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1. Introduction  

Since Roentgens discovery of the X-rays 1895, radiation therapy (RT) has been one of the 
most successful modalities used to treat cancer (Rontgen 1995). The experimental radiation 
treatment of glioma, however, took place first in 1938 (Bailey & Brunschwig 1938). Since 
then advances in radiation technology have expanded the role and value of using ionizing 
radiation in diagnosis, imaging and therapy of glioma. But despite substantial technical 
improvements in the current treatment modalities the survival rate for glioma patients is 
still very low (Barnholtz-Sloan, et al. 2007 ). Although the recently addition of temozolomide 
to conventional fractionated radiotherapy for newly diagnosed glioblastoma has resulted in 
an increased time of survival (Stupp, et al. 2005). 
Immunotherapy utilizes the fact that the immune system has a potential to react against 
tumour antigens and that this can result in immunological control of the tumour. There is an 
increasing body of evidence that the activation of cytotoxic T-lymphocytes (CTL) has a 
positive effect on the long-term survival of cancer patients receiving traditional therapies 
such as surgery, chemo- or radiation-therapy (Nakano 2001; Prall 2004; L. Zhang, et al. 
2003). It has been clearly demonstrated that tumour immune reactivity is of importance in 
treatment of several types of tumours (Shankar & Salgaller 2000). The immune response to 
glioma is primarily a result of the cell-killing function by the activated cytotoxic T cells 
(CTL). The aim of vaccination regimes is to enhance the effectors functions of CTL and the 
number of lymphoid cells within the glioma. But even if immune therapy cause large 
populations of lymphocytes to enter CNS tumours, total eradication of the glioma do not 
occur. This is partly due to the immunosuppressive factors produced by the glioma, which 
result in non-functioning  CTL (Roszman, et al. 1991). 
Traditional fractionated radiation therapy decrease the number of radiation sensitive T cells 
and damping the immune response of immunotherapy. Thus the interest in combining 
radiation therapy and immunotherapy has so far been very sparse. The use of sterotactic 
techniques with single radiation exposure or hypo-fractionated radiation therapy, however, 
does modulate the immune response and increases the therapeutic outcome (Lee, et al. 2009; 
Wersäll, et al. 2006). This radioimmuno modulatory effect of radiation opens for a new 
approach in glioma therapy by the combination of radiation- and immune-therapy.  
Currently, there is a growing interest in combining radiation with other kinds of therapy, of 
which some are immunotherapy, to treat a broad range of malignancies (Chakraborty, et al. 
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2004; Gulley, et al. 2005; Sharp, et al. 2007). There is also an ongoing pre-clinical search for 
methods to enhance the therapeutic response of malignant glioma by combining 
immunotherapy with single fraction or hypo-fractionated radiation therapy (Demaria, et al. 
2005a; Graf, et al. 2002; Lumniczky, et al. 2002; Newcomb, et al. 2006; B. R. R. Persson, et al. 
2002; B. R. R. Persson, et al. 2003; B. R. R. Persson, et al. 2010; B. R. R. Persson, et al. 2008). 
The clinical trials using this approach, however, are still very sparse. 
This chapter will summarize the aspects of the interaction of ionizing radiation with the 
immune system and its immunomodulatory effects and its implications for glioma therapy 
(Friedman 2002). Preclinical studies of the combinational approaches of radiation and 
immune therapies, which results in high fractions  complete remissions of glioma in animal 
models, is reviewed. Various clinical studies towards combination of radiation- and 
immune-therapy for treatment of glioma are summarized in a final section.  

2. Immune response of glioma 

2.1 T cell infiltration in tumours and prognosis 

Many tumours are potentially immunogenic and exhibit tumour-specific immune responses 
in vivo (Curiel 2008; Curiel, et al. 2004). Tumour-specific antigens are released from the 
tumour cells and then captured by antigen presenting dendritic cells (Huang, et al. 2010). 
Dendritic cell migration brings tumour antigen to the lymphoid organ where the antigen 
presentation stimulates immature T cells to become either "cytotoxic" CD8(+) T-cells (CTL), 
"helper" CD4(+) T-cells or memory T-cells (Fig. 1). Lymphocytes and some innate immune 
cells (macrophages, natural killer cells) migrate to the tumour in order to kill and eliminate 
tumour cells. Patients with high infiltration of lymphocytes in their tumours have usually 
found to have a better prognosis of survival.   
 

 
Fig. 1. Tumour immune response 
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Tumour infiltrating lymphocytes (TILs) of various subtypes represent the host-to-tumour 
reaction.  Anti-tumour immune response is mediated by infiltrating CD8(+) T cells which 
have been shown to lyses tumour cells directly via recognition of the major 
histocompatibility complex class I (MHC-I) present on most tumour cells. But some 
tumours, which have low or none expression of MHC-I, are not affected by the CTL. 
Tumour infiltrating CD4() helper T cells  seems  to play a role in regulating and amplifying 
tumours  response by priming  tumour-specific cytotoxic CD8(+) T cells, as well as 
macrophages involved in clearance of dead tumour cells (Toes, et al. 1999; Vesalainen, et al. 
1994). 
In Fig. 1 is shown how tumour antigens are captured by antigen presenting cells such as 
dendritic cells, which migrate to regional lymph nodes. There they present the antigen to T-
cells which differentiate into CD8(+) cytotoxic T-cells, CD4(+) helper T-cells, and memory T-
cells. The cytotoxic CD8(+) T-cells (CTL)  are transferred to the tumour in order to kill the 
tumour cells. The CD4(+) release IL2 which help the CD8(+) T-Cells to proliferate. But the 
CD4(+) can also form CD4(+)CD25(+) regulatory T-cells which excrete IL10 to suppress the 
activity of the CD8(+) cytotoxic T-cells. 
The number of tumour infiltrating lymphocytes can be used as prognostic factor for several 
types of cancer (Cho, et al. 2003; Rauser, et al. 2010; Schumacher, et al. 2001; Zingg, et al. 
2010). But in malignant glioma the use of tumour infiltrating lymphocytes as a prognostic 
factor seems to be more complex. The overall reports on tumour-infiltrating CD8(+), CD4(+) 
T-cells and major histocompatibility complex class I (MHC-I) expression in malignant 
glioma do not yield consistent correlation with clinical outcome (Dunn, et al. 2007). There 
seems to be factors present in patients with glioma that suppress the action of tumour 
infiltrated lymphocytes, and it has been demonstrated that glioma cells can actively 
paralyze T cell migration by the expression of Tenascin-C (Huang, et al. 2010). 
Regulatory CD4(+)CD25(+)FoxP3(+) T cells (Treg) have been shown to play a major role in 
suppression of the immune response to malignant glioma. In human CNS tumor samples 
both CD4(+) and Treg infiltration have found to be significantly increased throughout the 
time of metastatic tumor progression. Thus immunotherapeutic strategies for treating 
metastatic CNS tumors must fight against Treg (Sugihara, et al. 2009). In an experimental 
GL261 intracranial tumor model, it was shown that depletion of CD25(+) regulatory T-cells 
(Treg) using  anti-CD25 antibodies enhance the efficacy of DC immunotherapy (Maes, et al. 
2009). 
Infiltration of myeloid suppressor cells (MSC) is another factor inhibiting the function of the 
CD8(+) T cells, which results in tumour progression (Graf, et al. 2005). Other studies indicate 
that glioma seems to secrete factors such as TGF and prostaglandins (PGE2) that depress 
the cell-mediated immunity by down regulating the function of infiltrated CD8(+) T-cells 
and monocytes (Dix, et al. 1999; Farmer, et al. 1989).  This might be one of the reasons why 
anti-tumour response of the immune system is decreased in patients with primary glioma  
(Brooks, et al. 1972).   

2.2 Radio-immune-modulating effects by local irradiation 

Recent studies have shown that local single fraction radiotherapy stimulates the immune 
response by enhancing the antigen presentation of MHC class I (Liao, et al. 2004). The 
mechanism underlying these effects is probably at the level of the proteasome in the 
cytoplasm of the tumour cell, which are essential for production of antigenic peptides for 
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loading onto MHC class I molecules. The proteasome in tumour cells is a sensitive target for 
radiation, resulting in decreased processing of endogenous self antigens. The processing of 
tumour antigens is, however, increased by radiation, which enhance the accumulation of 
antigen/MHC class I complexes on the cell surface (Pajonk &Mcbride 2001 ). 
Radiation therapy also causes an increase in production of the cytokine IFN in the target 
region which up-regulates low levels of MHC class I, creating a tumour microenvironment 
conducive for CD8(+) T cell infiltration and their recognition of tumour cells (Lugade, et al. 
2008). 
It has been demonstrated that antigen presentation by MHC class I is increased for many 
days by single fraction radiation therapy. The most pronounced effect was recorded at 7 
days after irradiation with an absorbed dose of 8 Gy. This might be one of the reasons why 
the efficacy of tumour immunotherapy is most effective in combination with single fraction 
radiation therapy (Reits, et al. 2006). Maximum loading of the tumour micro-environment 
with cancer antigen occurred 2 days after radiation therapy and coincided with the optimal 
time for CD8(+) T cell transfer (Bin Zhang, et al. 2007). 

2.3 Radiation effecting dendritic cells DC function  

It has been demonstrated that the radiation modulation of MHC-I mediated antitumor 
immunity also depends on the antigen presenting pathways of the dendritic cells (Liao, et al. 
2004). The dendritic cells either initiate an effective cytotoxic response against antigen-
bearing cells, or produce tolerance, depending on the context in which those antigens are 
presented (Zou 2005). It has been shown that cell death caused by radiation therapy release 
tumour antigen, which facilitates an effective cytotoxic response of the dendritic cells 
(Hatfield, et al. 2005). Radiation therapy activation of dendritic cells (DC), induce secretion 
of interleukin-1 beta (IL-1), which is required for the adequate polarization of IFN 
producing CD8(+) T-cells (Aymeric, et al. 2010). 

3. Preclinical experience of glioma-radio-immune-modulatory therapy   

In the Lund clinical study, named “Brain-Immuno-Gene-Tumour-Therapy” (BRIGTT), 
patients were immunized with their own tumour cells, cultivated from their surgical 
specimens and transfected with human IFN gene (Salford, et al. 2002). The cells taken from 
the surgically removed tumour were grown in culture. The day before immunization the 
karyotyped tumour cells were infected with an Adenovirus expressing human IFN. At the 
day after transfection, the immunization of the patient takes place soon after the cells have 
been irradiated with Cs-137 gamma radiations to an absorbed dose of 100 Gy (Baureus-
Koch, et al. 2004). By subcutaneous (s.c.) implantation of these cells in the arm of the patient 
it is expected that the host immune system is activated against the tumour. The  activated 
CD8(+) T-cells will pass the BBB and attack the cancer cells present at the primary tumour 
site as well as the distant metastases “guerrilla cells” (Salford, et al. 2006; Salford, et al. 2001; 
Salford, et al. 2002; Salford, et al. 2004; Siesjö, et al. 1993; Visse, et al. 1999). Results from the 
first eight human treatments in the phase 1—2  BRIGTT study show that immunization with 
transfected tumour cells is safe for the patients and improves survival (A. Persson, et al. 
2005; Salford, et al. 2005; Salford, et al. 2011; Salford, et al. 2004).  
In order to further enhance the effect of this immunotherapy we investigated the effect of 
combining it with a single fraction radiation therapy in an animal model. The results of 
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these preclinical experiments, which were performed already 2001, showed that a single 
fraction of RT combined with immunotherapy resulted in a significantly increased survival 
time of rats with intra-cranially implanted N29 or N32 glioblastoma. Further there were 
significant numbers of complete remissions of the most infiltrative N29 tumour implanted in 
Fischer-344 rats (B.R.R. Persson, et al. 2010). Other researchers have also reported substantial 
tumour regression by single fraction radiation therapy combined with various regimes of 
immune therapy (Bradley 1999; Chakraborty, et al. 2003; Demaria, et al. 2005a; Friedman 
2002; Garnett, et al. 2004; Graf, et al. 2002; Lumniczky, et al. 2002). 

3.1 The Lund experience of combined single fraction RT and Immunization with IFN- 
secreting tumour cells 
3.1.1 Animals and tumour cell lines 

Fischer-344 rats were maintained by continuous, single-line brother to sister mating in the 
laboratory at Lund. During the experiments rats of both sexes, females weighing around 190 
g and males 370 g respectively, were housed in a climate controlled cabinet. Otherwise they 
were kept in Macralon cages provided with food pellets and water ad libitum. All 
experimental animal procedures were approved by the Animal Ethical Committee in 
Malmö/Lund (Lunds tingsrätt, Box 75, 22100 Lund Sweden). 
All cells were maintained in culture flasks (Nunc, Denmark) and harvested by treatment 
with trypsin/EDTA. The culture medium was antibiotic-free RPMI-1640 medium 
supplemented with 5-10% foetal calf serum, L-glutamine (2 mM), HEPES (10 mM), pyruvate 
(0.5 mM) and NaHCO3 (11 mM). The cell-cultures were regularly checked for contaminating 
microbes by staining with the fluorescent dye Hoechst 32 258 and examined with 
fluorescent microscopy. If Mycoplasma infection was indicated the cultures were discharged 
or treated with Mycoplasma Removal Agent (Hoechst, Germany) twice with 7 days interval, 
and repeatedly confirmed free of infection.   
The tumour cells (N29 or N32) used for immunization were interferon-gamma (IFN-) gene 
modified to enhance secretion of IFN. The cells were cultured for one week, washed twice, 
and suspended in serum free medium (IMDM-0) to a cell density of 2104 cells/ml. Just 
before immunization the cells were transferred from the culture flasks to 15 ml centrifuge 
test tubes (Nanclon) and stored on melting ice to prevent the cells to grow during the 
procedure. Irradiation of the cells was performed during 20 minutes at room temperature to 
an absorbed dose of  70 Gy by using a 137Cs gamma-ray source (Gammacell 2000; Mølsgaard 
Medical, Risø, Denmark) (Siesjö, et al. 1996; Sjögren, et al. 1996; Visse, et al. 1999).  

3.1.2 Inoculation and treatment of intracerebrally tumours 

Inoculation was performed by injecting 5 000 tumour cells in 5 l nutrient solution into the 
head of Fischer 344 rats, using a stereotactic technique with a Hamilton syringe. To avoid 
extra-cranial tumour growth, the injection site was cleaned with 70% ethanol after injection 
and the borehole was sealed with wax. The animals were arranged into 6 groups, which 
included: controls, RT with either 5 or 15 Gy, immunization with IFN- gene modified 
tumour cell, and RT with either 5 or 15 Gy combined with immunization (Table 1). 
Animals were given a single radiation treatment using a 60Co radiotherapy unit (Siemens 
Gammatron S) with a source-skin distance (SSD) of 50 cm and the maximum absorbed dose 
rate 0.65-0.70 Gy/min. The radiation field size was collimated to cover the brain. The 
adsorbed dose of either 5 or 15 Gy was measured both by an dose-meter diode and TLD 
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dose meter. A sheet of tissue equivalent bolus, 5 mm thick, was placed over the head for 
radiation build up. 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Radiation therapy was performed at day 7 after inoculation with the animals 
anesthetized with 5% chloral hydrate given intraperitoneally (i.p.) or Ketalar/Rompun, 
0.55 ml per 100g. The animals were given a single radiation exposure using a 60Co 
radiotherapy unit (Siemens Gammatron S) at a source-skin distance (SSD) of 50 cm with a 
maximum absorbed dose rate of 0.70 Gy/min. The radiation field (1 cm2) was collimated to 
cover the brain (Fig. 2). The delivered adsorbed dose of either 5 or 15 Gy was measured both 
by an dose-meter diode and a Lithium fluoride (LiF) TLD chip placed next to the tumour in 
the field under the bolus. 

The animals were immunized by intraperitoneally administration of 3 x 106   IFN-  gene 
modified N29 or N32 tumour cells, which immediately before had been irradiated with 70 
Gy 134Cs gamma-radiation. The first immunization was performed within one hour after the 
radiotherapy session at day 7.  In the rats still alive it was repeated at least two more times 
at days 21 and 35. 
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Group 
No. Treatment 

Number of 
N29 

Animals 
Experiment A 

Number of 
N32 

Animals 
Experiment B 

Number of 
N32 

Animals 
Experiment C 

1 Controls with no 
treatment 6 9 3 

2 Radiation 5 Gy 8 7  
3 Radiation 15 Gy 8 6 6 
4 Immunization 6 7 6 

5 
Radiation 5 Gy + 

Immunization 
8 7  

6 
Radiation 15 Gy + 

Immunization 
8 7 6 

Table 1. Number of animals in the groups of various treatments used in the experiments 
with either N29 or N32 tumours. The various experiments A, B and C respectively, were 
performed at different occasions 

Following symptoms of the rats were used as signs of progressing tumour growth:  
 keeping their heads turned to one side,  
 rotating or losing weight,  
 unwillingness to move,  
 shaggy fur    and  
 reddening of the eyes and nose.  
The rats were examined daily and when the animals developed symptoms, they were 
euthanatized and the brains were stained for histopathological examination. 
None of the rats, which were inoculated with N32 tumour cells, survived longer than 30 
days. But in the group inoculated with N29 tumour cells, surviving animals could be 
observed for more than 170 days. In this group of animals with N29 tumours, re-challenge 
was performed with 2105 N29 glioma cells in 200 l, administered just under the skin in the 
thigh of the hind leg. Fourteen out of the originally 46 rats, and 4 extra control rats with no 
previous treatment were inoculated. 

3.1.3 Survival of rats with intracerebrally implanted N29 tumours      

In Table 2 are given the fractions of animals intracerebrally implanted with N29 tumour 
cells, which were surviving more than 170 days: Controls; IFNcell immunization (IMU 
IFN), single fraction radiation therapy (RT with either 5 or 15 Gy), and their combinations 
(IMU IFN+ RT with either 5 or 15 Gy). RT and first immunization was performed at 7 days 
after inoculation. Immunizations were then repeated for at least two more times at days 21 
and 35. In the 2nd column of Table 2 are given the numbers of animals survived more than 
170 days, versus the number in each group of animals with intra cerebral N29 tumour. In the 
3rd column is given the number of tumours appeared, relative to the number of animals that 
were re- challenged, including the 4 extra controls. 
In the last column of Table 2 is given the number of re-challenged animals without tumour 
versus the original number in each group. Those animals, which resisted re-challenge, seem 
to have been cured from their primary glioma. 
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Type of treatment 
Fraction of    

Animals 
Survived >170 d

Fraction of animals with tumour 
in the re challenged survivors 

 

Fraction 
of 

Cured 
animals 

Controls 1/6 5/(1+4+) 0 
IMU IFN 3x 2/6 1/2 1/6 
RT 5 Gy 0/8 - 0 
RT 15 Gy 2/8 2/2 0 
IMU IFN 3x + RT 5 Gy 6/8*) 4/6 2/8 

IMU IFN 3x + RT 15 Gy 3/8 2/3 1/8 

*) p=0.03; +) extra controls 

Table 2. The fraction of living rats in the various groups with different treatments, followed 
during 170 days after inoculation of N29 tumour cells in their brain, number of tumours 
after re-challenge, and fraction of cure.  

By using Fisher exact probability test the results show that treatment with 5 Gy radiation  
therapy combined with immunization resulted in significantly increased number of survivals 
versus controls (p = 0.03). But neither immunization alone nor radiation therapy alone with 
single fractions of 5 or 15 Gy resulted in any significant therapeutic effect versus the controls. 
The combination of radiation therapy with immunization compared with radiotherapy 
alone, however, resulted in significant survival fraction at both 5 Gy and 15 Gy, with p-
values <0.01** and p <0.05* respectively. 
The number of living rats in the various groups with different treatments, followed during 
170 days after inoculation of N29 tumour cells in their brain, is displayed in Fig. 3 for each 
group respectively. 
In Table 3 is given the median survival time and the p-values of two-sided non-parametric 
Mann-Whitney test versus the control. Immunization with N29 cells significantly increased 
 

Type of treatment 
 

Num. 
Rats 

 

Median survival 
time (days) 

 

Mann-Whitney
2-tailed 

versus Control

Tumour weight 
 

g 

Control 6 82  46  0.39  0.22 

IMU IFN  6 132  44 P=0.04 * 0  

RT 5 Gy 8 46  14 NS 0.25  0.25 

RT 15 Gy 8 93  35 NS 0,24  0.14 

IMU IFN + RT 5 Gy  8 153  31 P=0.003 ** 0  

IMU IFN + RT 15 Gy 8 119  35 P=0.03 * 0.01  0.01 

Table 3. Number of rats; mean survival time and tumour weight at time of death of rats with 
intra cerebrally implanted N29 tumours treated one week after inoculation, with IFN cell 
immunization, radiation therapy (RT) and their combination. Immunization (IMU-IFN) 
was repeated for at least two more times at days 21 and 35.  The rats were observed during 
up to 170 days after inoculation. 
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the survival time by 60% (p=0.04). Radiation therapy alone with 5 Gy, however, did not 
significantly increased the survival time. But immunization combined with 5 Gy radiation 
therapy resulted in a significantly increased survival time with 87% (p=0.003). Radiation 
therapy alone with 15 Gy did not significantly increased the survival time. But 15 Gy RT 
combined with immunization increased the survival time with 45% (p=0.03).  
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Fig. 3. Survival plot of intra cerebral implanted N29 tumours: Controls (Lower panel), 
immunization with syngeneic N29 tumour cells (2nd panel); radiation therapy (3rd panel) and 
combinations of radiation therapy and immunization (upper panel). 

3.1.4 Survival of rats with intracerebrally implanted N32 tumours      

The pooled results of the two experimental series (B and C in Table 1) with rats implanted with 
N32 tumours are displayed in Table 4. The results are given in terms of the mean survival time 
and weight of tumour at the time of death for each group animals. None of the rats with N32 
tumours survived more than 30 days and thus no re-challenging could be done. 
The survival of all rats with implanted N32 tumours were followed during 30 days and the 
results in the various groups of rats with different treatments are displayed in Fig. 4. 
For the N32 tumours given a single fraction radiation therapy with 15 Gy resulted in 
significant increase of survival time with about 20% (p<0.001). The combination of 15 Gy 
single fraction radiation therapy with immunization of IFN- secreting syngeneic cells 
resulted in increased survival time by about 40% (p<0.001), although there were no 
complete remissions. But neither immunization with IFN- secreting syngeneic cells alone, 
nor radiation therapy with a single fraction of 5 Gy alone, or in combination with 
immunization, resulted in any increase in survival time of the N32 tumours in rats. 
There is no significant difference in the weight of tumours in the different groups. Although 
the average growth rate of the N32 tumours treated with 5 Gy radiation therapies combined 
with immunization was decreased by 30% compared with the controls. 
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Fig. 4. Survival plot of intra-cerebral implanted N32 tumours: Controls (Lower panel); 
Immunization with syngeneic N32 tumours cells (2nd panel); radiation therapy (3rd panel), 
and a combination of radiation therapy and immunization (upper panel). 

 

Type of treatment 
Num.
Rats 

 

Median 
Survival time 

days 

Mann-Whitney
2-tailed test 

versus Control

Tumour weight 
g 

Control 12 19  3  0.19  0.16 
IMU IFN 13 19  6 NS 0.25  0.23 
RT 5 Gy 6 19.5  2 NS 0.18  0.10 
RT 15 Gy 13 23  2 P<0.001*** 0.16  0.13 
RT 5 Gy +IMU IFN 7 19  2 NS 0.14  0.09 
RT 15 Gy + IMU IFN 13 27  3 P<0.0001*** 0.30  0.28 

Table 4. Number of rats, mean survival time, and the significance of Mann-Whitney 2-tailed 
test versus control is shown in columns 2-4. In the last column is given the tumour weight at 
time of death of intra cerebral N32 tumours treated with syngeneic IFN transfected tumour 
cells (IMU IFN), radiation therapy (RT) and their combination (RT  + IMU IFN).  

3.1.5 Summary of the LUND experiment 

The results of the Lund experiments reveal that a single fraction radiotherapy session of 5 or 
15 Gy combined with immunization by i.p. injection of irradiated syngeneic tumour cells 
induces a significant anti-tumour response to intra cranial implanted glioblastoma tumours 
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in Fischer-344 rats. In the rats, which were inoculated with N32 tumour cells, the 
combination of 15 Gy single fraction radiation therapy with immunization of IFN- secreting 
syngeneic cells resulted in increased survival time by about 40% (p<0.001). But none of these 
rats survived longer than 30 days. In the group inoculated with N29 tumour cells and 
treated with 5 Gy RT combined with immunization the survival time was significantly 
increased by 87% (p=0.003), and 75% of the animals survived for more than 170 days. The 
difference in response of N29 and N32 cell lines indicate that there is difference in immune 
response in different clones of glioma.  

3.2 The Hungarian experience of single fraction RT and Immunization with (GM-CSF, 
IL-4, IL-12) in a mouse glioma (Gl261) brain tumour model 

In Hungary a study was performed in a mouse glioma (Gl261) brain tumour model with 
single fraction radiotherapy combined with administration of cytokine-producing cancer 
cell vaccines (Lumniczky, et al. 2002). Their brain tumour bearing mice were treated with 
various cytokine producing vaccines made by in vitro transduction of Gl261 tumour cells 
with different genes such as: IL-4, IL-6, IL-7, GM-CSF, TNF. Immunotherapy alone with 
vaccines producing either IL-4 or GM-CSF resulted in complete remission in 20–40% of the 
mice. By combining immunotherapy using (GM-CSF, IL-4, IL-12) producing vaccines with 
local tumour radiotherapy (single fraction 6 Gy X-ray radiations) about 80–100% of the 
glioma-bearing mice were cured. The high efficiency of the combined treatment was 
maintained even under suboptimal conditions when neither of the individual modalities 
alone cured any of the mice (Lumniczky, et al. 2002).  Their results are in good agreement 
the survival rate of 75% (p<0.05) achieved in the Lund study of N29 tumours in rats treated 
with IFN- secreting vaccine combined with 5 Gy single fraction RT (B. R. R. Persson, et al. 
2010). 

3.3 The U.S. experience of radiation therapy combined with vaccination of mice with 
Glioma or mammary carcinoma 
3.3.1 Combining radiation therapy with blockade of the CTLA-4 pathway 

The cytotoxic T lymphocyte-associated protein CTLA-4 is involved in the immune 
regulatory mechanisms that control the early stage of the T cell response. It has previously 
been demonstrated that blockade of the CTLA-4 protein enhance anti-tumour responses 
both in experimental systems and in clinical trials (Chambers, et al. 2001; Egen, et al. 2002). 
In a mouse model of the poorly immunogenic metastatic mouse mammary carcinoma 4T1, 
however, neither anti-tumour response nor survival-time was affected by using an anti-
CTLA-4 monoclonal antibody for blocking the CTLA-4 protein. But anti-CTLA-4 
monoclonal antibody administration combined with one 12 Gy fraction of radiation therapy, 
inhibited the growth of the primary irradiated tumour. Also the survival-time of the mice 
was significantly increased by this combined treatment (Demaria, et al. 2004; Demaria, et al. 
2003; Demaria, et al. 2005b). 
Another investigation of the effects of systemic CTLA-4 blockade with monoclonal antibody 
(9H10) to CTLA-4 employed in a mice model with well-established glioma, showed that  
CTLA-4 blockade confers long-term survival in 80% of treated mice (Fecci, et al. 2007). Thus 
the combination of local RT with CTLA-4 blockade might be applied as radio-immune-
modulating therapeutic strategy also against glioma. 
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3.3.2 Combination of radiation therapy and vaccination of mice with glioma 

In a study of combining radiation therapy and vaccination, mice with intracerebrally 
established invasive GL261 glioma were treated with two fraction of radiation therapy (2x4 
Gy) to the whole brain, peripheral vaccination with cells transfected to secrete granulocyte-
macrophage colony-stimulating factor GM-CSF and their combination (Newcomb, et al. 
2006).  
Less than 10% increase in survival time was observed in mice given radiation therapy or 
vaccination alone. But by combining radiation therapy and vaccination a highly significant 
increase in the survival time, with about 40-80%, was observed. The surviving animals 
showed acquired antitumor immunity by rejecting challenge tumours (Newcomb, et al. 
2006). These results are in good agreement with the results of (75 %) long term survivals and 
acquired antitumor immunity in N29 rats treated with the combination of radiation and 
immune therapy with cells secreting IFN (B. R. R. Persson, et al. 2010).  

3.3.3 Combination of radiation therapy and anti-CD137 antibodies in treatment of mice 
with glioma   

The immune response induced by CD137 monoclonal antibodies (BMS-469492, Bristol-
Meyer Squibb) directed to the co-stimulatory molecule CD137 has shown to generate 
effective antitumor responses in several animal models and in clinical trials (Ascierto, et al. 
2010; Mazzolini, et al. 2007; Nam, et al. 2005).  
Treatment of murine lung (M109) and breast (EMT6) carcinoma with CD137 monoclonal 
antibodies BMS-469492 generate tumour growth retardation of 3 days in M109 tumours and 
of 12.5 days in EMT6 tumours. In combination with radiation therapy, however,  the tumour 
responses were enhanced in both tumour models (Shi & Siemann 2006). 
A recent study in mice with intracerebrally established invasive GL261glioma applied the 
combination of radiotherapy with anti-CD137 antibody directed to the co-stimulatory 
molecule CD137 (Newcomb, et al. 2010). The mice were treated with two fractions (2x4 Gy) 
radiation therapy to the whole brain. Non-specific rat IgG or anti-CD137 mAb was 
administered either alone or in combinations with RT.  
 

Type of treatment 
Median survival time 

days 
Number of  > 120 days 
survivals out of 9 rats 

IgG 31 0 

anti-CD137 42 0 

RT (4Gy2) alone No data No data 

IgG + RT (4Gy2) 37 2 

anti-CD137 + RT (4Gy2) 114 6 

   

Table 5. Median survival time of rats, with 9 animals in each group, after the different types 
of treatments (Newcomb, et al. 2010).  

The results summarized in Table 5 show that the combination of radiation (4 Gy2) with 
anti-CD137 therapy resulted in complete tumour eradication and prolonged survival in six 
of nine (67%) mice with established brain tumours (p < 0.001). Five of the six long-term 
survivors in the combination group demonstrated acquired antitumor immunity by 
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rejecting challenge tumours. Antitumor immunity was associated with an increased number 
of tumour-infiltrating lymphocytes (TILs) in brain tumours and increased tumour-specific 
production of IFN. Since anti-CD137 therapy is already used in clinical trials it was 
suggested to be studied further in combination with local hypo-fractionated (2x4 Gy) 
radiation therapy for clinical translation (Newcomb, et al. 2010). 

4. Clinical studies of combining radiation and immune therapy 

The expression profiles of CD4(+)  and CD8(+) T cells and Treg from patients with newly 
diagnosed glioblastoma multiforme are quite different when compared with normal healthy 
volunteers (Learn, et al. 2006). But how various absorbed dose or various fractionation 
pattern or methods of radiation delivery can affect T-cell populations and alternative 
regulatory molecules in glioma patients is still under debate (Chiba, et al. 2010; Teitz-
Tennenbaum, et al. 2008; Verastegui, et al. 2003). 

4.1 Effects of concomitant temozolomide and radiation therapies on WT1-specific  
T-cells in malignant glioma 

Like many other solid tumours, glioma have been found to express a protein characteristic 
for Wilms’ tumour 1 (WT1) (Hashiba, et al. 2007). A peptide based immunotherapy 
targeting the WT1 gene has successfully been used in patients with recurrent glioma. The 
clinical response indicates that CD8(+) cytotoxic T lymphocytes (CTLs) are the main 
effectors of this WT1 vaccination (Oka, et al. 2004). A phase II clinical trial of the WT1 
vaccination for patients with recurrent malignant glioma resulted in a partial response rate 
of 9.5% but none complete response. The median length of period with progression-free 
survival was 20 weeks (Izumoto, et al. 2008).  
In planning for a clinical trial of WT1 vaccination involving patients with newly diagnosed 
malignant glioma, it is also aimed to combine concurrent radiation /TMZ therapy with WT1 
immunotherapy. The critical question is, however, if the depletion of lymphocytes caused 
by the current standard radiation/TMZ treatment is a drawback for a combination with 
WT1 immunotherapy. Therefore a clinical study was performed in order to determine how 
the concomitant radiation/TMZ therapy affects the WT1-specific T-cells and other T-cells in 
terms of their frequencies and total numbers. This study concluded that, even after the 
decrease of the absolute numbers of lymphocytes, the fraction of WT1 specific T-cells was 
stable. They concluded that it may the possible to apply WT1 immunotherapy after the end 
of 6 weeks of radiation/TMZ therapy (Chiba, et al. 2010).  
In another clinical study of 8 patients with primary glioma it was found that concomitant 
radiation/TMZ therapy integrated with autologous dendritic cell-based immunotherapy 
was feasible and well tolerated. The median progression-free survival (PFS) was 75% and at 
6 months and 50% at 18 months. The median time of survival for all patients is 24 months. 
One patient was still free from progression or recurrence at 34 months (Ardon, et al. 2010).   

4.2 Treatment recurrent malignant glioma with hypo-fractionated radiotherapy 
combined with immune therapy 

A single fraction of high dose radiation therapy has been demonstrated to dramatically 
increase the priming of T-cell in draining lymphoid tissues, which increased the action of 
the CD8(+) T cells and lead to reduction and eradication of the primary tumour or distant 
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metastasis. This immune response, however, is abrogated by conventional fractionated RT 
or adjuvant chemotherapy (Lee, et al. 2009).  So far only preclinical studies of hypo-
fractionated radiation therapy in combination with immune therapy have been performed. 
The results are however encouraging and clinical trials using this therapeutic regime is 
urgently needed for both primary and recurrent glioma (Newcomb, et al. 2006; B. R. R. 
Persson, et al. 2002; B. R. R. Persson, et al. 2010; B. R. R. Persson, et al. 2008).  
Henke et al. (2010) found that retreatment of recurrent high-grade glioma with hypo-
fractionated radiation therapy with 20 Gy given over 1 week seems to be feasible even after 
a previous complete course of radiotherapy (Henke, et al. 2009). Thus it should be feasible to 
consider hypo-fractionated radiotherapy with about 8 Gy in one or two fractions to 
recurrent glioma in combination with immune therapy.    

4.3 Treatment of newly diagnosed glioma with fractionated radiotherapy combined 
with vaccination therapy 

An autologous formalin-fixed tumor vaccine (AFTV) has been prepared from formalin-
fixed and/or paraffin-embedded glioma tumor tissue obtained upon surgery and 
premixed with original adjuvant materials. In a clinical pilot study, AFTV inoculations of 
12 patients took place at least 4 weeks after prior primary conventional glioma treatments 
were concluded. Of these 12 patients, four responded to the AFTV therapy: one showed a 
complete response, one showed a partial response, two showed minor responses, and one 
had stabilization of disease. The median survival period was about 11 months from the 
initiation of the AFTV treatment. But three of these patients survived for 20 months or 
more after AFTV inoculation (Ishikawa, et al. 2007).  In a subsequent phase I/IIa clinical 
trial, the AFTV was inoculated in 24 patients with newly diagnosed glioblastoma 
multiforme, in combination with conventional fractionated radiotherapy.  The treatment 
protocol in that study included aggressive tumor resection, fractionated radiotherapy, 2 
Gy per fraction, up to a total dose of 60 Gy, and 3 concomitant courses of AFTV 
administered with an interval of one week during the last 3 weeks of irradiation.  The 
median duration of overall survival was 21.4 months (95% CI 13.8–31.3 months). The 
actuarial 2-year survival rate was 40%. These results demonstrate that vaccine treatment 
in combination with fractionated radiotherapy may be effective in patients with newly 
diagnosed glioblastoma (Muragaki, et al. 2011).  Since the previous pilot study with AFTV 
therapy only, also has shown a good response, the outcome of the phase I/IIa clinical trial 
might have been even better if it has been combined with hypo-fractionated radiation 
therapy as described in the previous paragraph 4.3.  

5. Summary and conclusion 

Many pre-clinical models have proven that one or two radiotherapy fractions with a total 
absorbed dose in the range of 5 - 16 Gy in combination with immune therapy result in 
enhanced therapeutic response to glioma. This finding opens for the possibility of clinical 
testing of new challenging therapeutic regimes for glioma, based on a combination of 
immune-therapy and hypo-fractionated radiotherapy. A regime of one or two radiation 
sessions with a total radiation target dose in the order of 8 Gy in combination with clinically 
proven immunotherapy seem so be adequate (De Vleeschouwer, et al. 2008; Gulley, et al. 
2005; J. Nemunaitis, et al. 2006a; J. J. Nemunaitis, et al. 2006b; Newcomb, et al. 2010; B. R. R. 
Persson, et al. 2010; Salford, et al. 2006; Salford, et al. 2004).  
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Although the total lymphocyte count decrease as a consequence of the current 
radiation/temozolomide therapy, it seems not affect the frequency of antigen specific T-
cells, which suggest that combination with immunotherapy might be successful (Ardon, et 
al. 2010; Chiba, et al. 2010).   
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