
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



15 

Description of Two Functions I and J 
Characterizing the Interior Ground Inertia of a 
Traditional Greenhouse - A Theoretical Model 

Using the Green’s Functions Theory  

Rached Ben Younes 
University of Gafsa,  

Tunisia 

1. Introduction 

In this chapter, we are presenting a precise model translating the influence of the ground 

inertia in the thermal behaviour of a greenhouse without vegetation. This work takes into 

account all the real mechanisms of exchanges (solar conduction, convection, radiation, 

thermal inertia) between the various elements of the system (cover, interior air, ground), but 

does not take into account the mass transfers (diffusions of moisture in the ground, evapo-

transpiration). We sought here to define a model constituting a core of a procedure on 

which new extensions will be based.  We show via the Green Functions Theory (GFT) that 

the model’s differential equations are reduced to a system of integral equations on the 

ground surface. These equations implicitly take into account the heat propagation in the 

ground. This model carefully describes in details the exchanges between the ground and the 

interior of the greenhouse. It aims also at defining the evolution of the greenhouse internal 

air temperature as well as that of the superficial temperature of its ground according to the 

following external data (power, exterior temperature). The mathematical study is completed 

by a numerical simulation on an isolated greenhouse. 

One of the delicate problems in the study of thermal behaviours of the horticultural 
greenhouses is the modelling of their thermal inertia, which comes mainly from the ground. 
Indeed, the implementation of knowledge’s model is an effective mean to accurately 
envisage the thermal behaviour of a greenhouse over long periods. Theoretical, numerical 
and experimental studies were the subject of many former publications. From these 
principal works we retain  

 a simplified model which is based on a total heat balance by holding account 
particularly of absorbed solar radiation, and conductive losses through the wall of the 
greenhouse [1-6] 

 another model is limited to the heat balances of the interior air and the cover, we retain 
of this model that the case of day and night were treated separately [7-8] 

 then, another model taking into account the heterogeneity of the interior greenhouse 
ground, this one is subdivided into ten homogeneous layers of different 
conductivities [9] 
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 finally another model whose objective is to bring a contribution to the study of a 
process of setting out-freezing of a greenhouse by a technique of water sprinkling.  A 
distinction is thus made in the choice of the system of equations according to the three 
following cases: summer (days and nights) and winter days, normal winter nights and 
winter nights with setting out-freezing.    

The cover is considered at uniform temperature in the first two cases, will be subdivided 
into three layers in the last case to take into account of the layer of the formed ice. The 
ground is constituted of seven homogeneous layers in all cases [10-13]  
Other modelling [14] lead to a too simplistic analytical resolution or being based on a one-
dimensional approach by section of the ground’s behaviour, so they do not make it possible 
to simulate the real behaviour [15]. The theoretical models, although often partial, contain 
many unknown parameters or difficult to determine experimentally.    
A rigorous modelling of the interaction ground-greenhouse requires the solution of a 
differential equation with complex conditions of surface. The current models deal with this 
problem either numerically by discretizing the basement in the form of some layers [28-29], 
or by admitting that it behaves overall like a virtual thermal mass whose heat capacity and 
time-constant are given by the experiments [30].  
However, the equation of propagation in the ground has an analytical solution which is 
obtained by GFT.   
Our objective in this work is to show that this exact solution makes it possible to obtain the 
evolution's equation of the surface temperature Tsi(t) of the ground’s interior of the 

greenhouse, according to the total power absorbed by the ground and to the temperature of 
the exterior air of the greenhouse. Two functions characteristic of the ground's behaviour 
appear in this equation (hereafter in the text) and we show starting from their properties at 
what the approximation of the virtual thermal mass consists of. The limits of this 
approximation appear clearly, we thus show how to correct and compare the two results in 
both cases.  
In section (2), we establish the evolution's equation of the greenhouse's interior air, it acts 
here as a simplified model (greenhouse without vegetation) where solar energy is only 
absorbed by the ground and where the phenomena of evapo-transpirations do not intervene  
Initially, we are concerned to establish a model taking into account the mechanisms of 
exchange by radiation, convection and conduction. In this model, we were able to control all 
the physical parameters in the case where it is possible to validate experimentally and 
quantitatively to separate the respective influences from these various modes and to 
determine in a reliable and univocal way the parameters suitable for each one of them: 
conduction, convection, radiation on the one hand and mass transfer (evapo-transpiration, 
condensation) on the other hand. 

2. Setting in equation 

2.1 Study of the heat balance of the greenhouse's internal air  

Our system consists of three essential elements: the cover, internal air and the ground, the 
thermal behaviour of the internal air of the greenhouse, which we consider well ventilated, 
translating the evolution of the interior temperature Ti(t),  obeys to the following equation 

      i i si c ci v
si i ci i e i

i i i i i i i

dT (t) S H S H D (t)
   T (t) - T (t)     T (t) - T (t)     T (t) - T (t)

dt V c V c V 
    (1) 
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The internal air exchanges its heat, by convection, with the surface of the ground of average 

temperature Tsi(t) and the surface of internal face of the cover, which average temperature is  

Tci(t), by two convection coefficients respectively Hsi and Hci. There is also a heat exchange 

between the internal and external air via openings of air renewal of volume throughput  

Dv (t), Si: surface of the internal ground of the greenhouse, Sc: that of the cover, and Vi: the 

volume of the greenhouse see Figure 2.   
All the temperatures are evaluated, thereafter, compared to a temperature of reference T0 
which is that of the ground taken at a depth superior to the effect of annual thermal skin. 
The latter is stable in a given area (evaluated at a depth of 2 meters), and practically 
equalizes at the annual average atmospheric temperature.   
 

 

P(


,t) =Pe(t) 

Hce 

P(


,t) =Pi(t) 

Te(t) 

(Sc) 

Hsi 

Hci 

Ti(t)

(Si) 

IR 

Tsi(t) 
(Se) 

Dv 

Dv 

Incident solar flux  Incident solar flux  

 

Fig. 1. Lay-out of the balance-sheet of heat exchange  

2.2 Heat balance of the cover 

The thickness of the cover is very low and the temperatures are slowly variable. We admit in 
his thickness a temperature profile constantly linear what amounts to neglecting its thermal 

inertia. The cover exchanges with its medium surrounding two fluxes e and i such as:   

ci: heat flux exchanged by the internal face of the cover with the internal medium of the 
greenhouse. 

ce: heat flux exchanged by the external face of the cover with the external medium of the 
greenhouse. 

    ci ci i ci irc si ci H T (t) - T (t) H T (t) T (t)     (2) 

    '

ce e irc e ce r
T (t) (t) H T (t) T (t) pce ce cH  - T   a      (3)  
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These two fluxes are composed of a convective part and of a linearized radiative part 

because the temperatures oscillate slightly around the absolute annual average temperature 

of reference T0. Indeed, the radiative power exchanged with the outside face of the cover is 

written as:   

4 4 4
c ir ,ce c atm atm ce atm atm c e se ce s se c c ce atm ceS S F T   S F T  - S F T             

Knowing that:  1
atm
   , 4 4

atm e eT     T  and by neglecting the effects of the external ground 

on the cover, the preceding expression is reduced:   

 4 4
c ir ,ce c atm atm ce e e c ce atm ceS  S F T   -  S F T      

The relation of reciprocity: 

 atm atm ce c ce atm cS F S F S    because  ce atmF 1   

Let's make the change of variable:  

 ' 4 4
e e eT T      (4) 

Consequently, the expression of ir,ce becomes:   

 ' 4 4
ir ,ce c e ceT   -  T       

Let,       
' '
e 0 e

ce 0 ce

 T   T     T   

T   T     T   

  


 


  

With '

e
T ,  ceT  are the fluctuations corresponding to each of two temperatures and ceT , 

finally we obtain:   

 '
ir ,ce irc e ceH T (t) T (t)      with: 4

0c 4  
irc

H T  , we took off the hats on the temperatures 

only to reduce the writing.  
The temperature of the cover is written: Tc(y) = a y + b with a and b two constants 
determined by the boundary conditions   

 
(T  - T )

ce ciT (y)  y  T
c cie

   (5) 

 

The boundary conditions on the surface of the cover are written:   

    c
c ci i ci irc si ci

y 0

T
k   H T (t) - T (t) H T (t) T (t)

y



   


 (6)  

    'c
c ce e ce irc e ce c r

y e

T
k   H T (t) - T (t) H T (t) T (t)    a P

y



   


 (7) 

We found previously the expression of Tc(y) , then 
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 c ce ciT T T

y e

 



 (8) 

By injecting the expression (8), in the system of equations (6) and (7), we obtain a new 

system of equation ; ((6'), (7')) of unknown factors Tci(t) and Tce(t) :   

 c c
ci irc ci ce ci i irc si

k k
H H T (t)  - T (t)   H T (t) H T (t)

e e

     
 

 (6’) 

c c

ci ce irc ce ce s irc e

c r

1

4k k
T (t)  H H  T (t)     H H T (t) 

e e

                                                                           a p


               



 (7’) 

 

We deduce, starting from this system, the expressions of Tci(t) and Tce(t) taking the following 

forms respectively   

 ci i i si si e e rT (t)  T (t)    T (t)    T (t)           (9) 

 ce i i si si e e rT (t)  T (t)    T (t)    T (t)           (10) 

With : 

( )c
ce irc

c

e k
H H

k e

Deno

ci

i

H
    

 
   ,  c r

r

a pλ (t)  
Deno

     

c
ir ce irc

c

si

e k
H ( H H )

k eλ     
Deno

 
 , 

1

4

ce irc e
e

(H H )λ     
Deno


        

c c c

ci irc ce irc

c

e k k k
Deno  H H H H  - 

k e e e

        
  

 

ci
i

Hǃ     
Deno

 ,  

1

c 4
ci irc ce s irc

c

e

e k
H H H   H

k eǃ     
Deno

          

irc
si

Hǃ     
Deno

 ,  

c
ci irc c r

c

r

e k
H H a p

k eǃ     
Deno

   
   

Let’s introduce the expression of Tci(t) into the equation (1), this latter  takes the following 

form   

 
dT (t)

i  G T (t) - G T (t)  G T (t)  G (t)  
si si i i e e rdt

    (11)  
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With: 

i si c ci si
si

i i i

S H S H λ
G   

Vǒ C


 , i si c ci i v i i

i

i i i

S H S H (1 λ ) D ǒ C
G   

Vǒ C

  
        

c ci e v i i

e

i i i

S H λ D ǒ C
G   

Vǒ C


  c ci r

r

i i i

S H λ (t)
G (t)  

Vǒ C
  

The transformed of La place of the equation (11), leads to   

 i si e r

i si e

i i i i

T (0) T (p) T (p) G (p)
T (p)     G      G       

p G p G p G p G
   

   
 (12) 

With, Ti(0)  T0 : initial field of temperature, whose original is:  

 i i ii
 t  t  t

G (t ) G (t ) G (t )G t
i 0 si si e e r 0  0  0

T (t)       T G T ( ) d G T ( ) d G ( ) de e e e                   (13) 

In this integral equation, the temperature T0 represents the field of initial temperature, Te(t) 

is a field of temperature which translates the influence of the exterior climatic conditions on 
the temperature of the internal air of the greenhouse, on the other hand one will show that 
Tsi(t) depends functionally on Ti(t). 

The hour is taken as unit of time, the temporal evolution of the internal temperature is 

typically during few seconds, consequently we can neglect i
dT (t)

dt
, then the expression of 

Ti(t) takes the following form   

 si e r
i si e

i i i

G G G (t)
T (t)  T (t)    T (t)    

G G G
    (14) 

2.3 Heat balance of the ground 

We suppose that the basement of the greenhouse is homogeneous, isotropic and of thermal 

properties (voluminal heat c and thermal conductivity ks) constant, we note  p s, t


 the 

absorbed power per square meter in an unspecified point s


of the surface of the ground.  
This power comes primarily from the absorption of the direct and indirect solar radiation, as 
it can include other phenomena like precipitations and evaporation.  We neglect the 
variations coming from the phenomena of shade, variation of the surface quality, etc.   

We can write:   i i

e e

p(s,t)  p (t)   si   s (S )

p(s,t)  p (t)   si   s (S )

 
 

 
   

The field of temperature T(r,t)


in a point r(x,y,z)


at the moment t inside the ground obeys to 

the following equation  

 
T(r,t) p(s,t)

  - a T(r,t)      ǅ(z)
t ǒc


 



 
in (D) (15) 

The field ( , )T r t


 must check on the surface of the ground the following conditions   
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2.3.1 Condition on the surface of the interior greenhouse ground (Si)  

    S si i iri ci Z 0
Z 0

T(r,t)
k H T(r,t) T (t)   H T(r,t) T (t)   

Z 



    



  
 (16) 

By replacing Tci(t) by his expression we obtains   

 

 

 

si iri si si i iri i iri e e

Z 0 s si iri si Z 0

iri si iri r
si

s s Z 0

H   H (1-λ )T(r,t) (H λ H )T H λ T
  T(r,t)     

Z k H H (1 λ )

H λ H λ
                            T(r,t)  -  T (t)   -  

k k

 



    
   

   



 


 (17) 

Let 

 ' si iri si
i

S

H   H (1 λ )
h   

k

 
  (18)  

 
 si i iri i e iri e

2

si iri si

H λ H T (t)  λ H T (t)
T (t)  

H   H (1 λ )

 


 
 (19) 

 0 si iri
i

s

λ H
h   

k
  (20) 

 si iri rR (t)  H λ (t)  (21) 

The equation (16) takes thus the following form   

    ' 0 si
i 2 i si

Z 0 S

T(r,t) R (t)
h T(r,t) T (t)   h T(r,t) T (t)   -  

Z k


    



  
 (22) 

2.3.2 Condition on the surface of the external greenhouse ground (Se)  

    '
S se e ire e

Z 0
Z 0

T(r,t)
k H T(r,t) T (t) H T(r,t) T (t)

Z 



    



  
 (23) 

By using the expression (4) we obtain  

 

se ire e e

se ire

Z 0 s se ire

Z 0

1

4H H ǆ T (t)
T(r,t) H H

T(r,t)
Z k H H



  
  

        
  

 
 
 

   (24) 

Let  

 ' se ire
e

s

H H
h     

k


  (25)  
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 1

4

se ire e e

1

se ire

H H ǆ T (t)
T (t)    

H H





 (26)  

The equation (24) is written then   

  '

e 1 Z 0
Z 0

T(r,t)
h T(r,t) T (t)

Z 



  



 
 (27)  

2.3.3 Resolution of the problem by Green's functions theory     

Let's consider 'G(r,r ,t)
 

 (Green’s function) translating the response in temperature of the 

medium to an impulse of heat into a given point, the language generally employed consists 

to talk about effect into r


corresponding of the cause in 'r


. In addition Green's functions 
obey to the reciprocity's relation of the cause and the effect, if the cause is produced in r


, 

the effect will be identical in 'r


 with the proviso of respecting the same interval of time 
between the moment when the cause occurs t and that when the effect occurs (t0 = 0) 
selected arbitrarily as origin of time. 
The Green's function is a particular solution of the heat's equation 

 
'

'G(r,r ,t)
  -  a G(r,r',t)    ǅ(r r) (z)

t


  


     
 (28) 

With the initial condition  

 'G(r,r ,t 0)      0 
 

 (29) 

And checking the condition on the surface of the ground (Se  Si)  

 
'

' '
i

z 0

G(r,r ,t)
     h G(r,r ,t)

z



 



   
 (30) 

The Green’s function has as expression [22]    

 

i i

i

2 2

2 2

2

- x-x' y y'

4at
G(r,r',t)    

4 at

z z' z z'

4at 4at h' z z' ah' t z z' 
- h' erfc h' at

i4 at 2 at

e

e e e





   
      
   

   
      
   

 
  
 



 
 
  
   
  
 
  

 



   
   

 

 (31) 

The Laplace’s transformation of two equations (15) and (28) is   

 
p(s,p)

pT(r,p)  -  T(r,0)  -  a ΔT(r,p)    ǅ(z)
ǒc


  

 (32) 
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 ' ' 'pG(r,r ,p)    -  a ΔG(r,r ,p)    ǅ(r-r ) (z)
     

 (33) 

Let’s multiply the equations (32) and (33) respectively by 'G(r,r ,p)
 

 and T(r,p)


, we obtain  

 
'G(r,r ,p)p(s,p)' ' 'pT(r,p)G(r,r ,p)  -  T(r,0)G(r,r ,p)  -  a G(r,r ,p)ΔT(r,p)    ǅ(z)
ǒc


          

 (34) 

 
'G(r,r ,p)p(s,p)' ' 'pT(r,p)G(r,r ,p)  -  T(r,0)G(r,r ,p)  -  a G(r,r ,p)ΔT(r,p)    ǅ(z)
ǒc


          

 (35) 

Let’s make the subtraction between the equations (35) and (34), we obtains   

' '
0

p(s,p)
T(r,p) (r r ) (z)    G(r,r ,p) T (r)    ǅ(z)

ǒc
 

 
   

 

     
 

  ' '  a T(r,p) ΔG(r,r ,p) - G(r,r ,p) ΔT(r,p) 
     

 (36)  

Let’s integrate this equation on all the field (D), we obtain the field of temperature 

T(r ',p)


then the original T( 'r


,t), single solution of the equation (36)  

 

 
e i

e i

 t
' ' ' 3

0 0  (S S S )  (D)

 t
' '

 0  (S S S )

p(s,t)
T(r ,t)     dτ   G(r,r ,t τ)dS      G(r,r ,t)T (r)d r

ǒc

  a  dτ  G(r,r ,t τ) T(S,τ)  -  T(r,τ) G(r,r ,t τ) dS 

 

 

  

    

  

 

     

     
  (37)  

(S) being the meeting of (Si) and (Se), if we take account of the boundary conditions on the 
surface of the ground, satisfying the conditions (22), (27) and (30) and from the initial 
condition we obtain 

 

 t
' ' 3 'i

0 i
 (D)  0  (S )

 t
'e

e
 0  (S )

'
 t

'

 0  

i

e

p (s,t)
T(r , t)  G(r, r , t)T (r)d r   d G(r, r , t )dS   

ǒc

p (s,t)
  d G(r, r , t )dS   

ǒc

T(r, ) G(r,r ,t )
  a d G(r,r ,t )   -  T(r, )

z z

 

 

   

  

  

   
    

  

 



     

  

    
i

(S )

'
 t

'

e
 0  (S )

i

e

dS

T(r, ) G(r,r ,t )
 a d G(r,r ,t )   -  T(r, ) dS

z z

      
    



 
    

 (38) 

i

e

 t
' ' 3 'i

0 i (D)  0  (S )

(1)
(2)

 t  t
'e

e 0  (S )  0

(3)

p (t )
T(r ,t)      G(r,r ,t)T (r)d r   dτ G(r,r , ) dS

ǒc

p (t )
                   dτ G(r,r , ) dS a dτ

ǒc

 

 


 


 

  

  

     
 

 


 

i

' '
i 2 i (S )

(a)

(4)

G(r,r , )h T(r,t- )-T (t )  dS   
  



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  

 

 t
' 0

i si i
 0  (S )

( 5)

 t
' ' ' ' '

i e e 1 e
 0  (S )

(b)

(6)

i

e

a d G(r,r ,t- )h T -T(r, )  dS

                  a d h h G(r,r ,t- )T(r, ) h T ( )G(r,r ,t- )  dS   

   

    

 

 
   
 
 

 

 

  


    


 

  t
si '

i
 0  (S )

s

(7 )

i

R
                 a d G(r,r ,t- ) dS

k


 



  



 



 (39) 

With  r '  


(D) 

 
0

T (r ', t)


 is the field of temperature in (D)  due only to the initial condition given by the 

term (1).  

 SiT (r ', t)


 is the field of temperature in the under-ground, due only to the exchanges on 

internal surface of the greenhouse given by the terms (2, 4, 5, 7).   

 seT (r ', t)


 is the field of temperature in the under-ground, due only to the exchanges 

with exterior surface of the greenhouse represented by the terms (3, 6).   
We can break up the field of temperature in the form  

0 Si SeT(r ', t)    T (r ', t)    T (r ', t)    T (r ', t)  
   

varies with exterior surface of the greenhouse 

represented by the terms (3, 6).   

We note that the term (a), in (4) comes owing to the fact that the surface temperature Tsi (t) is 

not completely homogeneous, the term (b) in (6) disappears since at the exterior of the 

greenhouse the difference ( ' '

i e
h h ) is negligible. These two terms, generally very weak, 

they could be treated as a perturbation and the expression of T(r ', t)


can be written as 

 

 t
' ' 3 'i

0 i
 (D)  0  (S )

 t
'e

e
 0  (S )

 t
' '

i 2 i
 0  (S )

i

e

i

p (t )
T(r ,t)      G(r,r ,t)T (r)d r   d G(r,r , ) dS

ǒc

p (t )
  d G(r,r , ) dS

ǒc

                      a d G(r,r , )h T(r,t- )-T (t )  dS

 

 

 

   


 


 

 



  

 

 

     

 

  

  t  t
si' ' '

e 1 e i
 0  (S )  0  (S )

s
e i

R
a d h T ( )G(r,r ,t- ) dS  a dτ G(r,r ,t- ) dS

k


      

   

 (40) 

In fact, the knowledge of the field T(r',t)


in the domain (D) is useless, what we really need is 

to know the surface temperature of the interior ground of the greenhouse.  Indeed, let r '


 be 

close to is  (S )


, in this case the co-ordinates z' of r '


 become null, and if we make the 

average on (Si) , the equation (40) gives us the field of surface temperature Tsi(t)  

i

0

si i Si

3
i Si  (D)i

1
T (t)   T(r',t)dS  

S
1

           dS G(r,r',t)T (r)d r  
S



 



 



  
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 t
'i Si

i 2 i i
 0  (Si)  (Si)

i

p (t ) R (t ) 1
  ah T (t ) d dS G(r,r', )dS

ǒC S

    
   

   
 

  
 

 

 
 t

'e
e 1 i e 0  (Si)  (Se)

p (t ) 1
 ah T (t ) d dS G(r,r', )dS

ǒC si

   
 

   
 

  
 

 (41) 

We can show that   

i i
 S  S

i
i i

1
dS G(S,S', )dS      

S
  

 
I( )J( )     

i e
 (S )  (S )

i
i e

1
dS G(S,S', )dS      

S
  

 
I()  1 J( )   

with         h aτ' '

i i

' 2
i1

 I      -  h erfc(h aτ )
Ǒaτ

e   

and       

 
2

2

L 2 a
J      1  -  erfc( )       1    

L2 a

 2 a
 * 1  -  erfc( )       1

2 a

L-( )
2 a

-( )
2 a

e

e











  
      

    
  
  
   
  

    




 

The expression of Tsi(t) becomes  

 ' 3

si i 0
 Si  (D)

i

1
T (t)    dS G(r,r ,t)T (r)d r

S
  

    t
'i
i 2 0

P (t )
 ah T (t ) I( )J( )d

ǒc

    
 

   
 

  

    t
'e

e 1
 0

p (t )
 ah T (t ) I( ) 1-J d

ǒc

    
 

   
 

  (42) 

With  

 i i siP (t ) p (t ) R (t )        (43) 

The field of temperature can be broken up in the following form     

 0

si si si,si si,se
T (t)    T (t)    T (t)    T (t)    (44) 

With                                                            

 0 ' 3
si i 0 Si  (D)i

1
T (t)    dS G(r,r ,t)T (r)d r

S
  

  
 (45) 

Representing the contribution of the initial field of temperature; it tends towards zero when 
t tends towards the infinite one.  So, we admit that the field of temperature in all the ground 
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is initially uniform and is equal to the temperature of reference 
0

T (r)


. This approximation 

does not affect the precision to the beginning and over a limited time.   

 
 t

'i
si ,si i 2 0

P (t )
T (t)    ah T (t ) I( )J( )d

ǒc

    
 

   
 

  (46) 

being the field of temperature of internal greenhouse surface due to the exchanges with the 

basement or due to the contribution of the basement    

 
 t

'e

si ,se e 1
 0

p (t )
T (t)    ah T (t ) I( ) (1  -  J( )) d

ǒc

    
 

   
 

  (47) 

Generally, the greenhouses are of average and of large dimensions, consequently the 

contribution of  T (t)  
si,se

in the expression of T (t)  
si

is negligible except in the case of the 

greenhouses of very small dimensions (L     3m). 

Consequently     

 
 t

0 'i

si si i 2
 0

P (t )
T (t)    T (t)   ah T (t ) I( )J( )d

ǒc

    
 

    
 

  (48)  

By replacing T2(t-) by its expression, Tsi(t) takes the following form 

 

 t
0

si si i 0

' "
 t  t

i i
i e 0  0

1
T (t)  T (t) P (t )I( )J( )d

ǒc

H H
T (t )I( )J( )d   T (t )I( )J( )d   

ǒc ǒc

   

       

  

   



 
 (49) 

with         '

i si iri i
H   H   H λ        and       "

i iri eH   H λ  

We developed a fast algorithm of resolution of this type equation.  

2.4 Study of the characteristic functions I() et J()  
Equation (49) shows that the two functions I() and J() characterize entirely and rigorously 

the thermal inertia of the ground and the interaction of this one with the entire system 

(cover, interior ground and interior air).   

These two functions are positive monotonous and tend towards zero when  tends towards 

infinity, consequently they can be approximated numerically, with a good precision, by a 

series of exponential decreasing of time allowing a fast calculation of the product of 

convolution. The function I( ) presents a singularity at the term  -1/2 in the vicinity of zero 

fortunately this singularity can be integrated.  We introduce the function 

  ǂ
1

I ǂ   erfc( ǂ )e  with ' 2
iǂ  h a   in addition we saw   

' ' 2 '

i i i

1
I( )      -  h exp(h a )erfc(h a )

a
  

 
    ,   0, +  [   
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We can write then for    0, + [                                         

   '
i

1
I ǂ  h  - erfc( ǂ )

Ǒǂ
e   

 
 (50) 

It is noticed finally that   

 ' 1

i

dI ( )
I( )    - h

d




  (51) 

Let u = exp(-ǂ)        u 0,1 
I1(u) is a strictly decreasing positive function and tends towards zero when u tends towards 

unity;  in addition its graph is not obviously linear, the numerical analysis of the graph 
shows that we can approach this function with a quadratic average on the interval [ 0,1 ] by 
polynomials of type : aub. 
The approximate expression of I1(u) is written:   

 b d
1 appI (u)   a u     c u   (52) 

Calculation gives:   

a = 0,4269,   b = 4,676,   c = 0,499,   d = 0,1659.  
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Fig. 2. Evolution of the inertia's function I1 with its various approximations  
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These numbers without dimensions are thus defined once for all, we notice that exact I1(u) 

and its approximate expression coincide well in Figure 2 and the function I(u) can be then 
approximated in  Figure 3,  by a polynomial of following this form:   

  ' 4,676 0,1659

app i
I(u)  h  1,9962 u   0,0828 u     (53) 
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h
' i
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e
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u

2'
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Fig. 3. Evolution of the inertia's function I(u)with its  various approximations  

 

 

Fig. 4. Lay-out of the balance-sheet of heat exchange  
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The typical values of thermal conductivity (ks) and thermal diffusivity (a) for a ground are 
respectively about 1 and 0,5 10-6, it is obvious that for large-sized greenhouses, the effect of 
the surrounding ground is so negligible that we cannot  measure it.  It is obvious to admit 

that J() remains practically equal to the unit Figure 4, except for greenhouses of very small 

sizes (L et  3 m ) where the effect can be perceptible.   

3. Discussion of the numerical model  

We carried out the numerical simulation on a tunnel greenhouse with a plastic cover 
(polyethylene) with a simple cover, isolated, of volume 354 m3 (length 36 meters and 5 
meters broad), placed on a ground of thermal diffusivity (a = 0,5 10-6

 
Wm2/J) and of thermal 

conductivity (ks = 1 W/m
 
°C ), we took the function of inertia (J() = 1) because the studied 

greenhouse is practically of great dimension.   
The equations (13) and (49) that appear in their products of convolution, climactic data, 
exterior temperature and total solar power, contain parameters depending on the place and 
season.   
Indeed, we took for our numerical simulation  

Exterior temperature:    
e

2  t
T (t)  -5 cos 

24

   
 

 

Total solar power:      

2

i

2  t
p (t)  280 cos 

24

     
  

 

In addition, the tableau1 appearing below gathers the thermo-physical constants of the air, 
ground and cover which we used in this simulation.   
 

ce =0.95 s Cs= 2 106 JK-1m-1 i = 1.117 kgm-3 

tc = 0.65 si =0.95 
Ci = 1006 Jkg-1 K-1 

 

kc = 1.5 Wm-1 K-1 Tsi 0 = 9°C Ti0 = 279.15 K 

ci =0.95 ks = 1 Wm-1K-1  

ac = 0.31 a = 0,5 10-6 m2s-1  

hce = 0.1Wm-2 K-1   

hci = 0.3 1Wm-2K-1   

L = 36 m   

5m 5m    

Table 1. Table of the entered parameters of the digital simulation  

4. Interpretation of the results  

Figure 5 shows the superimposed evolutions of incident solar flux and those exchanged 
with the external and internal face of the greenhouse's cover.   
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Fig. 5. Temporal evolution of the heat fluxes, incident and exchanged with internal and 
external faces of the greenhouse's cover 
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Fig. 6. Temporal evolution of temperatures, of the internal air, internal ground and the 
external air of the greenhouse for an air renewal' flux null   
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We note during the day, that the exchanged flux with the exterior face of the cover ce is 

more important than that exchanged with the interior face ci, that is foreseeable because of 

the absorption of a part of the incident heat flux by the cover.   
During the night, the incident heat flux becomes null, consequently the interior air and 

ground must radiate now towards the exterior, it is the night radiation, therefore ci becomes 

more important than ce, but remain the two weak contributions.   

We deferred in Figure 6, the evolutions of the exterior temperature and that of the interior 
ground of a closed greenhouse.   
We note that the effect of inertia of the ground and the absorption of the heat of the day by 
its surface appears in the form of a rise in temperature of the order of 2°C and a phase shift 
of the order of one hour with the interior air of the greenhouse.   
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Fig. 7. Influence of the approximation's nature of the inertia's function I() on the 
temperature's evolution of the greenhouse's internal ground  

We also note the presence of the night radiation; indeed, the ground behaves like a tank of 
heat which was recovered and stored along the day, this heat takes part in the stabilization 
of the temperature of the internal air in a level higher than that of the exterior air of the 
greenhouse. Consequently, during the night the ground presents a thermal inertia in front of 
the internal air and presents also a thermal inertia compared to the exterior temperature.   

The thermal inertia of the ground is characterized by the two functions I() and J(), this 

latter is practically equal to unity.  In order to materialize this characterization, we studied 

the impact of the approximation's nature of I() on the temperature's evolution of the 

interior ground of the greenhouse compared to the exterior temperature.  

For this reason, we visualized in Figure 7 the curves of the temperature's evolution of the 
interior ground, respectively for a polynomial and linear approximations of the function of 

inertia I(), we also deferred in the same graph the  exterior ambient temperature of the air.  
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Going through the linear approximation which is coarse towards a more exact polynomial 
approximation, we announce the following remarks:   
- an increase in the amplitude of the ground's temperature 
- an increase in the phase shift compared to the exterior temperature  
- a remarkable rise in the thermal mass (see Figure 8)  
We notice for the polynomial approximation the materialisation of thermal inertia, 

consequently, we can affirm that the polynomial approximation is more correct because it is 

closer to the exact function that is proved moreover by Figures (3) and (4).  
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Fig. 8. Influence of the approximation's nature of the inertia's function I() on the evolution 

of the thermal mass of the greenhouse's internal ground ( s s si
'
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C dT
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
) 

Figure 9 shows the temperature's evolution of the greenhouse's interior air according to time 

for various debits of air's renewal. The continuous air's renewal obviously clearly lowers the 

maximum temperature of the day, as it also lowers the minimal temperature of the night. 

Consequently, the greenhouse's internal air becomes increasingly dependant on the exterior 
conditions in particular the exterior temperature.   
We can say that the increase of air's renewal's debit, gradually eliminates the effect of 

thermal inertia of the interior air vis-à-vis to the exterior, the exterior temperature remains at 

a  lower limit that we cannot practically exceed.   

Figure 10 presents the influence of the cover's temperature on the evolution of the internal 

air temperature of the greenhouse. Since the cover's thickness is very low in the order of 180 

 m, its thermal conductivity which is inversely proportional to the thickness is very 

important, consequently, the temperatures of the interior and exterior faces of the cover are 

finding practically the same ones. 
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Fig. 9. Temperature's temporal evolution of the greenhouse's internal air for various 
renewal's flux of air 

The transmissions of the external effects towards the interior of the greenhouse are carried 
out through the cover, what explains the important role of the latter.  
During the day, the absorption of part of the incident heat flux appreciably increases the 
temperature of the cover beyond the temperature of the interior air of the greenhouse. 
During the night, when there is absence of the incident heat flux, there remains only the 
conduction of the exterior temperature which dominates the other modes of transfer of heat, 
which generates a reduction of the cover temperature under the interior air temperature.  
We summarize the explanation of these two observations by the fact that the cover does not 
have a thermal inertia.   

5. Conclusion and prospects 

In this study, we noticed that the ground behaves approximately like a thermal mass.  We 
consider here a simplified model (greenhouse without vegetation) where solar energy is 
absorbed only by the ground where the phenomena of evaporation and transpiration do not 
intervene. 
This model shows that it is possible to envisage the general behaviour of a naked 
greenhouse and can without difficulty, be supplemented to hold account in particular of the 
phenomena of evapo-transpiration in the case of a cultivated greenhouse.  
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Fig. 10. Temporal evolution of the temperatures, of the internal and external air of the 
greenhouse and of the cover  

However, the interest of the agricultural greenhouses is to increase the production period as 
well as the output, but requires for the periods of the unfavourable climatic conditions, the 
use of an expensive heating.   
Consequently, the heating of the greenhouses by the integration of a significant storage unit 
of heat can prove to be interesting to spread out the calendar of production.  This is why we 
highlighted theoretically and experimentally [24, 32] the interest of an underground thermal 
storage of short and long duration by establishing a mathematical model taking account of 
all the physical parameters intervening in the system.   
The ground, indeed, is able to absorb the solar contributions of the greenhouse which are 
surplus by playing the role of a thermal wheel of inertia.  But the presence of a battery of 
exchanger buried can play a double function, diurnal cooling of summer or nocturnal 
reheating of winter by providing all the year an air flow practically to the desired 
temperature Ti(t).   
Realized in the form of a battery of vertical exchangers with air buried in the internal 
ground of the greenhouse, this storage unit and destocking can constitute an alternative to 
the problem of the strong thermal amplitudes of a traditional greenhouse (considerable loss 
of energy during the opening).   
The unification of the theory (used for this model as for the battery of exchangers) will make 
it possible, easy, to integrate a unit of heating in the internal atmosphere of the greenhouse.  
Finally, the following stage of this work consists to confirm these numerical results on an 
experimental greenhouse and to find industrial partners.   
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6. Nomenclature 

a thermal diffusivity of the ground  [m2/s]
ac absorption coefficient of the cover infra-red radiation
ci heat capacity of the air [J/kgK] 
cs specific heat of the ground  [J/kgK] 
Dv flow of air renewal [m3/h]
erfc Error  
Hci coefficient of heat exchange by convection between the cover and the internal air 

[W/m2K] 
Hce coefficient of heat exchange by convection between the cover and the external air  

[W/m2K] 
Hsi coefficient of heat exchange by convection between the ground and the internal 

air [W/m2K] 
Hse coefficient of heat exchange by convection between the ground and the external 

air [W/m2K] 
HIRc coefficient of the linearized cover infrared exchange  [|W/m2K]
HIRi coefficient of the linearized internal ground infrared exchange [W/m2K] 
HIRe coefficient of the linearized external ground infrared exchange [W/m2K] 
k thermal conductivity of the ground [W/mK]
kc    thermal conductivity of the cover [W/mK]
e thickness of the cover [m]
L length of the greenhouse [m]

 width of the greenhouse [m]

P average power absorbed by the ground [W]
Pi average power absorbed by the internal ground  [W]
Pe average power absorbed by the external groun d [W]
Pr average power radiation  [W]
T0 annual average temperature of reference [K]
Vi volume of the greenhouse [m3]
Si    surface of the internal ground [m2]
Se surface of the external ground [m2]
Sc surface of the cover [m2]
Ti(t) temperature of the greenhouses internal air [K]
Te(t) temperature of the greenhouses external air [K]
Tci(t) temperature of the internal face of the cover [K]
Tsi(t) surface average temperature of the greenhouses internal ground [K]
Tse(t) surface average temperature of the greenhouses external ground [K]
Ti aver average temperature of the greenhouses internal air for the time interval of 

simulation [K] 
Tsi aver average temperature of the greenhouses internal ground for the time interval of 

simulation [K] 

t time dephasing  [h]

tlin time dephasing corresponding to a linear approximation of the function of inertia 
I(u) [h] 

tpoly time dephasing corresponding to a polynomial approximation of the function of 
inertia I(u) [h] 
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'
eT  virtual temperature of the sky [K]

T( r


,t) The field of temperature inside the ground [K]

7. Indexes 

c cover 
e exterior 
i interior 
s ground 
se exterior ground 
si interior ground 
ce exterior face of the cover 
ci interior face of the cover 
atm vault of heaven 
IRc infrared exchange with the cover 

Greek Symbols  

a  emission’s total factor  of the ambient air [-] 

  dimensionless coefficient [-] 
  density [kg/m3] 

 distribution of Dirac 

 Constant of  Stefan-Boatman [W/m2K4] 

8. Appendix 1 

1- The expression 
 Si  Si

1
dSi G(r,r', )dSi 

Si
 

 
 equals to    I J  , indeed, on the level of the 

ground we have  z= z’=0  then the expression of the Green's function takes the following 
form:   

  i

2 2

2

- x-x' y y'

4a 2 ah'
G(r,r', )   - h' erfc h' a  

i i4 a 4 a

e e
  

   

   
   
   

 
 
 

 


 

 (1) 

Let 

  
2ah'1 iI( )       - h' e erfc h' a

i iǑa


 


  (2) 

  Si  Si

 L

 0  0

2 2

22

G(r,r, ) dSi  I( ) dSi  

I( )

4Ǒ a

- x-x' y y'

4a
  

4 a
(y y')(x x')

4a 4adx dy

e

 e  e

 





 

 

   
   
   

 

 

 

 

 

 



 (3) 
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Let 
x - x'

u    
2 a

              and                     
y - y'

v    
2 a

                  

We can write  
x    x'    2u a

y    y'    2v a





  


 
          what gives                

dx    2u a

dy    2v a





 



  

The equation (3) becomes:   

y'L x'
2 2u v2 a 2 a

y'x'
 Si

2 a 2 a

I( ) 2 2
G(r,r', ) dSi     e du  e dv

4 Ǒ Ǒ
   

 




 


           
  

  
 

 
y' y'I( ) L x' x'

   erf   erf  erf   erf
4 2 a 2 a 2 a 2 a


   

                               


 (4) 

 

Let 

 
y' y'1 L x' x'

J(x',y', )    erf   erf  erf   erf
4 2 a 2 a 2 a 2 a


   
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
 (5) 

 

Finally we obtain : 

 
Si

G(r,r', ) dSi      I( ) J(x',y', )  
 

 (6) 

 

  
 Si  Si  Si  Si

1 1 I( )
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Si Si Si

       
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     

    
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            what gives                                           
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


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
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This  leads to  
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   
L

 L  0  
2 a

L
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L x' x'
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in addition we have    
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22 -uerf(r)       e du
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Finally  

  
 Si  Si  Si

1 I( )
G(r, r ', ) dSi  dSi     J(x',y', ) dS     I( ) J( )

Si Si

      
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2- The factor  
i e

'
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1
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S
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 
I()  1 J( )  
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Then  
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Consequently   

  
 Se

G(r, r ', )dS
e

I( ) 1  -  J(x,y, )          
 (11) 

By using the equation (9), we obtain  

 
i e

'
i e  (S )   (S )

i

1
dS G(r,r , )dS      

S
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 
I()(1  -  J())     (12) 

9. Appendix 2 

Approximate forms of the functions of inertia I() and J() : 
We have 

 
' "

 t  t  t
0 i i

si si i i e
 0  0  0

1 H H
T (t)  T (t) P (t )I( )J( ) T (t )I( )J( )d   T (t )I( )J( )d  

ǒc ǒc ǒc
                    (1) 

In order to facilitate the discretization of this expression, we must approach the two 
functions of inertia  I() and J(). 
In addition, the expression of I() can be written: 

 ' ' 2 '
i i i

1
I( )    -  h  exp(h a )erfc(h a )

a
  

 
    ,    0,  [  (2) 
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Let  ' 2

i
  h a       then   

'
'i
i

h
I( )   - h  erfc(  )e 


  

Let    
1

I ( )  erfc( )e    we find then :  
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
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  (3) 

however we have  
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I ( )   0.4269    0.499 e e     (4) 

finally 
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In addition we saw that  

2
L 2 a

J( )     1  -  erfc( )       1   
L2 a

L-( )
2 ae 




  
      

    

 

 

2
 2 a

1  -  erfc( )       1
2 a

-( )
2 ae




  
  

   
      


  (5) 

We represented J(), with 0, +, we noted that J() practically evolve in the vicinity of 
the unit, consequently, we can approximate the product IJ by:  

      -4.676h aτ -0.1659h aτ'

iapp

' 2 ' 2
i i I τ J τ  h  1.9962    0.0828 e e   (6) 
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