
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



 

 

10 

Recognition and Repair Pathways  
of Damaged DNA in Higher Plants 

Sascha Biedermann1,2, Sutton Mooney1 and Hanjo Hellmann1 
1Washington State University Pullman 

2Angewandte Genetik, Berlin 
1United States of America 

2Germany 

1. Introduction 

Living organisms are continuously exposed to factors that threaten the integrity of their 
cells. This includes structural and enzymatic components like lipids or proteins, but also 
their genomes. Damage to genetic material can be critical as unrecognized and unrepaired 
DNA damage may cause fatal mutations not only threatening the organism’s immediate 
survival but also that of its descendants. These genotoxic factors can derive from their 
surrounding environment and may include chemicals or ionizing radiation; but DNA 
damage can also be caused by reactive oxygen species (ROS) that are byproducts of daily 
metabolism or result from insufficient protection against abiotic stress conditions. 
UV light can cause direct DNA damage by generating 6-4 and CPD photoproducts (example 
given in Fig. 1 is a thymine dimer). UV like most abiotic stress conditions can also generate ROS 
production in the cell. ROS have a high potential to damage single bases by oxidation (example 
give is 8-oxoG (Fig. 1)), but are also capable of introducing single or double strand breaks.  
In contrast to most animals, plants are sessile organisms that cannot change their location 
when exposed to unfavorable conditions such as drought or salinity. Plants also face the 
difficult situation that they depend on sunlight for photosynthesis, a process that on its own 
constitutively generates ROS (Asada, 1999; Krieger-Liszkay, 2005; Triantaphylides and 
Havaux, 2009). Sunlight also contains significant amounts of UV-B light, which can 
contribute to both ROS production in the nucleus as well as directly affecting the DNA 
structure. Sunlight and high production rates of ROS are two of the main factors that lead to 
many mutations in plants. Consequently, the current review will focus on mechanisms that 
plants have in place to recognize and repair damaged DNA caused by either of these factors. 
We will provide a brief overview on the different classifications of DNA damage that can be 
expected, how these damages are repaired, and what is known about regulatory and 
physiological mechanisms that are in place in plants to recognize and respond to DNA 
damage. Because plants have taken a different evolutionary path than animals and possess 
some unique features not found in animals, we will compare selected repair and regulatory 
pathways in animals and plants. Despite their differences, plants and animals share many 
aspects in damaged DNA recognition and repair, and for this reason we will conclude this 
chapter by elaborating on some opinions for using plants as powerful and valuable model 
organisms for animals to understand the underlying processes of DNA repair.  
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Fig. 1. UV light and ROS as genotoxic stress factors.  

2. DNA damage caused by exposure to sunlight and abiotic stress 

Ironically, although sunlight is obligatory for photosynthesis and survival of plants, it also 
represents one of the major threats to their genomic integrity. This can be ascribed to at least 
three reasons:  
First, sunlight contains energy rich UV-C (280 to 100 nm), UV-B (290 to 320 nm) and UV-A 
(320–400 nm) light. Whereas UV-C is filtered out in the atmosphere, UV-B and UV-A can reach 
earth’s surface. Although the amount strongly depends on the latitude and elevation, as well 
as cloud cover and canopy density, due to their sessile nature plants are exposed throughout 
the day to this genotoxic stress. UV-light is a strong mutagen that is absorbed by the DNA and 
may lead to the generation of cyclobutane pyrimidine dimers (CPD) and to a lesser extent 
pyrimidine (6,4) pyrimidone dimers (Friedberg EC et al., 2006). Both photoproducts are DNA 
lesions that affect transcriptional processes and result in error-prone replication (Fig. 1) 
(Friedberg EC et al., 2006). Solar UV light can also indirectly cause DNA damage by ROS 
production in the nucleus (Iovine et al., 2009). ROS induce a broad range of DNA damage, 
which includes base and nucleotide modifications, especially in sequences with a high 
guanosine content, and may even cause strand breaks (Wiseman and Halliwell, 1996; Tuteja et 
al., 2001; Tuteja and Tuteja, 2001). Although the precise nature of ROS generated by UV-light is 
not fully resolved, it is well established that oxygenated nucleotides like 8-oxo-guanine that 
can be caused by the accumulation of hydroxyl radicals (�OH) after prolonged UV exposure in 
the cell (Yamamoto et al., 1992; Hattori et al., 1996).  
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Second, ROS are commonly produced as metabolic byproducts in the chloroplasts, 

peroxisomes, and mitochondria (Foyer and Noctor, 2003). In fact it is estimated for 

mammals that per day ~180 guanines are oxidized to 8-hydroxyguanine in a single cell 

(Lindahl, 1993); and it is likely that this rate is even higher in photosynthetically active 

plants where chloroplasts continuously produce ROS. Furthermore, excessive light exposure 

as it may occur in mid-day under non-shaded conditions can overexcite the photosynthetic 

machinery. As a consequence, singlet oxygen (1O2) can be produced from triplet-state 

chlorophyll in the light- harvesting complex of photosystem II (PSII). In addition, 

byproducts of photosynthetic activities are superoxide (O2-) and hydrogen peroxide (H202) 

that can derive from water-splitting activities of the oxygen-evolving complex of PSII, and 

superoxide can be generated on the reducing side of PSI by the Mehler reaction (Noctor et 

al., 2002) (Fig. 1).  

Third, heat from the sunlight can lead to failure of the structural composition and enzymatic 

machinery within the cell. To prevent cellular collapse, plants have developed a variety of 

protective mechanisms, the most important being the cooling effect of water transpiration 

through stomata. However, this dependency on water availability, together with their 

immobility, make plants highly susceptible to water stress conditions that derive from 

drought, salinity, or cold. Abiotic stress unbalances metabolic processes including 

photosynthesis, which ultimately causes a general increase in ROS concentration in the cell 

(Vinocur and Altman, 2005; Jaspers and Kangasjarvi, 2010). Although ROS detoxifying 

defense mechanisms are in place in the organelles and the cytosol, under the stress 

conditions described above, these mechanisms may not provide sufficient protection. To 

avoid excessive mutations over prolonged exposure to abiotic stress, plant cells depend on 

efficient repair pathways.  

3. Major repair mechanisms in plants 

3.1 Photoreactivation by photolyases 
In plants the main repair pathway for direct DNA damage caused by UV-light that leads to 

the generation of CPDs and (6–4) photoproducts is based on the activity of photolyases 

(Jiang et al., 1997). Two types of photolyases have evolved that specifically recognize and 

repair either type of photodamage. Based on sequence homology, CPD photolyases are 

grouped into two different classes: while class I CPD photolyases are present in 

microorganisms, class II enzymes can be found in archaea, eubacteria, some animals 

(excluding placental mammals), and plants (Kanai et al., 1997). In comparison, (6-4) 

photolyases have been found in metazoans and plants, and they share sequence similarities 

with class I CPD photolyases (Kanai et al., 1997).  

The structure and reaction mechanisms of photolyases have been intensively studied in the 

last decade, providing us with plentiful data on their function. Photolyases have two types 

of chromophoric co-factors that are used for photoreactivation (Huang et al., 2006; Ozturk et 

al., 2008; Hitomi et al., 2009). One chromophore is FADH-, the two electron reduced form of 

FAD, while the second one can be either methenyltetrahydrofolate (MTHF) or 7,8-

didemethyl-8-hydroxy-5-deazariboflavin (8-HDF). MTHF or 8-HDF function as the light 

harvesting chromophores that absorb blue light (300-600 nm), and transfer the energy to 

FADH- (Moldt et al., 2009; Li et al., 2010; Okafuji et al., 2010). Photolyases bind directly to 

CPD and (6-4) photoproducts, where an electron is transferred from the excited FADH- to 
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the dimers generating pyrimidine monomers, upon which the enzyme is released (Li et al., 

2010; Okafuji et al., 2010) (Fig. 2). 

 

 

Fig. 2. Photodamage and potential repair pathways in plants.  
(A) Direct DNA damage caused by UV can be recognized and repaired by (B) photolyases 
in a light-dependent reaction. Alternatively, repair can follow (C) the global genome 
nucleotide excision repair (GGR) or (D) the transcription coupled NER (TCR). 
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Photolyases have been widely described in plants and may often comprise small gene 
families like, for example, in Arabidopsis, which encodes for five members 
(http://www.arabidopsis.org/). While loss of single members can lead to increased UV-
sensitivity (Jiang et al., 1997; Landry et al., 1997; Nakajima et al., 1998; Teranishi et al., 2004), 
the constitutive expression of CPD photolyases has been demonstrated to markedly 
improve UV tolerance in higher plants (Hidema et al., 2007; Kaiser et al., 2009). Although 
not much is known about their regulatory aspects, it has been demonstrated in rice that 
phosphorylation may play a role in regulating photolyase activities (Teranishi et al., 2008) 
and a few reports show that light increases photolyase expression (Chen et al., 1994; 
Waterworth et al., 2002). It was recently indicated that in darkness basal transcription of the 
photolyase genes UVR3 and PHR1 is sustained by the light signaling transcription factors 
HY5 and HYH and is limited by the actions of COP1 and DET1 dependent E3 ligases 
(Castells et al., 2010). Upon light exposure and during photomorphogenesis, COP1 leaves 
the nucleus and expression of PHR1 is greatly induced by HY5 and HYH while the 
repression through DET1 remains in place. These observations suggest that 
photoreactivation is controlled by the photomorphogenisis pathway, and the activation of 
the PHR1 is dependent on photomorphogenetic regulators. 

3.2 Nucleotide excision repair 
A mechanism that can substitute for photolyase activities in plants, and which is required 
for photodamage repair in mammals, is the nucleotide excision repair (NER) pathway. NER 
is light-independent and, hence, sometimes referred to as dark repair. In contrast to 
photoreactivation, which reduces CPDs and 6-4 photoproducts back to pyrimidine 
monomers, NER is based on a complex recognition and repair machinery that excises and de 
novo synthesizes single DNA strands between 24-32 bp around the lesions. NER is highly 
conserved among eukaryotes and has two sub-pathways: transcription coupled NER (TCR) 
and global genome NER (GGR). NER has been intensively studied in animals, but the 
findings are a model for what is being found in plants, and will be briefly summarized in 
the following paragraph. 
GGR and TCR recruit the same repair proteins; however, they mainly differ in their initial 
steps of damaged DNA recognition. GGR is genome-wide active, and its initial steps include 
the xeroderma pigmentosum group C factor (XPC), which is able to sense thermodynamic 
destabilizations of the Watson-Crick duplex caused by a flipping-out of the affected bases 
from the strands (Min and Pavletich, 2007). XPC in itself is capable of detecting most bulky 
DNA lesions, but for the recognition of CPDs it is supported by WD-40 protein Damaged 
DNA Binding 2 (DDB2) (Aboussekhra et al., 1995; Mu et al., 1995; Mu et al., 1996; Moser et 
al., 2005; Min and Pavletich, 2007; Scrima et al., 2008). DDB2 binds with high affinity to 
photoproducts, induces a bending of the DNA to approximately 40° and facilitates the 
flipping of the affected bases that are recognized and bound by the XPC/hHR23B complex, 
which further introduces structural changes into the DNA (Min and Pavletich, 2007; Scrima 
et al., 2008). DDB2 is part of a DDB1-CUL4-RBX1 (DCX) E3 ligase that mediates the 
polyubiquitination of histones, XPC and DDB2 itself (Rapic-Otrin et al., 2002; Fitch et al., 
2003; Sugasawa et al., 2005; Chen et al., 2006; Kapetanaki et al., 2006; Wang et al., 2006). As a 
consequence, DDB2 is degraded via the 26S proteasome clearing the way for later repair 
stages (Rapic-Otrin et al., 2002; Fitch et al., 2003; Chen et al., 2006). Interestingly 
ubiquitination has the opposite effect on XPC leading to its stabilization and activation 
(Sugasawa et al., 2005). The DDB2-dependent ubiquitination of histones H2A, H3, and H4 
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may be necessary for the loosening of the DNA structure to allow the binding of other repair 
proteins (Kapetanaki et al., 2006; Wang et al., 2006). In a similar way the recently observed 
ability of DDB2 to recruit histone modifying proteins to specific DNA sequences could 
contribute to accessibility of the DNA for XPC and other factors (Minig et al., 2009; Roy et 
al., 2010). XPC is then needed for the recruitment of the core NER repair factors XPA, TFIIH, 
and RPA (Evans et al., 1997; Araujo et al., 2001; Thoma and Vasquez, 2003). XPA and the 
basal transcription factor complex TFIIH bind to the damaged site and unwind the DNA 
around the lesion (Reardon and Sancar, 2003; Maltseva et al., 2006; Yang et al., 2006; 
Kesseler et al., 2007; Krasikova et al., 2008). Unwinding is specifically performed by two 
subunits of TFIIH, the helicases XPB (ERCC3) and XPD (ERCC2). RPA is a heterotrimeric 
DNA binding protein, and while it prevents incision of the non-damaged DNA strand, 
together with XPA, it stabilizes the opened double helix (Blackwell et al., 1996; Camenisch et 
al., 2006; Maltseva et al., 2006; Yang et al., 2006). Incisions are performed by the 
endonucleases XPF (ERCC1) and XPG which nick the damaged DNA strand 5’ and 3’ 
around the lesion. After the damaged strand is excised, the gap is filled and ligated by the 
concerted activities of replication factors Proliferating Cell Nuclear Antigen (PCNA), 

Replication Factor C (RFC), Replication Protein A (RPA), DNA polymerases  and , and 
DNA ligase 1 (LIG1) (Nichols and Sancar, 1992; Shivji et al., 1992; Green and Almouzni, 
2003; Ogi et al., 2010). In contrast to GGR, TCR is specifically connected to DNA lesions in 
transcriptionally active regions. Here, RNA polymerase 2 (RP2) becomes stalled at CPD or 
(6-4) photoproduct containing sites (Selby and Sancar, 1997; Tornaletti and Hanawalt, 1999). 
Recognition of stalled RP2 has not been fully resolved. However, a critical role has been 
shown for Cockayne Syndrome factor B (CSB), a member of the SWI/SNF family of 
helicases (Selby and Sancar, 1997; van Gool et al., 1997; Citterio et al., 2000; Kamiuchi et al., 
2002; Fousteri et al., 2006; Cazzalini et al., 2008). CSB binds to the stalled RP2, and this 
binding is a necessary trigger for recruitment of the same core repair proteins as described 
for GGR. Comparable to DDB2, CSB becomes a target of the DCX E3 ligase, which is 
mediated by another WD-40 protein, CSA. This interaction ultimately results in degradation 
of CSA, CSB and possibly also RP2 (Groisman et al., 2006). 
Most of the proteins that play a role in GGR or TCR can be found in animals and plants, 
while only a few members, like XPA and TF2H3, a subunit of TFIIH, appear to be absent in 
plants (Kimura and Sakaguchi, 2006). It is currently open whether plants encode for 
functional analogs of XPA and TF23H that would perform tasks similar to these proteins. 
For most of the other NER proteins that are conserved among animals and plants, a role in 
DNA repair has been demonstrated, frequently by reverse genetic studies in Arabidopsis 
thaliana. Here, proteins shown to be involved in damaged DNA recognition in animals, such 
as DCX-E3 ligases, DDB2 and CSA, have also been recently described by several groups in 
plants (Bernhardt et al., 2006; Molinier et al., 2008; Al Khateeb and Schroeder, 2009; 
Bernhardt et al., 2010; Biedermann and Hellmann, 2010; Zhang et al., 2010; Zhang and 
Schroeder, 2010; Castells et al., 2011). While plants affected in ATCSA-1, the Arabidopsis 
CSA ortholog, do not display an abnormal development (Biedermann and Hellmann, 2010), 
loss of CUL4 or DDB2 cause a dwarf-like phenotype (Bernhardt et al., 2006; Koga et al., 
2006). Interestingly, Arabidopsis ddb2 or atcsa-1 mutants are UV-hypersensitive but only 
when brought into the dark right after UV treatment, demonstrating that plants primarily 
rely on photoreactivation rather than NER (Biedermann and Hellmann, 2010). However, 
when kept in the dark both mutants have reduced repair activities when compared to wild 
type (Biedermann and Hellmann, 2010). CSB-like helicases are also present in plants 
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(Kimura et al., 2004; Shaked et al., 2006), and although they are not biochemically 
characterized, studies in Arabidopsis demonstrate their critical role for UV tolerance 
(Shaked et al., 2006). Other mutants directly affected in NER factors such as Arabidopsis 
mutants atcen2 and uvh3–1/xpg, also show decreased repair activities in vitro and behave 
hypersensitive towards UV-C exposure, respectively (Liu et al., 2000; Molinier et al., 2004b). 
Loss of the TFIIH transcription factor complex subunits XPB/UVH6 and XPD is lethal; 
however, uvh6-1 plants expressing a mutated but potentially partially functional XPB 
protein already show decreased repair rates of UV-induced 6–4 photoproducts (Liu et al., 
2003). Overall the current findings strongly indicate that the basic mechanisms of UV-
induced damaged DNA recognition and NER based repair are comparable and highly 
conserved among plants and animals. 

3.3 Base excision repair 
Not all nucleotide modifications can be repaired by NER, and many DNA lesions generated 
by reactive oxygen species (ROS) are not recognized by the NER proteins. Thus as an 
additional mechanism to ensure genomic integrity, cells utilize other repair mechanisms like 
base excision repair (BER). Because ROS are continuously produced as metabolic 
byproducts or by ionizing radiation, they represent a considerable source of the daily DNA 
damage. ROS-induced DNA lesions include for example 8-hydroxyguanine (8-oxoG), 
formamidopyrimidines, and 5-hydroxyuracil, which can potentially lead to miscoding 
during replication and transcription. 
As a general rule BER requires the activities of DNA glycosylases, which cleave the N-
glycosyl bond between the base and the sugar at the lesion site. This releases the base and 
leaves an abasic or apurinic/apyrimidinic (AP) site. In bacteria, fungi, plants and animals, 
several DNA glycosylases have been described that either specifically or broadly recognize 
certain lesions. For example, the mammalian DNA glycosylase OGG1 has a high affinity to 
8-oxoG and some formamidopyrimidines, while another mammalian DNA glycosylase, 
NEIL1, efficiently repairs formamidopyrimidines but only poorly 8-oxoG (Morland et al., 
2002; Parsons et al., 2005). DNA glycosylases are classified as either being mono- or 
bifunctional. Monofunctionally they only perform the cleavage reaction of the glycosylic 
bond between the deoxyribose and the target base to generate an AP site. Bifunctional DNA 
glycosylases/lyases, to which OGG1 and NEIL1 belong, are able to catalyze the release of 
the oxidized base and the cleavage of the DNA backbone at the AP site (Hazra et al., 2001). 
Although there is currently no evidence that plants have NEIL1 orthologs, which are 
common in bacteria and animals and required in part for excision of oxidized purines and 
pyrimidines, most other DNA glycosylases have been found. For example, plants encode for 
orthologs of OGG1 (Roldan-Arjona and Ariza, 2009), and their activity in excising oxidized 
purines has been demonstrated for the Arabidopsis AtOGG1 (Dany and Tissier, 2001; Garcia-
Ortiz et al., 2001; Morales-Ruiz et al., 2003). In addition to OGG1, plants also encode for 
proteins related to the bifunctional Endonuclease III/Nth from E. coli, yeast, and animals, 
which remove a broad range of damaged pyrimidines (Breimer and Lindahl, 1980; Boorstein 
et al., 1989; Hatahet et al., 1994; Phadnis et al., 2006; Guay et al., 2008). Like their bacterial 
counterparts, Arabidopsis AtNTH1 also shows a broad substrate specificity and DNA 
glycosylase activity for DNA lesions containing modified pyrimidines (Krokan et al., 1997; 
Roldan-Arjona et al., 2000). Furthermore, plants encode for proteins related to MutM/Fpg, 
an original model DNA glycosylase/lyase from E. coli that excises 8-oxo-guanine and other 
oxidized purines from damaged DNA (Tchou et al., 1991; Tchou et al., 1993; Bhagwat and 
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Gerlt, 1996; Ohtsubo et al., 1998; Murphy and Gao, 2001; Roldan-Arjona and Ariza, 2009). 
Although enzymatic function for all three types of plant DNA glycosylases is established, 
there is unfortunately no information available on how loss of these proteins affects 
development or ROS sensitivity of mutant plants. 
 

 

Fig. 3. Schematic model for base excision repair (BER).  

DNA lesions caused by ROS are recognized and modified by the concerted activities of a 
DNA glycosylase and APE, after which cells can either take the route of long-patch repair or 
alternatively the short-patch repair pathway. Currently evidence indicates for plants that the 
long-patch repair is employed for BER. 

Plant OGG1 and NTH proteins generate 3’ phospho ,-unsaturated aldehydes (3’ dRP) at 
the strand breaks, and these need to be removed to generate free 3’ hydroxyl ends to allow 

www.intechopen.com



 
Recognition and Repair Pathways of Damaged DNA in Higher Plants 

 

209 

gap-filling repair mediated by a DNA polymerase (Demple and Harrison, 1994; Roldan-
Arjona et al., 2000; Garcia-Ortiz et al., 2001). Removal of 3’dRP is mediated in plants and 
animals by AP endonucleases (APE) which also work on AP sites generated by either 
monofunctional DNA glycosylases or those that occurred through spontaneous degradation 
of the DNA (Babiychuk et al., 1994; Demple et al., 1997; Pascucci et al., 2002) (Fig. 3).  
Subsequently to APE, two separate BER repair pathways can become active in mammalian 
cells. First, the short-patch repair pathway, which relies on the concerted activities of DNA 

polymerase  (Pol), X-ray repair cross-complementing protein 1 (XRCC1), and the DNA 

ligase 3 (LIG3). Pol has an intrinsic 3’dRP activity and can remove deoxyribose sugar itself 
if required (Caldecott, 2001). XRCC1 interacts with LIG3 and other BER proteins and may 
function as a repair coordinating protein (Vidal et al., 2001) (Fig. 3). Alternatively, the long 
patch-repair pathway can be employed in mammalian cells, which requires activities of 

DNA polymerases  and , RFC, PCNA, and flap endonuclease 1 (FEN1) to remove and 
resynthesize up to 10 nucleotides 3’ to the AP site, while the nick is ligated by LIG1 
(Matsumoto, 2001) (Fig. 3).  
While most proteins are present in plants that can participate in long-patch repair (Kimura 

and Sakaguchi, 2006), it is currently open whether a short-patch pathway exists in plants 

since no obvious homologs of POL and LIG3 are identified so far (Kimura and Sakaguchi, 

2006; Roldan-Arjona and Ariza, 2009). In addition, plant XRCC1-like proteins lack domains 

that are necessary for complex assembly with POL and LIG3, and it is therefore currently 

open whether the protein participates in BER (Vidal et al., 2001; Taylor et al., 2002). 

Although no POL proteins are described in plants so far, it is possible that their function is 

conducted by POL. Both polymerases belong to the X superfamily of DNA polymerases 

and several amino acid residues are conserved between POL and  (Garcia-Diaz et al., 

2000; Uchiyama et al., 2004). In addition, POL has been demonstrated in rice to possess 

intrinsic 3’dRP activity and its expression is mainly found in meristematic and proliferating 

tissues (Uchiyama et al., 2004).  
An important role in the recognition and repair of SSB and activation of BER involves 
poly(ADP-ribose) polymerases (PARP). PARP proteins belong to small protein families 
with, for example, 18 members in human, and they are highly conserved among eukaryotes 
(Ame et al., 2004); however, it is PARP1 and PARP2 that have been brought in context with 
damaged DNA recognition and DNA repair processes. PARP1 is a 113 kDa protein that 
contains a modular set of domains that enable it to fulfill multiple functions in the cell. At its 
N-terminal region PARP1 contains a DNA break recognition fold that is composed of a 
duplicated zinc finger similar to DNA ligase III. A BRCT motif is present in the center that 
can be found in many proteins connected with maintenance of genomic integrity and cell 
cycle checkpoints. The motif also functions as the main interface for protein–protein 
interactions. Finally, at its COOH-terminal region, PARP1 has motifs with different catalytic 
activities including NAD+ hydrolysis as well as initiation, elongation, branching and 
termination of ADP-ribose polymers (Citarelli et al., 2010). It has been shown in mammalian 
cells that, upon binding a DNA lesion PARP1 poly(ADP)ribosylates itself as well as nearby 
histones (H1 and H2B), which relaxes the chromatin structure allowing better access for 
XRCC1 and other repair proteins to the damaged site (Poirier et al., 1982; Masson et al., 1998; 
Pleschke et al., 2000). Plant PARP1 and PARP2 are nuclear localized like their animal 
counterparts, and they become transcriptionally activated upon genotoxic stress conditions 
such as ionizing radiation or oxidative stress (Puchta et al., 1995; Babiychuk et al., 1998; 
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Doucet-Chabeaud et al., 2001; Chen et al., 2003). However, although a similar role of plant 
PARP1 and PARP2 in damaged DNA recognition and initiation of DNA repair is likely, a 
detailed in planta functional description is still missing for these proteins.  

3.4 DSB repair: Nonhomologous end joining and homologous recombination  
ROS, especially �OH generated by ionizing radiation or via the Fenton reaction 
(Karanjawala et al., 2003; Clark, 2008), also have a high potential to cause double-strand 
breaks (DSB) (Karanjawala et al., 2002; Karanjawala et al., 2003). DSB require repair 
mechanisms distinct from photolyases, NER and BER. Therefore cells primarily depend on 
either the nonhomologous DNA end joining pathway (NHEJ) or homologous recombination 
(HR). NHEJ is an error-prone repair pathway, which directly ligates the free DNA ends 
together. In animals, the pathway is discussed to start with the binding of the heterodimeric 
Ku70/Ku80 complex to a DNA end. This step is required for employment of DNA-
dependent protein kinase (DNA-PK) and Artemis endonuclease that process the DNA ends 
(Ma et al., 2002), while rejoining and ligation is performed by the XRCC4/LIG4/XLF 
complex (Grawunder et al., 1997; Barnes et al., 1998) (Fig. 4). The processing of the DNA 
ends can result in deletions or insertions and is the reason why NHEJ based repair often 
results in mutations in the repaired DNA. Current research in plants indicates that the NHEJ 
pathway is conserved among plants and animals. Ku70 and Ku80 related proteins as well as 
the Artemis-like protein SNM1/PSO1 are expressed in Arabidopsis and rice, and Arabidopsis 

mutants affected in these proteins become hypersensitive to -irradiation and the 
chemotherapeutic agent bleomycin, a double-strand break inducing chemical, which is in 
agreement with their roles in NHEJ (Tamura et al., 2002; Friesner and Britt, 2003; Gallego et 
al., 2003; Molinier et al., 2004a; Kimura et al., 2005; Kimura and Sakaguchi, 2006; Charbonnel 
et al., 2010). Likewise, XRCC4 and Lig4 homologues have been described in plants, and 
functionally connected to NHEJ (West et al., 2000; Friesner and Britt, 2003; Kimura and 
Sakaguchi, 2006; Waterworth et al., 2010).  
In contrast to the error prone NHEJ pathway, HR is a more accurate repair mechanism that 

uses homologous DNA strands as templates for repair activities (Boyko et al., 2006a; Boyko 

et al., 2006b; Li and Ma, 2006; Osman et al., 2011). Several alternative pathways may exist 

that allow HR based repair of DSBs, however, good evidence is provided for at least two 

alternative pathways in plants. One is the synthesis-dependent strand annealing (SDSA) 

mechanism which involves the meiotic recombination11/Rad50/X-ray sensitive 2 (MRN) 

complex (Waterworth et al., 2007; Ronceret et al., 2009; Amiard et al., 2010). The MRN 

complex is discussed to function as a first sensor of double strand breaks. It generates single 

strand DNA at the DSB sites that can be used as templates to mediate HR by RecA and 

Rad51 homologues (Lin et al., 2006; Li et al., 2007; Markmann-Mulisch et al., 2007; Odahara 

et al., 2007; Vignard et al., 2007; Waterworth et al., 2007; Odahara et al., 2009; Ronceret et al., 

2009; Amiard et al., 2010; Chittela and Sainis, 2010; Devisetty et al., 2010; Ko et al., 2010; 

Schaefer et al., 2010; Wang et al., 2010; Ko et al., 2011) (Fig. 4). However, the precise 

subsequent steps of Holliday structure formation, cleavage by endonucleases and 

dissociation into two DNA chains is only poorly understood in plants. Alternatively to 

SDSA, plants also use the single strand annealing (SSA) mechanism (Tissier et al., 1995; 

Ayora et al., 2002; Blanck et al., 2009; Mannuss et al., 2010). SSA requires a double strand 

break between two repeated sequences that are oriented in the same direction. Adjacent to 

the break, single-stranded DNA is created so that the repeated sequences can be used as 
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complementary strands to anneal the ends of the break, after which non-homologous tails 

are detached and nicks can be ligated (Tissier et al., 1995; Puchta, 2005; Blanck et al., 2009; 

Mannuss et al., 2010). Because HR is less likely to cause changes in the genetic information 

than NHEJ, it is likely that the extent to which either NHEJ or HR repair pathways are 

employed in DSB repair may impact genome evolution in living organisms. 

 

 

Fig. 4. ROS induced repair of double-strand breaks.  

Two alternative pathways for which strong evidence is present to exist in plants are shown. 
Double-strand breaks can either be repaired by nonhomologous DNA end joining pathway 
(NHEJ; left hand side), or by homologous recombination (HR; right hand side). 

3.5 DNA repair in chloroplasts 
Based on their high metabolic activities in respiration and photosynthesis, organelles are 
centers of ROS production. Both mitochondria and chloroplasts possess their own repair 
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pathways, and it appears to be that they have most of the repair pathways that are also 
found in the nucleus (for an excellent review about mitochondrial repair see (Boesch et al., 
2011). We will focus here on chloroplast repair and briefly summarize recent findings.  
The chloroplast genome is in general relative small, but gene numbers can vary significantly 
between species ranging from, for example, 54 in Helicosporidium sp. ex Simulium jonesii and 
up to 301 in Pinus koraiensis (http://chloroplast.cbio.psu.edu/); (Cui et al., 2006). These 
genes and their corresponding proteins are crucial for proper functioning of the organelle 
and hence survival of the plant and it is not surprising that chloroplasts have several repair 
pathways.  
A recent report described a rice CPD photolyase to mediate repair of direct DNA damage 
caused by UV light (Takahashi et al., 2011), and also an earlier report describes PHR2, a class 
II photolyase predicted to be in chloroplasts of C. reinhardtii (Petersen et al., 1999). There is 
also strong evidence in Arabidopsis for two bifunctional DNA glycosylase/lyase of the E. coli 
Endonuclease III/Nth type and an APE to be involved in repair of ROS based DNA damage 
(Gutman and Niyogi, 2009). The authors can show specific localization of the three proteins 
to the chloroplast and specific activities in vitro. However, single or even triple mutants 
affected in the three proteins do not display any apparent developmental defects or 
increased sensitivities to photo-oxidative stress (e.g. UV- and high light or methyl viologen), 
from which the authors concluded that additional, yet unknown BER repair pathways exist 
in chloroplast (Gutman and Niyogi, 2009).  
Currently no clear data are available for NER activities in the chloroplasts and only poor 

evidence is currently present on whether or how chloroplasts repair DSBs. Work on the 

green algae Chlamydomonas reinhardtii showed presence of a chloroplast-located RecA 

homolog, which is inducible in expression by DNA-damaging reagents (Nakazato et al., 

2003). In addition, Arabidopsis T-DNA insertion mutants affected in a chloroplast localized 

RecA (cpRecA) homolog have increased amounts of single-strand DNA, altered structures of 

chloroplast DNA, and chloroplasts showed signs of reduced function after four generations 

post T-DNA insertion (Rowan et al., 2010). Yet, further data for additional repair proteins is 

still missing, as well as strong evidence for HR or NHEJ activities in chloroplasts of higher 

plants. Recent findings, however, indicate that chloroplasts repair DSBs using 

microhomology-mediated end joining (MMEJ) (Kwon et al., 2010). This repair mechanism 

requires only very short (2–14 bp) regions of homology, and is discussed as a potential 

backup to NHEJ in eukaryotes (Heacock et al., 2004; Bennardo et al., 2008). Although Kwon 

and co-workers provide strong evidence for MMEJ in chloroplasts, it is currently open 

which proteins mediate this repair.  

3.6 Physiological responses after UV and ROS exposure 
Besides immediate repair processes, it is also critical for plant cells to generate a 

physiological environment in which further DNA damage is prevented or at least reduced. 

A common physiological response to UV exposure in plants appears to be the accumulation 

of anthocyanin and flavonoids, potentially as a photoprotective or ROS quenching 

mechanism (Ng et al., 1964 ; Yatsuhashi et al., 1982; Takeda and Abe, 1992; Ye et al., 2010). It 

is interesting to note that some plants like grape vine (Vitis vinifera) or common bean 

(Phaseolus vulgaris) accumulate resveratrol or coumestrol, respectively, in response to UV 

exposure (Langcake and Pryce, 1977; Beggs et al., 1985). Resveratrol is a protective 

phytoalexin that is produced primarily under biotic stress conditions, while coumestrol is a 
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phytoestrogen with unknown function. Both compounds are associated with effecting cell 

proliferation, cell cycle, and apoptosis of mammalian cells (Ndebele et al., 2010; Delmas et 

al., 2011) and may be signaling molecules in plants to trigger specific responses upon UV 

exposure. 

A critical factor that is discussed as a regulator of DNA repair pathways in response to 

increased ROS accumulation in the cell appears to be ADP-Ribose/NADH 

Pyrophosphohydrolase AtNUDX7 (Ishikawa et al., 2009). AtNUDX7 belongs to the family of 

Nudix hydrolyases, which catalyze the hydrolysis of dinucleoside polyphosphates, 

nucleoside di- and triphosphates, nucleotide sugars, and coenzymes in plants and animals 

(McLennan, 2006; Kraszewska, 2008). AtNUDX7 substrates are ADP-Ribose (ADP-Rib) and 

NADH which are converted to AMP plus ribose 5-phosphate and nicotinamide 

mononucleotide (NMNH) plus AMP, respectively (Ogawa et al., 2005). The protein may 

have a central function for the homeostasis of NAD+ pools by supplying ATP via nucleotide 

recycling from free ADP-Ribose molecules. This may be critical for the cell since substantial 

PARP activity can significantly lower NAD+ and ATP levels; such a depletion of cellular 

energy can result in necrotic cell death (Ha and Snyder, 1999; Virag and Szabo, 2002; De 

Block et al., 2005). As discussed for BER, DNA damaged-induced, PARP-dependent 

poly(ADP)-ribosylation of proteins is considered a critical step for recognition of damage to 

be converted into intracellular signals that can trigger DNA repair programs or cell death. 

Consequently, AtNUDX7 is up-regulated upon abiotic stress (salinity, drought, high light, 

paraquat), and plants constitutively overexpressing AtNUDX7 become less susceptible to 

these stress conditions (Ishikawa et al., 2009).  

A microarray study has shown that UV-C, bleomycin, or biotic stress factors elicit a 

hypersensitive response and increased H202 levels in the cell (Molinier et al., 2005). Although 

each stress elicited specific responses, the authors could also find 209 genes that were 

commonly up-regulated, while 54 were similarly down-regulated by all three stress 

treatments. Among the commonly regulated genes were components of signaling pathways, 

transcription factors, and genes connected with an oxidative stress or defense response. Cell-

cycle genes were also down-regulated after genotoxic stress exposure, as was earlier noted 

for animals (Dasika et al., 1999). However, the authors also noted that in Arabidopsis 

expression of only a comparably few number of repair genes was induced, and concluded 

that the plant must be mainly relying on existing synthesized proteins. It will be interesting 

to see whether results are broadly applicable to other plant species or whether the tested 

conditions and responses are specific for Arabidopsis.  

3.7 ATM/ATR dependent regulation of DNA repair 
A central regulator of the fate of damaged cells between apoptosis or cell cycle arrest and 
DNA repair in animals is the tumor-suppressing p53, sometimes dubbed the “guardian of 
the genome”. This transcription factor controls not only cell cycle genes like p21 and 
apoptosis factors like PUMA, NOXA, and BAX but also various components of major DNA 
repair pathways such as CSB, DDB2 and XPC (NER); FANCC (DNA crosslink repair) and 
MSH2, MLH1, and PMS2 (mismatch repair) (Gatz and Wiesmuller, 2006; Brady and Attardi, 
2010). There is also evidence that it has a more direct role in BER, interacting with APE1 and 
OGG1 and thereby enhancing the excision of oxidized DNA bases (Gatz and Wiesmuller, 
2006; Vigneron and Vousden, 2010). Additionally p53 seems to recognize and bind directly 
to certain DNA structures e.g. Holliday junctions and mismatches where it represses the 
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activities of HR and NHEJ (Bakalkin et al., 1994; Subramanian and Griffith, 2005; Gatz and 
Wiesmuller, 2006). 
Activation of p53 after DNA damaging conditions is achieved by phosphorylation by the 
checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATAXIA 
TELANGIECTASIA AND RAD3 RELATED (ATR) (Canman et al., 1998; Tibbetts et al., 
1999). While recent studies imply that ATM is a sensor for the redox state of the cell, it is 
mainly known to be activated by the above-mentioned DSB sensing MRN-complex 
(Bakkenist and Kastan, 2003; Falck et al., 2005; Kruger and Ralser, 2011; Perry and Tainer, 
2011). ATR, on the other hand, is recruited to RPA-coated UV-induced lesions by the ATR 
INTERACTING PROTEIN (ATRIP) (Wright et al., 1998; Cortez et al., 2001; Ball and Cortez, 
2005; Warmerdam et al., 2010). Once activated both kinases phosphorylate p53 and the 
effector kinases CHK1 and CHK2 regulating cell cycle and DNA repair (Brady and Attardi, 
2010). 
Curiously no plant homologues of p53 have been identified in any of the model organisms. 
This is probably linked to the absence of the core apoptotic machinery as we know it from 
animals. In contrast most of the DNA repair targets of p53, as well as ATM and ATR, are 
very well conserved in plants. Where loss of one of the checkpoint kinases in animals is 
lethal, the existence of viable atr and atm mutant plants in Arabidopsis make it an ideal 
model for their investigation. Both are involved in the response to ionizing radiation (IR) 
and necessary for the IR-induced transcription activation of many genes participating in 
DNA repair, cell cycle control, transcription, and replication (Culligan et al., 2006; Ricaud et 
al., 2007; Yoshiyama et al., 2009; Furukawa et al., 2010). 
This raises the question if there is a factor that is functioning as a p53 analog mediating 
the DNA damage response between ATM/ATR and the downstream repair factors. An 
answer to that could be SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Though 
unrelated to p53 and unique to plants, this transcription factor, discovered in a screen for 

suppressor mutants of the -irradiation induced cell cycle arrest of Arabidopsis uvh1 
seeds, is necessary for the activation of genes downstream of both ATM and ATR in 

response to -irradiation (Preuss and Britt, 2003; Yoshiyama et al., 2009; Furukawa et al., 
2010). SOG1, ATM, and ATR were also found to trigger plant programmed cell death 

(PCD) in root meristems after - or UV-B irradiation, a mechanism that was recently 
shown to be distinct from animal apoptosis (Fulcher and Sablowski, 2009; Furukawa et al., 
2010). Hence, SOG1 is a good candidate to control repair processes in a p53-like fashion, 
at least by activating transcription of the plant homologues of factors like DDB2, MSH2 
and XPC in response to UV and IR stresses.  
Current research indicates that plants and animals share roughly similar repair pathways. 
But for some repair proteins that have been described in animals no homologues have been 
found in plants, as yet. However, with ongoing research, it seems plausible that plant 
counterparts will be identified that can substitute for missing animal orthologs as it appears 
to be the case with p53 and SOG1. 

4. Plants as model organisms to study DNA repair 

Plants and animals share a surprisingly high degree of conservation among their abilities to 
repair damaged DNA (please also see Table 1 at the end of this passage for an overview of 
genes involved in DNA repair in the model plant Arabidopsis thaliana). While mammalian 
researchers have very valid and scientifically relevant reasons to use animal subjects, plants 
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can and should be considered as excellent and viable alternatives to investigate the 
fundamentals of DNA repair processes. Tolerance towards mutations and abiotic stresses 
along with the relative ease of upkeep and propagation of the research organisms are two 
factors that we will briefly discuss in this final section of the review. 
Due to their inability to elude many constantly damaging influences, plants need to utilize 
efficient ways to cope with these stresses. One strategy plants seem to have adopted to 
manage the higher demands on DNA repair is redundancy. For instance, genes of every 
pathway discussed here were found to be duplicated in Arabidopsis or rice (Singh et al., 
2010). Additionally the existence of both 8-oxo-guanine glycosylases, OGG1, as well as 
MutM/Fpg in Arabidopsis demonstrate functional redundancy of independent, alternative 
repair pathways, which may have originated from the incorporation of chloroplast and 
mitochondrial genes into the nuclear genome (Boesch et al., 2009; Singh et al., 2010; Rowan 
et al., 2010).  
Probably because of these gene duplications, functional redundancies, and more efficient or 
alternative pathways in comparison to animals, plants often have greater flexibilities in how 
they can respond to and potentially tolerate damaged DNA and mutations. For example a 
homozygous mutant in ATR kinase, which would be lethal in mammals, can in plants be 
investigated for the impact on DNA repair, control of apoptosis or gene expression profiles. 
In order to see the global effects of genotoxic stressors on a model organism, the subjects 
need to be exposed to different degrees of damaging agents. Here, plants are ideal models 
because of their sessile nature. They can be cultivated under very steady and reproducible 
conditions, while stress exposure is highly controlled. In addition, from an ethical point of 
view, plants can be taken to the edge of survival with very harsh treatments such as high 
levels of UV-light or toxin applications that for some may be not comfortable to perform on 
animals.  
In comparison to animals, plants are low cost organisms that only require minimal 
monitoring along with water and occasionally fertilizer. Small plants like the moss 
Physcomitrella patens or Arabidopsis thaliana can be cultivated to great numbers within in a 
few square feet while by comparison animals require adequate space and regular food, 
water, and cleaning. While mutant lines are readily available for many animal and plant 
systems, shipment and propagation of plant resources can be quite straightforward. Seeds 
can be harvested for immediate propagation of the next generation or stored long-term, 
even at room temperature, before use months or even years later. Sending seed material to 
colleagues around the world is technically simple since no special transport 
accommodations need to be made. Generating transgenic Arabidopsis lines using 
Agrobacterium infection is a standard lab procedure, and allows for rapid complementation 
of mutant lines to verify protein functionality and observation of response and recovery. 
Also generation time of Arabidopsis plants is very short with just two months from seed to 
seed. 
In addition to using plants as basic models to understand DNA repair processes, there are 
also practical reasons why this area of research urgently needs to be expanded. With the 
increase in food shortages for increasing populations, the recognition of environmental 
toxins and the growing evidence of impending and occurring climate changes across the 
world, it becomes critical to rapidly develop plants that can better cope with environmental 
stress. As such, stress tolerant crop plants generated either by genetic engineering or 
classical breeding will become increasingly important resources to guarantee stable food 
supplies to the human population in an expected changing environment.  
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Repair 
pathway 

Representative 
Gene Model 

Gene in 
Arabidopsis Function Acc. No. Reference 

Photore-

activation 

 PHR1/UVR2 repair of CPDs AT1G12370 Ahmad et al., 1997; 

Landry et al., 1997 

  PHR2 repair of CPDs AT2G47590 Ahmad et al., 1998; 

Petersen et al., 1999 

  UVR3 repair of 6-4PPs AT3G15620 Jiang et al., 1997; 

Nakajima et al., 1998 

NER XPC AtRAD4 recognition of CPDs and 

6-4PPs, GGR 

AT5G16630 Kunz et al., 2005; 

Liang et al., 2006 

 HHR23A,B/RA
D23 

RAD23A recognition of CPDs and 

6-4PPs, GGR 

AT1G16190 Molinier et al., 2005; 

Kunz et al., 2005; 

Farmer et al., 2010 

  RAD23B  AT1G79650 Molinier et al., 2004b 

Kunz et al., 2005; 

Farmer et al., 2010 

  RAD23C  AT3G02540 Molinier et al., 2004b; 

Kunz et al., 2005; 

Farmer et al., 2010 

  RAD23D  AT5G38470 Molinier et al., 2004b; 

Kunz et al., 2005; 

Farmer et al., 2010 

 CEN2 AtCEN2 recognition of CPDs and 

6-4PPs, GGR 

AT4G37010 Molinier et al., 2004b; 

Liang et al., 2006 

 ROC1/RBX1 RBX1A activation of CUL4-

dependent ligases 

AT5G20570 Lechner et al., 2002; 

Gray et al., 2002 

  RBX1B  AT3G42830 Lechner et al., 2002; 

Gray et al., 2002 

 CUL4 CUL4 Ubiquitylation of targets AT5G46210 Molinier et al., 2008; 

(Biedermann and 

Hellmann, 2010 

 DDB1 AtDDB1a Ubiquitylation of targets AT4G05420 Molinier et al., 2008; 

(Biedermann and 

Hellmann, 2010 

  AtDDB1b  AT4G21100 Bernhardt et al., 2006; 

Bernhardt et al., 2010 

 DDB2 DDB2 recognition of CPDs and 

6-4PPs, GGR, substrate 

recognition for CUL4-

dependent ubiquitination

At5g58760 Koga et al., 2006; 

Molinier et al., 2008 

 TFIIH1 AtTFB1-1 TFIIH subunit p62 At1g55750 Kunz et al., 2005; 

Singh et al., 2010 

  AtTFB1-2  At1g55680 Kunz et al., 2005; 

Singh et al., 2010 

  AtTFB1-3  At3g61420 Kunz et al., 2005; 

Singh et al., 2010 
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Repair 
pathway 

Representative 
Gene Model 

Gene in 
Arabidopsis Function Acc. No. Reference 

 TFIIH2 AtGTF2H2 TFIIH subunit p44 At1g05050 Kunz et al., 2005; 

Singh et al., 2010 

 TFIIH3 AtTFB4 TFIIH subunit p34 AT1G18340 Kunz et al., 2005; 

Singh et al., 2010 

 TFIIH4 AtTFB2 TFIIH subunit p52 At4g17020 Kunz et al., 2005; 

Singh et al., 2010 

 TFIIH5 AtTFB5 TFIIH subunit AT1G12400 Kunz et al., 2005; 

Singh et al., 2010 

    AT1G62886 Singh et al., 2010 

 CDK7 CAK3AT/CD
KD1;1 

cyclin activating 

kinase-subcomplex of 

THIIH 

AT1G73690 Singh et al., 2010 

  CAK4AT/CD
KD1;2 

 AT1G66750 Singh et al., 2010 

  CAK2AT/CD
KD1;3 

 AT1G18040 Singh et al., 2010 

 XPB/RAD25/ER
CC3 

AtXPB1 helicase subunit of TFIIH AT5G41370 Costa et al., 2001 

  AtXPB2  AT5G41360 Morgante et al., 2005 

 XPD/RAD3/ER
CC2 

AtXPD/UVH
6 

helicase subunit of TFIIH AT1G03190 Jenkins et al., 1995; 

Liu et al., 2003 

 XPF/RAD1/ERC
C4 

AtRAD1/UV
H1 

5'-endonuclease AT5G41150 Harlow et al., 1994; 

Jenkins et al., 1995 

 XPG/RAD2/ER
CC5 

UVH3/UVR1 3'-endonuclease AT3G28030 Jenkins et al., 1995; 

Liu et al., 2003 

 CSA/RAD28/ER
CC8 

ATCSA-
1/CSAat1A 

substrate recognition for 

CUL4-dependent 

ubiquitination, TCR 

AT1G27840 Biedermann and 

Hellmann, 2010; 

Zhang et al., 2010 

  ATCSA-
2/CSAat1B 

 AT1G19750 Kunz et al., 2005; 

Zhang et al., 2010 

 CSB/RAD26/ER
CC6 

CHR8 binding of stalled RNA 

polymerase, recruitment 

of repair machinery, TCR

AT2G18760 Shaked et al., 2006 

  CHR24  AT5G63950 Shaked et al., 2006 

BER OGG1 AtOGG1 8-oxoguanine DNA 

glycosylase 

AT1G21710 Garcia-Ortiz et al., 

2001; Dany and 

Tissier, 2001 

 MutM AtFPG/MM
H 

formamidopyrimidine 

DNA glycosylase 

AT1G52500 Ohtsubo et al., 1998 

 NTH AtNTH1 DNA glycosylase and 

apyrimidinic (AP) 

lyase/endonuclease 

AT2G31450 Gutman and Niyogi, 

2009 

  AtNTH2  AT1G05900 Gutman and Niyogi, 

2009 
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Repair 
pathway 

Representative 
Gene Model 

Gene in 
Arabidopsis Function Acc. No. Reference 

 APE ARP/APE1 apurinic/apyrimidinic 

(AP) endonuclease 

AT2G41460 Babiychuk et al., 

1994; Gutman and 

Niyogi, 2009 

  APE2  AT4G36050 Singh et al., 2010 

 XRCC1 AtXRCC1 co-factor of DNA ligase 3 AT1G80420 Petrucco et al., 2002; 
Singh et al., 2010 

 FEN FEN1 flap endonuclease AT5G26680 Singh et al., 2010 

NHEJ/HR KU70/XRCC6 AtKU70 binding of DNA double 

strand break ends 

AT1G16970 Riha et al., 2002 

 KU80/XRCC5 AtKU80 binding of DNA double 

strand break ends 

AT1G48050 Riha et al., 2002 

 XRCC4 XRCC4 co-factor of DNA ligase 4 AT3G23100 West et al., 2000 

 LIG4 AtLIG4 DNA ligation AT5G57160 West et al., 2000 

 MRE11 AtMRE11 subunit of the MRN 
complex, damage 

recognition, generation of 

single-stranded DNA 

AT5G54260 Hartung and Puchta, 
1999; Daoudal-

Cotterell et al., 2002 

 RAD50 AtRAD50 subunit of the MRN 

complex, damage 

recognition, generation of 

single-stranded DNA 

AT2G31970 Gallego and White, 

2001 

 NBS1 AtNBS1 subunit of the MRN 

complex, damage 
recognition, generation of 

single-stranded DNA 

AT3G02680 Bleuyard et al., 2006; 

Waterworth et al., 
2007 

 RECA (E. Coli) AtRECA1/cp
RecA 

DNA binding, mediation 
of inter-strand-pairing 

AT1G79050 Cerutti et al., 1992; 
Cao Cao et al., 1997; 

Shedge et al., 2007; 

Rowan et al., 2010 

  AtRECA2  AT2G19490 Shedge et al., 2007 

  AtRECA3  AT3G10140 Khazi et al., 2003; 

Shedge et al., 2007 

    AT3G32920 Shedge et al., 2007 

  DRT100  AT3G12610 Pang et al., 1992; 

Pang et al., 1993 

 RAD51 AtRAD51/R
AD51A 

DNA binding, mediation 
of inter-strand-pairing 

AT5G20850 Doutriaux et al., 1998 

  RAD51B  AT2G28560 Bleuyard et al., 2005; 

Osakabe et al., 2005 

  RAD51C  AT2G45280 Bleuyard et al., 2005 

  RAD51D/SS
N1 

 AT1G07745 Bleuyard et al., 2005; 

Osakabe et al., 2006 

 BRCA1 AtBRCA1 supports homology 
pairing 

AT4G21070 Lafarge and 
Montane, 2003 
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Repair 
pathway 

Representative 
Gene Model 

Gene in 
Arabidopsis Function Acc. No. Reference 

 BRCA2 AtBRCA2A supports homology 
pairing 

AT4G00020 Siaud et al., 2004; 
Dray et al., 2006 

  AtBRCA2B  AT5G01630 Siaud et al., 2004; 
Dray et al., 2006 

Other ATM AtATM checkpoint kinase AT3G48190 Garcia et al., 2000) 

 ATR/RAD3 AtATR/AtRA
D3 

checkpoint kinase AT5G40820 Culligan et al., 2004 

 PCNA AtPCNA1 DNA polymerase 
processivity factor 

activity 

AT1G07370 Strzalka et al., 2009 

  AtPCNA2  AT2G29570 Strzalka et al., 2009 

 LIG1 AtLIG1 DNA ligation AT1G08130 Taylor et al., 1998 

    AT1G49250 Singh et al., 2010 

 PARP AtPARP1 damage recognition, 
poly(ADP)ribosylation 

AT4G02390 Lepiniec et al., 1995 

  AtPARP2  AT2G31320 Doucet-Chabeaud et 
al., 2001 

  AtPARP3  AT5G22470 Singh et al., 2010 

 RPA1 AtRPA1A/At
RPA1-

3/RPA70A 

stabilization of single-
stranded DNA 
intermediates 

AT2G06510 Ishibashi et al., 2005; 
Chang et al., 2009 

  AtRPA1-1  AT4G19130 Kunz et al., 2005; 
Singh et al., 2010 

  AtRPA1-
5/RPA70B 

 AT5G08020 Kunz et al., 2005; 
Singh et al., 2010 

  AtRPA1-
2/RPA70C 

 AT5G45400 Kunz et al., 2005; 
Singh et al., 2010 

  AtRPA1-
4/RPA70D 

 AT5G61000 Kunz et al., 2005; 
Singh et al., 2010 

 RPA2 AtRPA2-
1/ATRPA32

A 

 AT2G24490 Kunz et al., 2005 

  AtRPA2-
2/ATRPA32B

 AT3G02920 Kunz et al., 2005 

 RPA3   AT3G52630 Singh et al., 2010 

    AT4G18590 Singh et al., 2010 

Table 1. Overview of genes involved in DNA repair in the model plant Arabidopsis thaliana. 
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