance 
with the same magnitude. Gottschalg et al., (Gottschalg et al., 2004) established a 
relationship for device aperture efficiency and Useful Fraction (UF). The efficiency is 

described by UF
A

   which when interpolated to our concept of Weighted Useful Faction 

(WUF) the device efficiency would be described by WUF
A

  : where 

( ) Re ( )Power P Spectral sponsiveRange UI  , is roughly a constant. This relationship exhibit a 
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linear trend of efficiency with WUF in our case. The other key performance indicator in PV 
analysis is the device aperture efficiency. The efficiency of CIS module was also analyzed 
using the same procedure for FF analysis. Figure 9 indicate the efficiency versus WUF of the 
CIS device. 
 

0

2

4

6

8

10

0.96 0.965 0.97 0.975 0.98 0.985

WUF

E
ff

ic
ie

n
c
y
 (

%
)

 

Fig. 9. Correlation between aperture efficiency versus outdoor WUF of the CIS module. 

The efficiency increases logarithmically with an increase in Weighted Useful fraction (WUF 
> 0.960), which do not agree with the theoretical relationship illustrated in the previous 

section ( WUF
A

  ). One can attribute this discrepancy of the measured data and theory as 

follows: The ┙ in the equation above is assumed to be a constant, but in actual fact it is 
strongly dependant on the irradiance available within the denominator function (UI). The 
irradiance within the Responsive Spectral Range (UI) is assumed to be a constant, a single 
value to be precise. In reality the irradiance does fluctuates within this range, rendering the 
┙ not to be a constant parameter. However the device efficiency exhibits a logarithmic 
increase as a function of WUF, due to the irradiance variations, resulting in ┙ not to be a 
constant. The effect of season on device efficiency was also investigated; the results are 
shown in figure 10. 
It is observed from figure 10 that the device efficiency is stable for both summer and winter. 
The PV module’s performance parameters e.g. Isc, Voc, FF and η are characterized by what is 
referred to as temperature coefficients. Temperature coefficient is described as the rate of 
change (derivative) of the parameter with respect to the temperature of the PV device 
performance parameters (King et al., 1997). For PV system sizing and design, knowing the 
device temperature coefficient plays a very critical role. Quantifying the spectral effects on 
its own has proved to be a challenge; as a result no temperature coefficient with respect to 
outdoor spectrum has been documented. In figures 11 and 12, the relationship between 
outdoor spectral effects (WUF) and the average back - of module temperature is presented. 
Using a linear fit to the data, a spectral temperature coefficient is obtained. Figure 11 
illustrates the relationship between WUF and temperature for a winter period.  
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Fig. 10. Average outdoor aperture efficiency as a function of WUF of CIS module for both 
winter and summer period. 
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Fig. 11. Relationship between the outdoor WUF and back of module temperature of the CIS 
module during winter period. 

Observing the results in figure 11, two temperature coefficients for WUF are obtained 

during the winter period. This trend in behavior could have been attributed to the different 

outdoor weather patterns observed for winter period. Some days even during winter, the 

outdoor climatic conditions would resemble a typical clear sky summer season, indicated by 

Trend 1 for G < 0.8 kW/m2 

Trend 2 for G > 1kW/m2 

WUF
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very high temperature (indicated by trend 2), while the rest of the days would be for typical 

winter season, normally characterized by mostly low temperature. In both cases, a negative 

WUF temperature coefficient is observed, with trend 1 being -0.001/oC and for trend 2 being 

-0.4×10-5/oC. 

The same procedure was also used to find the effect of temperature on WUF for summer 
months of CIS module. Figure 12 shows the WUF versus temperature relationship. 
Interesting to note from figure 12 is that the spectral effect temperature coefficient for 

summer period is the same as the one obtained during winter, clear sky (trend 2) although 

for summer the highest temperature reached was above 60oC while for trend 2 (figure 11), 

the highest was less than 60oC. From the two figures, it has been shown that temperature 

coefficient due to spectral effect (WUF┚) can be obtained once the outdoor spectrum data for 

a device is correctly calculated using the Weighted Useful Fraction (WUF) concept. Like 

other performance parameters, whose temperature coefficients are equally important in PV 

characterization and system design, the WUF should be also be considered as this might 

help to minimize some of the system sizing errors, which in most instances lead to under 

performance, unreliable and financial repercussions. 
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Fig. 12. Relationship between the outdoor WUF and back of module temperature of the CIS 
module during summer period. 
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5. Conclusion 

The outdoor spectral effects using the Weighted Useful Fraction (WUF) of CIS module was 

analyzed. Observed was a 17% decrease in the device short - circuit (Isc) current attributed 

due to a change in season. The change in season (summer/winter) result in the outdoor 

spectrum to vary by ΔWUF = 1.5%, result in the decrease in the device Isc. From the analysis 

done, it was concluded that a small percentage change in ΔWUF resulted in large % 

difference of the module’s Isc as the outdoor spectrum changed during the course of the day, 

which confirmed that the 17% decrease in Isc was due to a ΔWUF of 1.5 %. A strong 

correlation between FF and the WUF exists for CIS module. It is observed that the FF 

increases by 6.5% as WUF increases. The temperature coefficient of a device is one of the 

important concepts for characterizing device performance parameter. A close correlation 

between WUF and temperature was established. Temperature coefficients for spectral 

induced effect (WUF) were found to be -0.001/oC for winter period and -4×10-5/oC for 

summer seasons. This difference in WUF┚ for summer and winter indicated that the 

temperature coefficients obtained in controlled environment (indoor procedure) can not be 

truly dependable for modeling purposes or system sizing since the outdoor conditions has 

an effect also. It should also be noted that the temperature coefficient for spectral effect is 

indeed an important parameter to consider. 
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