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1. Introduction 

Plant photosynthesis is the basis for matter production needed for all living organisms. In 
the future, plant photosynthesis would be more important, since environmental problems 
such as climatic warming due to increasing environmental CO2 concentration and problems 
of food and energy shortages due to increasing populations may be severer (von 
Caemmerer & Evans, 2010; Raines, 2011). Increasing plant leaf photosynthesis and thereby 
increasing plant matter production would be expected as a realistic way to resolve the 
problems. There is, however, a well-known hypothesis that in plants leaf photosynthesis can 
be down regulated through accumulated photosynthetic carbohydrates in leaf under 
excessive photosynthetic source capacity, which also means sink limitation, although the 
detailed mechanism is not clear (see Kasai, 2008). Actually, for example, there is evidence for 
the excessive photosynthetic source capacity causing down regulation of photosynthesis in 
crop plants under field conditions (Okita et al., 2001; Smidansky et al., 2002, 2007). 
Therefore, for the better improvement of leaf photosynthesis in plants, it is important to 
elucidate the regulatory mechanism for leaf photosynthesis under excessive photosynthetic 
source capacity and thereby clarify way of the improvement of leaf photosynthesis. 
To elucidate the regulatory mechanism for leaf photosynthesis under excessive 
photosynthetic source capacity, experimental construction of the excessive photosynthetic 
source capacity is important. Excising sink organs such as pods, fruits or flowers from plant 
materials is a way to construct excessive photosynthetic source capacity, and it has often 
been conducted to study the regulatory mechanism of photosynthetic source-sink balance in 
plants (see Kasai, 2008). However, the way excising sink organs results not directly but 
indirectly in excessive photosynthetic source capacity by diminishing sink capacity, and can 
give some damages to plant materials. Recent studies using transgenic plants have shown 
that overexpression of Calvin cycle enzymes (sedoheptulose-1,7-bisphosphatase and 
fructose-1,6-bisphosphatase) or leaf plasma membrane CO2 transport protein increases the 
leaf photosynthetic rate significantly (Raines, 2003, 2006). Therefore, the use of the 
transgenic plants with improved higher leaf photosynthetic rate may be useful to study the 
regulatory mechanism for leaf photosynthesis under excessive photosynthetic source 
capacity, since the higher photosynthetic rate is likely to result in excessive photosynthetic 
source capacity. However, it seems difficult to analyze the down regulation of 
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photosynthesis that may hide in the improved photosynthetic rate. Actually, down 
regulation of photosynthesis that is associated with excessive photosynthetic source capacity 
has not been analyzed in the transgenic plants with improved higher photosynthetic rate. 
Exposure to high CO2 or continuous exposure to light of plant materials is thought as the 
other way to construct excessive photosynthetic source capacity. It is well known that leaf 
photosynthetic rate, especially, in C3 plants does not reach the saturation at the present 
atmospheric CO2 concentration and thus the rate increases initially under high CO2 
conditions (Ward et al., 1999). Therefore, in C3 plants, exposure to high CO2 is expected to 
result in excessive photosynthetic source capacity. However, the way of exposure to high 
CO2 may be not suitable to analyze the regulatory mechanism for leaf photosynthesis under 
excessive photosynthetic source capacity, because of the same reason described for the 
transgenic plants with improved photosynthetic rate and well-known action of high CO2 to 
decrease stomatal aperture (Bredmose & Nielsen, 2009). In contrast, continuous exposure to 
light of plant materials, which prolongs photosynthetic period, can result in excessive 
photosynthetic source capacity without affecting directly the sink organs, leaf 
photosynthetic rate and stomatal aperture and giving direct damage to the plant materials. 
Soybean plants, although it is single-rooted soybean leaves, have largely contributed to 

study the regulatory mechanism for leaf photosynthesis under excessive photosynthetic 

source capacity through the experimental system using continuous exposure to light. Single-

rooted soybean leaves are source-sink model plants with a simple organization of a leaf, a 

short petiole and roots developed from the petiole in individuals and were developed by 

Sawada et al. (1986) using the primary leaves of intact soybean plants (Glycine max L. Merr. 

cv. Tsurunoko). Studies using single-rooted soybean leaves have shown that treating the 

plants with continuous light results in accumulation of photosynthetic carbohydrates 

(sucrose and starch) in the leaf and decrease in the leaf photosynthetic rate, which correlates 

with the increase in leaf carbohydrate (sucrose or starch) content (Sawada et al., 1986, 1989, 

1990, 1992). Also, it has been shown in the single-rooted soybean leaves that deactivation of 

Rubisco, a CO2-fixing enzyme is caused by the treatment of continuous exposure to light 

(Sawada et al., 1990, 1992). As continuous exposure to light of single-rooted soybean leaves 

also increased the leaf phosphorylated intermediates’ contents (Sawada et al., 1989), and 

there have been findings that in vitro, inorganic phosphate promotes activation of Rubisco 

by enhancing the affinity of uncarbamylated inactive Rubisco to CO2 (Bhagwat, 1981; 

McCurry et al., 1981; Anwaruzzaman et al., 1995), the studies using single-rooted soybean 

leaves have suggested that there is a regulatory mechanism of leaf photosynthetic rate 

through deactivation of Rubisco, which is associated with accumulation of photosynthetic 

carbohydrates in leaf under excessive photosynthetic source capacity, and that the 

deactivation of Rubisco may be caused by limitation of inorganic phosphate (Sawada et al., 

1990, 1992). Data from a study using single-rooted soybean leaves demonstrate that the 

plants do not change the leaf area and leaf dry weight other than the weights of major 

photosynthetic carbohydrates (sucrose and starch) and grow only the roots during 

experimental period, irrespective of whether light conditions are normal (daily light/dark 

periods of 10/14 h) or continuous without darkness (Sawada et al., 1986). Although the 

source-sink model plants with simple source-sink organization have been developed from 

various plant species, only the single-rooted soybean leaves have been demonstrated to 

show almost no growth in the source organ (Sawada et al., 2003). No growth of the source 

organ and the simple organization of source and sink in the single-rooted soybean leaves are 
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attractive characteristics to analyze comprehensively the regulatory mechanism of 

photosynthetic source-sink balance in plants, including the regulatory mechanism for leaf 

photosynthesis under excessive photosynthetic source capacity. Actually, as mentioned 

above, various analyses have been conducted in the single-rooted soybean leaves, especially 

in studies for elucidating the regulatory mechanism for leaf photosynthesis under excessive 

photosynthetic source capacity. Therefore, the single-rooted soybean leaves are important 

plant materials to elucidate further the regulatory mechanism for leaf photosynthesis under 

excessive photosynthetic source capacity. However, the plants are made artificially, and do 

not exist in nature, and in addition, as already mentioned, the plant leaf originates from only 

the primary leaf in intact soybean plants (Sawada et al., 1986). Therefore, there is the 

possibility that properties of single-rooted soybean leaves may not reflect those of the 

original, intact soybean plants or the other intact plants. Thus, it is important to examine the 

regulatory mechanism for leaf photosynthesis under excessive photosynthetic source 

capacity using the original, intact soybean plants. 

The present study used the original intact soybean plants, and it was analyzed how 

continuous exposure to light affects the leaf photosynthetic rate and related 

characteristics, such as leaf stomatal conductance and intercellular CO2 concentration, 

contents of water, chlorophyll, major photosynthetic carbohydrates (sucrose and starch), 

total protein and Rubisco protein in leaf, and activity and activation ratio (ratio of initial 

to total activity) of Rubisco and amount of protein-bound ribulose-1,5-bisphosphate 

(RuBP) in leaf extract, which were analyzed to evaluate the amount of uncarbamylated 

inactive Rubisco (Brooks & Portis, 1988). The same series of analyses have not been 

conducted together in studies that have performed the experiment of continuous 

exposure to light using plants. 

2. Materials and methods 

2.1 Plant materials 

Soybean (Glycine max L. Merr. cv. Tsurunoko) seeds were sown in plastic pots (13.5 cm in 

height, 12.5 cm in diameter) containing almost equal volumes of vermiculite and sand that 

had been mixed, and were grown in growth chambers (Koitotoron, HNL type; Koito 

Industries Ltd., Tokyo, Japan) under daily light/dark periods of 10/14 h, day/night 

temperatures of 24/17oC and relative humidity of 60 %. After 8 weeks, plants were divided 

into two groups, and one group was grown for 3 days with continuous light, and another 

group was grown for 3 days under daily light/dark periods of 10/14 h as controls. 

Nutrients were supplied once a week with a 1000-fold diluted solution of Hyponex [6-10-5 

type (N:P:K = 6:10:5); Hyponex Co., Osaka, Japan], and tap water was supplied in sufficient 

amounts. Light was supplied with incandescent lamps at an intensity of 480 µmol photons 

m-2 s-1 (400-700 nm) at the middle height of plants grown for 8 weeks. 

2.2 Leaf photosynthetic rate, stomatal conductance and intercellular  
CO2 concentration 

Leaf photosynthetic rate, stomatal conductance and intercellular CO2 concentration were 
determined in fully expanded fourth trifoliate leaves at a light intensity of 1000 µmol 
photons m-2 s-1, air flow rate of 200 ml min-1, air temperature of 25 oC, relative humidity of 
60 % and CO2 concentration of 350 ppm on day 3 after treating plants with continuous light 
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using a portable photosynthetic analyzer (Cylus-1; Koito Industries Ltd.). After 
measurements, leaf disks (1.79 cm2) were cut off from fourth trifoliate leaves, immediately 
frozen in liquid nitrogen and stored at -80 oC until used for the other analyses described 
below. 

2.3 Other analyses 

The activity of Rubisco in leaf extract was determined at 25 oC as described previously 

(Kasai, 2008). For the initial activity, 20 µl of a leaf extract obtained by homogenizing a leaf 

disk with ice-cold buffer (100 mM HEPES-KOH, pH 7.8, 2 ml) was added to a cuvette 

containing 1.98 ml of assay medium [100 mM Bicine-KOH (pH 8.2), 20 mM MgCl2, 20 mM 

NaHCO3, 5 mM creatine phosphate, 1 mM ATP, 0.2 mM NADH, 20 units creatine kinase, 20 

units 3-phosphoglycerate kinase and 20 units glyceraldehyde-3-phosphate dehydrogenase], 

immediately followed by the addition of RuBP (final concentration 0.6 mM) and mixed well. 

For total activity, RuBP was added 5 min later after 20 µl of the leaf disk extract was 

immediately combined with the assay medium. The change in absorbance at 340 nm was 

monitored using a spectrophotometer (Model U-2000; Hitachi Co., Tokyo, Japan). 

The amount of protein-bound RuBP in leaf extract was determined as described previously 

(Kasai, 2008). A leaf extract (800 µl) obtained by homogenizing a leaf disk with an ice-cold 

buffer (100 mM HEPES-KOH, pH 7.8, 1 ml) was centrifuged (100 g, 1 min) after loading onto 

a column containing Sephadex G-50 (bed volume before centrifugation, 4 ml) that had been 

equilibrated with the same buffer. The eluent (500 µl) from the column lacking free RuBP 

was centrifuged (10,000 g, 10 min) after mixing with an acidic solution (5.5 M HClO4, 50 

µl) to precipitate protein in the eluent. The resulting supernatant was centrifuged (10,000 

g, 10 min) after neutralizing to pH 5.6 with K2CO3, and RuBP in the supernatant was 

determined in the assay medium for determining Rubisco activity using purified spinach 

Rubisco (0.5 units). 

Leaf Rubisco content was determined as described by Makino et al. (1986). Leaf total protein 

was extracted as described by Makino et al. (1986) and quantified by the method of Bradford 

(1976). Leaf chlorophyll content was determined according to the method of Mackinney 

(1941). Leaf sucrose and starch contents were determined as described by Sawada et al. 

(1999). Leaf water content was analyzed by measuring fresh weight and dry weight of leaf 

disks. Leaf disks were dried for 2 days at 75 oC. 

3. Results 

Analyzed leaf photosynthetic rate was significantly lower in intact soybean plants grown for 

3 days with continuous light than in control plants grown under daily light/dark periods of 

10/14h (Fig. 1). 

Leaf stomatal conductance was also significantly lower in continuous light-treated plants 

than in control plants (Fig. 2). Leaf intercellular CO2 concentration did not differ 

significantly between control and continuous light-treated plants (Fig. 2). 

When activation ratio (percentage of initial activity to total activity) of Rubisco in leaf 

extract was calculated from analyzed initial and total activities of Rubisco in leaf extract, 

the ratio was significantly lower in continuous light-treated plants than in control plants 

(Fig. 3). The ratios in control and continuous light-treated plants were 74.2% and 56.6%, 

respectively.  
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Fig. 1. Leaf photosynthetic rate in soybean plants on day 3 after continuous exposure to 
light. Control plants were grown under daily light/dark periods of 10/14h for 3 days. 
Vertical bars indicate S.D. (n=4). *P<0.01 (t-test) when compared with control plants. 
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Fig. 2. Leaf stomatal conductance and leaf intercellular CO2 concentration in soybean plants 
on day 3 after continuous exposure to light. Control plants were grown as described in Fig. 
1. Open bar, leaf stomatal conductance; closed bar, leaf intercellular CO2 concentration. 
Vertical bars indicate S.D. (n=4). *P<0.01 when compared with control plants. The 
intercellular CO2 concentration did not differ significantly (P>0.05) between control and 
continuous light-treated plants. 
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Fig. 3. Initial and total activities of Rubisco in leaf extract from soybean plants on day 3 after 
continuous exposure to light. Control plants were grown as described in Fig. 1. Open bar, 
initial activity; closed bar, total activity. Vertical bars indicate S.D. (n=4). In comparison with 
control plants of the activation ratio of Rubisco calculated as a percentage of the initial 
activity to total activity, *P<0.01. 
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In a study investigating the light activation of Rubisco using Arabidopsis thalian, it was 
demonstrated that the amount of protein-bound RuBP in leaf extract reflects the amount of 
uncarbamylated inactive Rubisco (Brooks & Portis, 1988). When the amount of protein-
bound RuBP was analyzed, the amount was significantly more in continuous light-treated 
plants than in control plants (Fig. 4). 
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Fig. 4. Amount of protein-bound RuBP in leaf extract from soybean plants on day 3 after 
continuous exposure to light. Control plants were grown as described in Fig. 1. Vertical bars 
indicate S.D. (n=4). *P<0.05 when compared with control plants. 

Contents of sucrose and starch, which are the major photosynthetic carbohydrates, in leaf were 
both significantly higher in continuous light-treated plants than in control plants (Fig. 5).  
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Fig. 5. Leaf sucrose or starch content in soybean plants on day 3after continuous exposure to 
light. Control plants were grown as described in Fig. 1. Open bar, sucrose content; closed 
bar, starch content. Vertical bars indicate S.D. (n=4). *P<0.05 when compared with control 
plants. 
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Analyzed contents of chlorophyll, water, total protein and Rubisco protein in leaf did not 
differ significantly between control and continuous light-treated plants (Fig. 6 and 7).  
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Fig. 6. Leaf chlorophyll, total protein or Rubisco content in soybean plants on day 3 after 
continuous exposure to light. Control plants were grown as described in Fig. 1. Open bar, 
chlorophyll content; closed bar, total protein content; dotted bar, Rubisco content. Vertical 
bars indicate S.D. (n=4). The chlorophyll, total protein and Rubisco contents did not differ 
significantly (P>0.05) between control and continuous light-treated plants. 

Analyzed leaf dry weight other than the weights of sucrose and starch was heavier a little in 
continuous light-treated plants than in control plants (Fig. 5 and 7). The mean dry weights 
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after subtracting the weights of sucrose and starch in control and continuous light-treated 
plants were 49.0 g m-2 and 57.5 g m-2, respectively. 
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Fig. 7. Leaf water content and leaf dry weight in soybean plants on day 3 after continuous 

exposure to light. Control plants were grown as described in Fig. 1. Open bar, leaf water 

content; closed bar, leaf dry weight. Vertical bars indicate S.D. (n=4). *P<0.05 when 

compared with control plants. The leaf water content did not differ significantly (P>0.05) 

between control and continuous light-treated plants. 

4. Discussion 

The present study was conducted to examine the regulatory mechanism for leaf 

photosynthesis under excessive photosynthetic source capacity in intact soybean plants. The 

experimental construction of excessive photosynthetic source capacity was conducted by 

treating the plants with continuous light for 3 days. The data show that the treatment of 
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continuous exposure to light for intact soybean plants decreased significantly the leaf 

photosynthetic rate (Fig. 1). Since the light treatment also decreased the leaf stomatal 

conductance in soybean plants (see Fig. 2), it is thought that the decrease in leaf 

photosynthetic rate caused by treatment of continuous exposure to light might have resulted 

from stomatal limitation of CO2 diffusion. However, the treatment of continuous exposure 

to light did not affect significantly leaf intercellular CO2 concentration (see Fig. 2), 

implicating that the light treatment decreased CO2 incorporation by leaf photosynthetic 

cells, as it affected leaf stomatal conductance. In addition, the light treatment decreased 

activation ratio of Rubisco in leaf extract and did not affect significantly leaf Rubisco content 

(see Fig. 3 and 6). Furthermore, the light treatment increased the amount of protein-bound 

RuBP in leaf extract (see Fig. 4). The decrease in activation ratio of Rubisco and increase in 

the amount of protein-bound RuBP in leaf extract (Brooks & Portis, 1988) strongly suggest 

an increase in the amount of uncarbamylated inactive Rubisco in leaf. Therefore, it is 

suggested that the decrease in leaf photosynthetic rate caused by treatment of continuous 

exposure to light is likely to be due to deactivation of Rubisco in leaf. Treatment of 

continuous exposure to light for intact soybean plants also increased significantly both the 

contents of sucrose and starch, which are the major photosynthetic carbohydrates, in leaf 

(see Fig. 5), indicating that the light treatment could result in an excessive photosynthetic 

source capacity in the plants. The present study also shows that analyzed leaf chlorophyll, 

total protein and water contents were not affected significantly by the treatment of 

continuous exposure to light (see Fig. 6 and 7). Therefore, results obtained in the present 

study strongly suggest that the decrease in leaf photosynthetic rate in intact soybean plants 

caused by treatment of continuous exposure to light is unlikely to be due to simple damages 

such as the breakdown of cellular compartments, but is likely to be due to deactivation of 

Rubisco, which is associated with accumulation of photosynthetic carbohydrates (sucrose 

and starch) in leaf under excessive photosynthetic source capacity. 

As described in the Introduction, single-rooted soybean leaves have quite been helpful to 

study the regulatory mechanism for leaf photosynthesis under excessive photosynthetic 
source capacity, since the plants have simple source-sink organization and have excellent 

characteristics [growing only the sink organs (roots) without growing source organ (leaf)], 
which have not been found in other plants (Sawada et al., 1986, 2003). However, as already 

mentioned, as the plant leaf is constituted from only the primary leaf in intact soybean 
plants, there is the possibility that properties of single-rooted soybean leaves may not reflect 

those of the original intact soybean plants or the other intact plants. However, results 
obtained in the present study of the changes in leaf photosynthetic rate, initial activity and 

activation ratio of Rubisco in leaf extract, and contents of major photosynthetic 
carbohydrates (sucrose and starch) and chlorophyll in leaf caused by treatment of 

continuous exposure to light corresponded with results from studies that have performed 
similar experiments of continuous exposure to light using single-rooted soybean leaves 

(Sawada et al., 1986, 1990, 1992). Leaf intercellular CO2 concentration, amount of protein-
bound RuBP in leaf extract and leaf Rubisco content have not been analyzed in the single-

rooted soybean leaves. As already mentioned, the present study used the original intact 
soybean plants from which single-rooted soybean leaves can be made. Therefore, the 

correspondence of data from original intact soybean plants and those from single-rooted 
soybean leaves highlights that properties of single-rooted soybean leaves and those of 

original intact soybean plants are very similar, thus suggesting that properties of single-
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rooted soybean leaves and those of original intact soybean plants can reflect each other. As 
described in the Introduction, studies using single-rooted soybean leaves have implicated 

that there is a regulatory mechanism of leaf photosynthetic rate through deactivation of 
Rubisco, which is associated with accumulation of photosynthetic carbohydrates in leaf 

under excessive photosynthetic source capacity (Sawada et al., 1986, 1989, 1990, 1992, 1999, 
2003). Data from the present study using the original intact soybean plants have also 

suggested the same regulatory mechanism of leaf photosynthetic rate. Therefore, the 
suggested regulatory mechanism of leaf photosynthetic rate may be a common mechanism 

in plants. With respect to the excellent characteristic of single-rooted soybean leaves that do 
not change the leaf dry weight other than the weights of major photosynthetic 

carbohydrates (sucrose and starch) (Sawada et al., 1986), a little change (increase) of leaf 
(fourth trifoliate leaves) dry weight other than the weights of major photosynthetic 

carbohydrates (sucrose and starch) was observed by treatment of continuous exposure to 
light in the original intact soybean plants (see Fig. 5 and 7). Although the present study 

conducted various analyses to examine the regulatory mechanism for leaf photosynthesis 
under excessive photosynthetic source capacity, the same series of analyses have not been 

conducted together in other studies that have performed the treatment of continuous 
exposure to light using plants. 

Treatment of continuous exposure to light for plants results, in most cases, in accumulation 

of photosynthetic carbohydrate(s) in leaf and decrease in leaf photosynthetic rate. However, 

in addition to these effects of the light treatment, there are other effects of the light treatment 

that are different from those indicated by the present study. In tomato, egg plant, peanut 

and potato, treatment of continuous exposure to light has been shown to result in leaf 

decolorization (Bradley & Janes, 1985; Globig et al., 1997; Murage et al., 1996, 1997; Rowell et 

al., 1999; Wheeler & Tibbitts, 1986; Tibbitts et al., 1990). In young leaves of potato and 

Arabidopsis, the continuous light treatment has been shown to accelerate expressions of 

photosynthetic genes, pigments and proteins, and subsequent declines of the expressions 

(Cushman et al., 1995; Stessman et al., 2002). In a study using young apple, a decrease in leaf 

photosynthetic rate caused by treatment of continuous exposure to light was suggested to be 

due to stomatal limitation of CO2 diffusion rather than a reduction of Rubisco activity, 

although, in the study, leaf water content, which is likely to affect stomatal aperture 

(Brodribb & McAdam, 2011), was not analyzed (Cheng et al., 2004). Therefore, leaf 

photosynthetic rate may also be regulated through changes in expressions of photosynthetic 

genes, pigments and proteins and through a regulation of stomata under excessive 

photosynthetic source capacity in plants. 

Other ways, which indirectly construct excessive photosynthetic source capacity as 
described in the Introduction, have also been shown to result in accumulation of 
photosynthetic carbohydrate(s) in leaf and decrease in leaf photosynthetic rate. With respect 
to the cause(s) of why leaf photosynthetic rate declines under the excessive photosynthetic 
source capacity, for example, data from photosynthetic carbohydrate-feeding or high CO2 
treatment experiments suggest that decreased expressions of photosynthetic genes, 
including genes for chlororphyll-related protein and Rubisco protein can be causes (Paul & 
Foyer, 2001; Martin et al., 2002; Paul & Pellny, 2003). However, there is also evidence from 
high CO2 treatment experiments using various C3 plants that decreased Rubisco activity in 
leaf rather than changes in leaf Rubisco content is likely to be a main cause (Sage et al., 
1989). Data from experiments conducting excisions of sink organs (pods or flower buds and 
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flowers) or petiole girdling suggest that a decrease of stomatal conductance or Rubisco 
activity or Rubisco content in leaf, or both decreases of Rubisco activity and Rubisco content 
in leaf can be responsible for the decrease in leaf photosynthetic rate under excessive 
photosynthetic source capacity (Mondal et al., 1978; Setter & Brun, 1980; Setter et al., 1980; 
Wittenbach, 1982, 1983; Xu et al., 1994; Crafts-Brandner & Egli, 1987; Cheng et al., 2008). As 
described in the Introduction, excising sink organs or high CO2 treatment can have side 
effect(s) other than inducing excessive photosynthetic source capacity. In the present study 
using intact soybean plants in which excessive photosynthetic source capacity was 
constructed by treatment of continuous exposure to light, visible damages such as leaf 
decolorization and wilt were not observed. Treatment of continuous exposure to light did 
not affect significantly leaf chlorophyll, total protein and water contents analyzed. However, 
as mentioned above, totally, the effects of indirectly constructed excessive photosynthetic 
source capacity on leaf carbohydrate status, photosynthetic rate, stomatal conductance, 
Rubisco activity and photosynthetic gene expressions including Rubisco gene expression are 
similar to those of excessive photosynthetic source capacity that is constructed by treatment 
of continuous exposure to light. 
Regarding the detailed mechanism(s) of why leaf photosynthetic rate declines under 
excessive photosynthetic source capacity, recent studies using transgenic plants show that 
hexokinase could be involved in carbohydrate-mediated repression of photosynthetic gene 
expression (Jang et al., 1997; Dai et al., 1999; Moore et al., 2003). Other recent study shows 
that protein kinases (KIN10 and KIN11) may be involved in governing the entirety of 
carbohydrate metabolism, growth and development in response to carbohydrates in plants 
(Baena-Gonzalez et al., 2007). Data from a study investigating the effect of chilling stress on 
leaf photosynthetic rate suggest that H2O2, a reactive oxygen species can induce deactivation 
of Rubisco (Zhou et al., 2006). As described in the Introduction, inorganic phosphate has 
been found to promote activation of Rubisco by enhancing the affinity of uncarbamylated 
inactive Rubisco to CO2 (Bhagwat, 1981; McCurry et al., 1981; Anwaruzzaman et al., 1995). 
Data from a more recent study suggest that pH within the chloroplasts can be an important 
factor affecting leaf photosynthetic rate, since the study has demonstrated that pH can affect 
distribution of Rubisco activase within the chloroplasts by affecting binding of the enzyme 
to the thylakoid membranes (Chen et al., 2010). Distribution of Rubisco activase within the 
chloroplasts can affect activation state of Rubisco, since Rubisco activase plays a role in 
promoting the activation of Rubisco by dissociating RuBP from uncarbamylated inactive 
Rubisco (Crafts-Brandner & Salvucci, 2000), which tightly binds RuBP (Jordan & Chollet, 
1983). Since ATP is needed for the catalytic action of Rubisco activase (Crafts-Brandner & 
Salvucci, 2000) and it is well known that ATP is needed for regeneration of RuBP, a 
substrate for Rubisco in Calvin cycle (see Kasai, 2008), it is evident that ATP is also an 
important factor affecting leaf photosynthetic rate. However, the precise mechanism of how 
hexokinase and protein kinases exercise regulation of photosynthetic carbohydrate 
metabolism including the carbohydrate-mediated repression of photosynthetic gene 
expression is not yet clear. In addition, effects of excessive photosynthetic source capacity on 
the levels of H2O2, inorganic phosphate, pH and ATP within the chloroplasts in which 
central photosynthesis is performed have not been analyzed in intact plants at real times 
under light. A main reason seems to be the lack of appropriate methods. Therefore, further 
researches including those following the development of new methods are important to 
elucidate further the regulatory mechanism for leaf photosynthesis under excessive 
photosynthetic source capacity. 
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Recent studies using transgenic plants have shown that overexpression of Calvin cycle 
enzymes (sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase) or leaf plasma 
membrane CO2 transport protein increases the leaf photosynthetic rate and the biomass 
production (Raines, 2003, 2006). Increasing plant leaf photosynthesis and thereby increasing 
plant matter (biomass) production seems to be an effective way to resolve the serious 
problems such as climatic warming and food and energy shortages. However, data obtained 
in the present study and those from other studies strongly suggest that excessive 
photosynthetic source capacity decreases the efficiency of leaf photosynthetic matter 
production. This means that under excessive photosynthetic source capacity, efficiency of 
plant matter (biomass) production decreases. There is also evidence for the excessive 
photosynthetic source capacity causing down regulation of photosynthesis in plants under 
field conditions (Okita et al., 2001; Smidansky et al., 2002, 2007). Therefore, it is strongly 
suggested that for the efficient improvement of plant matter (biomass) production, well-
balanced improvement of source and sink would be essential. Further studies are desired for 
deeper and more comprehensive understanding of the regulatory mechanism of 
photosynthetic source-sink balance including the regulatory mechanism for leaf 
photosynthesis under excessive photosynthetic source capacity. Soybean plants (Glycine max 
L. Merr. cv. Tsurunoko) used in the present study from which single-rooted soybean leaves 
can be made are one of the important experimental materials. 

5. Conclusion 

Studies using single-rooted soybean leaves, each of which is constituted from a primary leaf, 
a short petiole and roots developed from the petiole, have implicated that there is a 
regulation of leaf photosynthesis through deactivation of Rubisco, which is associated with 
accumulation of photosynthetic carbohydrates in leaf under excessive photosynthetic source 
capacity. The present study using intact soybean plants from which single-rooted soybean 
leaves can be made has also suggested the same regulatory mechanism for leaf 
photosynthesis under excessive photosynthetic source capacity. It is therefore concluded 
that for efficient improvement of plant matter (biomass) production, well-balanced 
improvement of source and sink would be essential. Further studies are desired for more 
complete understanding of the regulatory mechanism for leaf photosynthesis under 
excessive photosynthetic source capacity and its application. 
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