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1. Introduction 

The use of animal models in the study of human diseases is obviously important. 

Fundamental properties of the disease can be investigated analytically and thoroughly by 

this approach, contributing much to the progress of basic science as well as clinical medicine 

(Nomaguchi & Adachi, 2010). Researchers in various specialties, therefore, have made every 

effort to establish animal models for human diseases including those caused by infectious 

agents. Acquired immunodeficiency syndrome (AIDS) of humans has long been one of the 

major targets for the model study in appropriate animals. However, human 

immunodeficiency virus type 1 (HIV-1) itself, the predominant causative virus of human 

AIDS, can not be used due to its very narrow host range. Because HIV-1 has adapted itself 

dexterously from the ancestral virus to replicate, persist and spread strictly in humans, it is 

very unique among various primate immunodeficiency viruses and no good counterparts 

are available in nature (Desrosiers, 2007; Kirchhoff, 2009; Sauter et al., 2009). Therefore, it 

can be concluded that practical and meaningful animal systems of non-alternative nature for 

HIV-1 study do not exist at all to date, although there are pre-existing animal models of 

some significance. 

HIV-1 does not replicate in animal species except for chimpanzees and humans (Nomaguchi 
et al., 2008a). Animals frequently used for our experiments on virology, such as rodents and 
nonhuman primates, are not exceptions to this barrier. However, if we are to search for, 
develop and establish a fruitful animal model system for HIV-1 research, nonhuman 
primates are considered to be most suited, for HIV-1 is best fitted with humans and some 
apes. Ever since the discovery of HIV-1 (Barre-Sinoussi et al., 1983), many prominent 
researchers keen on understanding its biology and molecular biology have done 
investigations extensively to elucidate the bases underlying the species-specificity unique to 
HIV-1. These studies have highlighted the presence of potent anti-HIV-1 factors in 
nonhuman cells that efficiently restrict or even abolish the replication of HIV-1 and 
successfully raised an epoch-making notion of the intrinsic immunity (Andrew & Strebel, 
2010; Arhel & Kirchhoff, 2010; Ayinde et al., 2010; Bergamaschi & Pancino, 2010; Douglas et 
al., 2010; Fujita et al., 2010; Huthoff & Towers, 2008; Kirchhoff, 2010; Luban, 2007; Malim & 
Emerman, 2008; Nakayama & Shioda, 2010; Nomaguchi et al., 2008a, 2008b; Planelles & 
Barker, 2010; Sauter et al., 2010; Strebel et al., 2009; Towers, 2007). Cellular factors shoulder 
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this intrinsic immunity known to date are cyclophilin A (CypA) (Franke et al., 1994; Thali et 
al., 1994), apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G 

(APOBEC3G)/APOBEC3F (Sheehy et al., 2002), tripartite motif protein 5 (TRIM5) 
(Stremlau et al., 2004), TRIMCyp (Nisole et al., 2004; Sayah et al., 2004), and tetherin 
(alternatively called BST-2) (Neil et al., 2008; Van Damme et al., 2008). Because HIV-1 can 
indeed counteract human orthologs of these restriction factors effectively, it is well 
anticipated that HIV-1 in turn can be genetically engineered to replicate efficiently in 
nonhuman primates such as macaques. Nonetheless, most likely due to the lack of extensive 
and appropriate biological studies, we are still forced to use macaque-derived simian 
immunodeficiency virus (SIVmac) or SIVmac chimeric with a small portion of HIV-1 (SHIV) 
as an input virus for in vivo model studies in macaques. SIVmac and SHIV are genetically 
and biologically distinct from HIV-1 in a number of critical points, albeit they are quite 
similar to HIV-1 in the genome organization and pathogenic potentials (Desrosiers, 2007; 
Freed & Martin, 2007). They might not be used for future model studies aimed at 
understanding the biology of HIV-1 as a highly replicable/mutable, persistent, and 
pathogenic virus. We must go behind the outward form to grasp the inner meaning of the 
phenomenon, i.e., the species-specificity. 
On the collective basis of molecular and biochemical studies performed by us and others so 
far, we recently have constructed a series of HIV-1 derivative clones tropic for macaque cells 
and/or macaques (Hatcho et al., 2008; Igarashi et al., 2007; Kamada et al., 2006, 2009; 
Kuroishi et al., 2009; Nomaguchi et al., 2008a; Saito et al., 2011; Yamashita et al., 2008), and 
are currently further modifying them for in vivo studies (our unpublished results). The 
viruses we have generated carry a minimal sequence of SIVmac, and overcome at least some 
species barriers. Importantly, these viruses are regarded to be genetically HIV-1, since they 
have less than 10% SIVmac genetic content (Igarashi et al., 2007). While we firmly believe 
that HIV-1 derivative viruses already constructed in our laboratory are useful for a variety 
of studies on HIV-1 infection in individuals, further improvement of the viruses by 
deliberating the evolutional process of SIV/HIV would surely add more scientific 
significance to basic and applied research fields. Needless to say, our goal is to generate a 
macaque-tropic HIV-1 (HIV-1mt) that replicates efficiently and is pathogenic for macaques 
as a standard pathogenic SIVmac clone such as SIVmac239 (Kestler et al., 1990). Through 
construction and biochemical/biological characterization of the ideal HIV-1mt clone with 
ability to induce AIDS at least in some species of macaques, we would be able to clarify the 
detailed molecular mechanisms for the narrow host range (species-tropism) of HIV-1. Viral 
Gag-capsid (CA) and accessory proteins (Vif, Vpx, Vpr, Vpu and Nef) are targets for those 
studies as a matter of course. Moreover, by using this persistent and pathogenic HIV-1mt 
clone as a seed virus for macaque infection experiments, we can trace and analyze its 
mutation, adaptation, evolutional direction to generate viral quasi-species, and finally 
pathogenesis in the context of immunological interaction. In addition, we can evaluate and 
develop the anti-HIV-1 drugs/vaccines by this HIV-1mt/macaque system. 
In this chapter, we first outline the early and current studies on HIV-1, SIVmac and SHIV to 
emphasize and address the unique characteristics of HIV-1 and scientific issues to resolve. 
We then describe viral and cellular factors that are responsible for or potentially associated 
with restriction of viral replication. We finally focus on our recent studies on the strategies 
to obtain HIV-1mt clones and on the biology/molecular biology of HIV-1mt clones. Main 
parts of this chapter consist of: (i) Overview of the biology and molecular biology of HIV-1, 
SIVmac and SHIV; (ii) Determinants for HIV-1 species-tropism; (iii) Generation and 
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characterization of various HIV-1mt clones. The primary mission of we basic virologists is to 
understand viral replication and viral pathogenesis in vivo by multilateral approaches 
(Nomaguchi & Adachi, 2010). We then take over our new important findings to functional 
parties in related fields, thus promoting further progress in virology.  

2. Overview of the biology and molecular biology of HIV-1, SIVmac and SHIV 

Numerous immunodeficiency viruses of distinct groups have been isolated from humans 
and a wide variety of African nonhuman primates (Desrosiers, 2007; Freed & Martin, 2007). 
These viruses infect the immune system of primates, kill cells that are critical for effective 
immune responses, and eventually cause AIDS in some hosts (Desrosiers, 2007; Kuritzkes & 
Walker, 2007). Soon after the discovery in 1983 (Barre-Sinoussi et al., 1983; Barre-Sinoussi, 
2010; Montagnier, 2010), HIV-1 was demonstrated to belong to a lentiviral genus of the 
retrovirus family, and expected to exhibit the properties characteristic of the family (Goff, 
2007). In 1986, another human immunodeficiency virus was identified and designated HIV-
2 (Clavel et al., 1986; Montagnier, 2010). Among these primate lentiviruses, HIV-1, HIV-2 
and its close relative SIVmac are most well-studied through biological, biochemical and 
medical approaches, and many findings crucial for the biological and medical sciences have 
been generated (Ho & Bieniasz, 2008). 
Basically, HIV/SIV exhibit a virological phenotype common to the retroviruses. Viral 
proteins are synthesized from viral DNA genome integrated into host chromosomal DNA, 
and progeny viral particles (virions) are produced from cells in a typical manner. However, 
HIV/SIV are unique, as primate lentiviruses, in the genome and virion composition among 
the retroviruses (Fig. 1). They all have additional genes relative to a standard retrovirus. 
Importantly, these extra genes encode, in addition to structural Gag, Pol and Env proteins 
common to all retroviruses, viral regulatory (Tat and Rev) and accessory proteins that are 
essential for the specific and unique characteristics of HIV/SIV. HIV/SIV virions, therefore, 
contain some viral proteins not found in the other retroviral virions. The common and 
unique properties are also applicable to their replication cycle. HIV/SIV replicate in their 
target cells essentially in the same way with the other retroviruses. Retroviral replication 
cycle consists of early and late phases. The early phase (Fig. 2) begins with the virion entry 
step into cells, and proceeds to the reverse transcription of viral RNA genome, uncoating, 
nuclear import of viral DNA genome, and integration of viral DNA genome into host DNA 
to generate proviral DNA. The late phase (Fig. 3) then starts with the proviral transcription, 
and proceeds to the viral RNA export to cytoplasm, translation into viral proteins, assembly 
of the viral RNA/proteins at cell surface, budding/release from cells, and maturation into 
infectious virions.  
Of viral proteins unique to HIV/SIV, Tat and Rev are essential for virus replication as is the 
case for structural proteins Gag, Pol, and Env, and act as regulators for expression of the 
other viral proteins (Freed & Martin, 2007). Tat is a potent trans-activator of transcription, 
and is the primary switch of viral gene expression. Rev is responsible for the viral RNA 
export process, and required for expression of viral structural proteins and most of the 
accessory proteins except for Nef. Thus, Rev can be considered to be the second expression 
switch. In contrast to the two regulatory proteins, accessory proteins are not always 
necessary for viral replication in cells (Freed & Martin, 2007). Early studies indicated that 
these proteins are unnecessary or dispensable for virus replication in the established cell 
lines. However, it was soon noticed that, in the primary natural target cells such as CD4-
positive T-lymphocytes and macrophages, or in some specific cell lines, the accessory 
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proteins are essential or important for virus replication. These findings have led to the 
identification of innate anti-viral factors APOBEC proteins (Sheehy et al., 2002) and tetherin 
as described above (Neil et al., 2008; Van Damme et al., 2008), and to the search for an anti-
viral macrophage factor(s) (Fujita et al., 2010). Although some aspects of the accessory 
proteins are becoming more organized and much clearer than before as summarized in 
Table 1, detailed mechanisms for their activity remain to be elucidated. In particular, much 
is still unknown about structurally related Vpr and Vpx proteins. Moreover, functional 
studies in animals on HIV-1 and HIV-2 accessory proteins have not yet been performed. 
 

 

Fig. 1. Genome and virion characteristics of HIV/SIV. Upper: Proviral genome structure is 
schematically shown. Blue, orange, pink areas (boxes) indicate the structural, regulatory and 
accessory genes, respectively. Accessory genes unique to HIV-1 (vpu) and HIV-2/SIVmac 
(vpx) are indicated by yellow and purple, respectively. LTR, long terminal repeat. Lower: A 
schema of viral particle (virion). Viral proteins reported to be present in virion are 
illustrated. CA, capsid; IN, integrase; MA, matrix; NC, nucleocapsid; PR, protease; RT, 
reverse transcriptase; SU, surface; TM, transmembrane. 
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Fig. 2. The early phase of HIV/SIV replication cycle in target cells. Viral replication steps 
from the binding to generation of provirus are shown. Viral and cellular proteins 
particularly important in this chapter are highlighted. For details, see the reference (Freed & 
Martin, 2007). 
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Fig. 3. The late phase of HIV/SIV replication cycle in target cells. Viral replication steps from 
the transcription of proviral genome to maturation are shown. Viral and cellular proteins 
particularly important in this chapter are highlighted. For details, see the reference (Freed & 
Martin, 2007). 
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Accessory 
proteins 

Activities 
 

References 
 

Vif 
 
 

Neutralization of antiviral activities of 
APOBEC3G/F 
Induction of G2 cell cycle arrest 

Holmes et al., 2007 
Huthoff & Towers, 2008 
Izumi et al., 2010 

Vpx Inactivation of macrophage factor Fujita et al., 2010 

Vpr 
 
 
 

Induction of G2 cell cycle arrest 
Trans-activation of transcription 
Promotion of nuclear import of pre-
integration complex 

Le rouzic & Benichou, 2005 
Andersen et al., 2008 
Ayinde et al., 2010 
Fujita et al., 2010 

Vpu 
 
 

Degradation of tetherin 
Degradation of newly synthesized CD4 
in ER 

Bour & Strebel, 2003 
Nomaguchi et al., 2008b 
Tokarev et al., 2009 

Nef 
 
 

Down-regulation of cell surface 
molecules (CD4, MHC-I etc.) 
Enhancement of viral infectivity 

Kirchhoff et al., 2008 
Kirchhoff, 2009 
Jere et al., 2009 

Table 1. Multi-functional activity of HIV/SIVmac accessory proteins. Major functions or 
activities are listed. For details, refer to the articles shown. ER, endoplasmic reticulum; 
MHC, major histocompatibility complex. 

One of the most outstanding biological properties of HIV-1 is its especially narrow host 
range. It was recognized soon after the virus isolation that HIV-1 can not infect macaque 
cells and macaques, animals frequently used for experimental infection. We, therefore, 
pioneered the work to determine viral determinants for this species-tropism by construction 
and characterization of chimeric viruses between SIVmac and HIV-1 (Nomaguchi et al., 
2008; Sakuragi et al., 1992; Shibata et al., 1991, 1995; Shibata & Adachi, 1992). SIVmac has a 
wider host range relative to HIV-1, and can efficiently replicate both in macaque and human 
cells. The chimeric viruses (Fig. 4), later called SHIV, were useful to localize the viral genetic 
area responsible for the tropism. Among NM-1, NM-3, and NM-8 in Fig.4, only NM-3 was 
shown to display infectivity to macaque cells. In addition, Gag-CA region was suggested to 
be important for the tropism by a similar analysis of chimeric viruses (Dorfman & 
Gottlinger, 1996). Totally, these SHIV studies revealed that Gag-CA plus some viral 
protein(s) encoded by the central viral genomic region may determine the HIV-1 species-
tropism.  
As for input viruses of model infection studies in macaques, SIVmac and SHIVs have been 
widely and frequently used (Ambrose et al., 2007; Nomaguchi et al., 2008). SIVmac is 
thought to emerge by a cross-species infection of rhesus macaques with SIVsmm naturally 
occurring in African sooty mangabeys (Fultz et al., 1986; Murphey-Corb et al., 1986). It 
targets CD4-positive cells such as T-lymphocytes and macrophages, persists, and finally 
cause AIDS in rhesus macaques. Pathogenic SHIVs have been obtained from the original 
prototype SHIV by serial animal passages, and were used for infection experiments in 
rhesus macaques. An SIVmac derivative that has reverse transcriptase (RT) of HIV-1 (RT-
SHIV) (Fig. 4) was also constructed to test the effect of anti-RT drugs on virus replication 
(Uberla et al., 1995). Although these viruses did contribute much to HIV-1 model studies 
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including the assessment of immune response, evaluation of anti-viral drugs, analysis of 
drug-resistance, and establishing the strategy for vaccine development, there are some 
intrinsic differences among important virological properties of HIV-1, SIVmac and SHIVs as 
summalized in Table 2. These should be seriously considered for the future model studies. 
To underscore the essential need for the suitable primate model research to answer basic 
questions about HIV-1 in vivo, we wish to mention here, as an example, that the trials to 
develop anti-viral vaccines have been unsuccessful due to the lack of appropriate models 
(Hayden, 2008; Watkins et al., 2008).  
 

 

Fig. 4. Genome organization of HIV/SIV and representative SHIVs. Proviral genome 
structure is schematically shown. White and blue areas (boxes) indicate the genes and LTR 
of HIV-1 NL4-3 (Adachi et al., 1986) and SIVmac MA239 (Shibata et al., 1991), respectively. 
Areas without gene names indicate that the genes there are inactivated by genetic 
manipulations. 
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3. Determinants for HIV-1 species-tropism 

Our early studies on systematic analysis of HIV-1 proviral mutants by site-directed 
mutagenesis have clearly demonstrated the cell-dependent functionality of some viral 
proteins (Gag-CA, Vif, Vpu, and Vpx) and the cell-dependent viral replication (Adachi et al., 
1999; Kawamura et al., 1994b, 1998; Sakai et al., 1993, 1995; Sakuragi et al., 1995). These 
results have strongly suggested the presence of specific intracellular factors, other than 
receptor molecules for viruses, responsible for viral cellular tropism. Importantly, restriction 

factors against HIV-1 (APOBEC3/Vif, TRIM5/Gag-CA, and tetherin/Vpu) have been 
recently identified and molecularly cloned (Neil et al., 2008; Sheehy et al., 2002; Stremlau et 
al., 2004; Van Damme et al., 2008). Furthermore, a new restriction factor functional in 
macrophages and antagonized by Vpx has been proposed (Fujita et al., 2008; Fujita et al., 
2010; Sharova et al., 2008; Srivastava et al., 2008). Taken altogether, these findings have 
prompted active researchers to examine whether these cellular proteins are associated with 
the HIV-1 species-tropism. As results of a series of comparative biological and biochemical 
studies on the interaction between HIV/SIV and human/monkey restriction factors, it has 
been revealed that various species-specific cellular proteins in Table 3 determine or 
modulate the species-tropism of HIV-1. As can be understood in Table 3, viral accessory 
proteins Vif, Vpu, Vpx (and/or Vpr), and Nef (in the case of some SIVs) play significant 
roles (Tables 1 and 2) against the restriction factors present in host cells (Malim & Emerman,  
 

Host restriction factors Viral proteins Antiviral effects 

APOBEC3G/F 
 

Vif 
 

Induction of lethal mutations in the viral genome 

CypA and 

TRIM5/TRIMCyp 

Gag-CA 
 

Block of post-entry replication steps 

Tetherin/BST-2 Vpu Inhibition of virion release 
Macrophage factor? 
 

Vpx/Vpr? 
 

Suppression of uncoating / 

reverse transcription 

Table 3. Restriction factors against HIV-1. Cellular anti-HIV-1 factors identified and one of 
potential anti-viral factors are listed. As for the details of restriction factors of these two 
categories, see the text. 

2008). It is well-predicted that primate immunodeficiency viruses now have evolved by 
acquiring the appropriate accessory genes through numerous mutations and recombinations 
(Kirchhoff, 2009, 2010; Sauter et al., 2009, 2010). Among viral structural proteins, only Gag-
CA, which constitutes a major virion component, appears to be deeply involved in the 
species-tropism of HIV-1. By adapting Gag-CA and accessory proteins to the hostile 
environment, HIV/SIV could spread, persist, and survive. In this regard, HIV-1 has 
developed its specific characteristics from the progenitor form, and may be still uniquely 
altering its virological property through multiple rounds of the infection cycle in human 
populations.  

3.1 Vif and APOBEC3G/F 

Accessory protein Vif (Table 1) is essential for HIV/SIV replication in certain cell types such as 
natural target cells (T-lymphocytes and macrophages) that express APOBEC3G/APOBEC3F. 
APOBEC3G/F are members of a polynucleotide cytidine deaminase family that displays 
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diverse functions (Holmes et al., 2007), and are potent inhibitors of viral replication 
counteracted by Vif. Vif degrades APOBEC3G/F via the ubiquitin-proteasome pathway (Table 
1 and Fig. 3). In the absence of Vif, APOBEC3G/F are incorporated into virions, and cause 
lethal mutations in viral genome during the reverse transcription process in a new infection 
cycle (Table 3). There are two functional domains in Vif, that is, N-terminal binding region to 
APOBEC proteins and C-terminal region for degradation (Strebel et al., 2009). Noteworthy, 
HIV-1 Vif does not degrade APOBEC3Gs of the rhesus macaque and African green monkey 
probably due to its inability to binding to them. In contrast, SIVmac Vif can inactivate both 
human and simian APOBEC3Gs. Thus, the interaction of Vif and APOBEC3G/F is critically 
important for the unique species-tropism of HIV-1. In our experience, APOBEC3G/F is the 
strongest determinant for this tropism among the restriction factors listed in Table 3. Whether 
another activity of Vif to induce G2 cell cycle arrest (Izumi, T., 2010) (Table 1) is involved in the 
species-tropism is presently unknown. 

3.2 Gag-CA and its interacting cellular proteins (CypA, TRIM5 and TRIMCyp) 

Early studies have already indicated that Gag-CA is responsible for the HIV-1 species-
tropism as described above (Shibata et al., 1991; Dorfman & Gottlinger, 1996). Recent works 

have focused on the interaction of Gag-CA and its counterpart (CypA, TRIM5 and a 

TRIM5/CypA fusion protein, TRIMCyp). It is well-established now that CypA, TRIM5 
and TRIMCyp act as an inhibitor of HIV-1 replication in a species-specific manner (Lim et 
al., 2010; Luban, 2007; Nakayama & Shioda, 2010; Price et al., 2009; Towers, 2007; Ylinen, 
2010). These cellular proteins exert their anti-viral powers on the incoming virion core in a 
poorly defined way (Table 3 and Fig. 2). Of note, CypA positively and negatively regulates 

HIV-1 replication in human and macaque cells, respectively. Importantly, rhesus TRIM5, 

cynomolgus TRIM5 and cynomolgus TRIMCyp effectively inhibit HIV-1 replication, but 

not rhesus TRIMCyp. Therefore, CypA, TRIM5 and TRIMCyp can determine the unique 
species-tropism of HIV-1. We estimate that Gag-CA is the second strongest determinant for 
the tropism. It should be stressed here that the polymorphism observed in TRIM5 alleles 
affects the sensitivity of hosts to virus infection.  

3.3 Vpu and tetherin 

Accessory protein Vpu (Table 1) is required for optimal replication of HIV-1 in certain cell 

types that express tetherin. Tetherin specifically inhibits the virion release from cells (Table 

3) and is countered by Vpu (Nomaguchi et al. 2008b; Strebel et al., 2009). Vpu degrades 

cellular tetherin and CD4 effectively. It is generally accepted that Vpu enhances virion 

release from the cell surface by down-regulation of tetherin (Table1, Table 2 and Fig.3), and 

thereby promote viral replication. However, Vpu proteins of HIV-1 and some SIVs can not 

efficiently antagonize simian tetherin molecules relative to those of SIVs with a high ability 

(Sauter et al, 2009). In fact, HIV-1 NL4-3 scarcely suppressed the anti-viral activity of the 

rhesus tetherin. Based on this finding, it can be concluded that tetherin is associated with the 

species-tropism of HIV-1. However, in our experience, the positive effect of Vpu on viral 

replication is much smaller than those of Vif and Gag-CA. Moreover, another functional 

activity of Vpu to degrade cellular CD4 is considered to be irrelevant to the HIV-1 species-

tropism. Whether Vpu is associated with the HIV-1 pathogenesis is an important question to 

address. Interestingly and importantly, Env of some HIV-2 isolates and Nef of some SIVs 

have the Vpu-like ability to enhance virion release (Strebel et al., 2009; Zhang et al., 2009).  
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3.4 Potential determinants for HIV-1 species-tropism 

It has been recently reported that HIV-2/SIVmac Vpx is necessary for the post-entry step of 
viral replication, such as uncoating/reverse transcription, in monocyte-derived dendritic 
cells and macrophages (Fujita et al., 2008; Goujon et al., 2007; Srivastava et al., 2008). Vpx is 
supposed to counter an unidentified anti-retroviral factor(s) present in cells of this lineage 
(Tables 1-3 and Fig. 2). Because Vpx can also up-regulate the HIV-1 replication, the 
unidentified macrophage factor appears to be commonly important for HIV/SIV replication. 
To substantiate the macrophage entity as a restriction factor against HIV/SIV and/or the 
other retroviruses, its identification is urgently required.  

During a systemic characterization of HIV-1mt CA mutants, we have noticed a TRIM5-
independent enhancement of viral infectivity in macaque cells (Nomaguchi et al., 
manuscript in preparation). This result suggests the presence of unknown anti-viral factor 
that interact with HIV-1 Gag-CA. We also have found a mutation in the Env-SU region that 
confers the mutant a significant affinity to macaque CD4, considerably promoting virus 
replication (Nomaguchi et al., manuscript in preparation). These observations may be 
relevant to the HIV-1 species-tropism.  

4. Generation and characterization of various HIV-1mt clones 

To obtain a novel class of HIV-1 that infects, replicates and finally causes AIDS in macaques, 

we and a research group in USA have independently initiated the work on HIV-1mt and 

have done macaque model studies (Hatcho et al., 2008; Hatziioannou, 2006, 2009; Igarashi et 

al., 2007; Kamada et al., 2006, 2009; Kuroishi et al., 2009; Nomaguchi et al., 2008a; Saito et al., 

2011; Yamashita et al., 2008). Another group has published a report on HIV-1mt derivatives 

very recently (Thippeshappa et al., 2011). We now are actively and thoroughly amending 

the HIV-1mt genome by computer-assisted and structure-guided mutagenesis.  

Our prototype HIV-1mt designated NL-DT5R (Kamada et al., 2006) contains a 21-nucleotide 

SIVmac Gag-CA element (corresponding to the HIV-1 CypA-binding loop) and the entire 

SIVmac vif gene inserted into the genetic background of HIV-1 NL4-3 (Adachi et al., 1986). 

From this clone, we have systemically generated a series of HIV-1mt clones as shown in Fig. 

5. Because CCR5-tropic (R5) viruses of HIV-1 are thought to be clinically more important 

than CXCR4-tropic (X4) viruses, we have constructed two sets of HIV-1mt clones. Our 

strategy for generation of HIV-1mt clones pathogenic for macaques are as follows: (i) 

Adaptation of viruses in macaque cells. Targets for infection are cynomolgus and rhesus 

macaque lymphocyte cell lines immortalized by Herpesvirus saimiri (HVS) (Table 4).; (ii) In 

vitro mutagenesis of the clones based on bioinformatics. With the aid of the computational 

sciences, new viral genome sequences are designed.; (iii) Selection of appropriate clones by 

their replication kinetics in macaque lymphocyte cell lines in Table 4. Viruses which 

replicates similarly with or more robustly than SIVmac239 in cynomolgus and rhesus 

peripheral blood mononuclear cells are then chosen. On the basis of this strategy, we have 

successfully obtained a number of new generations with increasing ability to replicate from 

the original prototype NL-DT5R (see below). However, so far, none of the HIV-1mt clones 

tested are pathogenic for macaques (pig-tailed and cynomolgus) (Igarashi et al., 2007; 

Nomaguchi et al., manuscript in preparation; Saito et al., 2011), although they all can 

replicate in the monkeys. The newest clones in Fig. 5 (MN4Rh-3V and MN5Rh-3V), which 

replicate best in macaque cells among our HIV-1mt clones, have not yet been examined for 
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their pathogenicity. It should be mentioned here that the replication potentials of the HIV-

1mt clones in cell lines parallel with those in individuals.  

 

 

 

Fig. 5. Genome organization of HIV/SIV and various clones of HIV-1mt. Proviral genome 
structure is schematically shown. Blue, white and pink areas (boxes) indicate the genes and 
LTR of SIVmac MA239 (Shibata et al., 1991), X4-tropic HIV-1 NL4-3 (Adachi et al., 1986) and 
R5-tropic HIV-1 NF462 (Kawamura et al., 1994a), respectively. HIV-1mt clones on the left 
and right are X4 and R5 viruses, respectively. Arrows indicate the site of each single/double 
nucleotide-mutation introduced (Nomaguchi et al., manuscripts in preparation). There are 
several single-nucleotide mutations in the green area of Gag-CA (Nomaguchi et al., 
unpublished). h6/7L, Loop between helices 6 and 7.  

In parallel with the generation and characterization of a series of HIV-1 mt clones, we have 

searched for and established macaque cell lines suitable for our projects. Table 4 lists the cell 

lines we routinely use now. Since the lymphocyte cell lines immortalized by HVS do not 

lose their original characteristics as primary lymphocytes in most cases and are readily 

maintained for experiments, to biologically characterize viruses like HIV-1, it is quite 

important for laboratory researchers to have HVS-immortalized cell lines. In our laboratory, 

cynomolgus HSC-F (Akari et al., 1996; Fujita et al., 2003) and rhesus M1.3S (Doi et al., 2011) 
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cell lines are chosen as targets for virus infection, and frequently used. HSC-F cells are very 

sensitive to HIV-1mt and SIVmac clones, and produce a large amount of progeny viruses 

after infection. M1.3S cells are quite resistant to HIV-1mt and SIVmac clones, and are 

appropriate for selection of highly replicable and potentially pathogenic viruses. Because we 

are interested in analyzing the species-tropism of HIV-1, we need to have various target cell 

lines of human and simian origins with a unique property. Monolayer cell lines of 

cynomolgus MK.P3 (F) and rhesus LLC-MK2 are easily used for transfection experiments 

and for monitoring the single-cycle viral infectivity assays. In fact, we have differentially 

and successfully used the cell lines in Table 4 depending on the purpose of each project.  

 

Macaques Cell lines Origins TRIM5 alleles 

Cynomolgus HSC-F lymphocyte TRIM5 and TRIMCyp

 MK.P3 (F) kidney TRIM5 and TRIMCyp

Rhesus HSR1.4 lymphocyte Mamu-3 and Mamu-4

 HSR5.4 lymphocyte Mamu-7 

 M1.3S lymphocyte Mamu-1 and Mamu-3

 LLC-MK2 kidney Mamu-1 and Mamu-7

Table 4. Cell lines for virological evaluation of HIV-1mt. TRIM5 alleles of the cell lines listed 

have been determined in our laboratory (Doi et al., 2010; our unpublished results). For the 

polymorphism of TRIM5 alleles, see the references (Newman et al., 2006; Virgen et al., 2008; 

Wilson et al., 2008). 

We have repeatedly examined the replication kinetics of HIV-1mt clones in various macaque 
cell lines. Fig. 6 shows the typical kinetics (a schema) based on the results from our 
numerous infection experiments. In highly sensitive HSC-F cells, all the viruses do replicate 
to distinct extents. As is clear, MN4Rh-3V and MN5Rh-3V replicate most robustly among 
HIV-1mt clones. In relatively resistant M1.3S cells, three clones do replicate but the others 
do not. In both cell lines, SIVmac239 (MA239N) (Doi et al., 2010) displays the best potential 
to replicate. These results indicate that we still need to improve MN4Rh-3V and MN5Rh-3V 
to obtain the ideal clone, the pathogenic HIV-1mt. In this situation, there are two directions. 
These are the selection of host macaques susceptible to the currently available clones and the 
further efforts to obtain the desired clones. First, pig-tailed and/or the other macaque 
species sensitive to the viruses can be selected by their TRIM5 alleles (Newman et al., 2006; 
Virgen et al., 2008; Wilson et al., 2008), and used for infection. Indeed, American research 
groups have adopted this strategy using the pig-tailed macaques/variants of simian-tropic 
(st) HIV-1 with a vif-substitution only (Hatziioannou et al., 2009; Thippeshappa et al., 2011). 
However, we very much prefer to take the second possibility. Through this approach, we 
would be able to better understand the molecular mechanism underlying various events 
between the pathogen and host. Furthermore, if one is interested in the studies to analyze 
the mutations, adaptations, and evolution of the pathogen, the pressure-giving environment 
(Malim & Emerman, 2008), i.e., natural hosts having a wide variety of restriction factors, 
would be much better. Of a particular note, pig-tailed monkeys infected with various st 
HIV-1s have not yet develop AIDS (Igarashi et al., 2007; Hatziioannou et al., 2009; 
Thippeshappa et al., 2011). 
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Fig. 6. Schematic representation of replication kinetics of various viral clones. A schema of 
replication kinetics is illustrated. Molecular proviral clones for study are shown on the right. 
Routinely, cell-free virus samples are prepared by transfection of proviral clones into 293T 
cells (Kamada et al., 2006), and viruses produced in cells of equal RT units are inoculated 
into HSC-F and M1.3S cells (Table 4). After infection, viral replication is monitored at 
intervals by RT activity in the culture supernatants. 

5. Conclusion 

We have described the generation of CXCR4-tropic and CCR5-tropic HIV-1 clones with 
macaque cell-tropism (HIV-1mt) in this chapter. The best X4 and R5 viruses we have now 
replicate comparably with a standard SIVmac clone in macaque cells, although their 
pathogenicity for macaques needs to be determined. The genomes of these HIV-1 mt clones 
contain the entire vif gene of SIVmac, some nucleotide substitutions in the gag gene to give a 
small number of mutated amino acids, two adaptive mutations in the pol gene, and one 
adaptive mutation in the env gene (Fig. 5).  
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For the moment, our goal is to have the HIV-1mt clones pathogenic for cynomolgus and/or 
rhesus macaques with the aid of computational sciences. The clones are expected to have the 
HIV-1-derived or closely related accessory genes except for the vif gene. With these ideal 
HIV-1mt clones, we would be able to authentically investigate the HIV-1/host interaction 
including: (i) viral replication in individuals; (ii) viral pathogenesis; (iii) viral 
mutations/adaptations/evolution. Once these clones are available, a wide variety of basic 
and clinical studies would be initiated otherwise impossible. 
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