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1. Introduction  

Microdialysis is a technique that may be used to directly investigate brain chemistry in-vivo. 
Although initially developed over 35 years ago (Ungerstedt and Pycock 1974), it is only 
relatively recently that studies have begun to utilise microdialysis in patients with glioma 
and other brain tumours. In this chapter we will review the general principles of 
microdialysis, the use of the technique to investigate glioma pathogenesis and evaluate 
chemo- and radiotherapy, and the potential utilisation of retrograde microdialysis to 
administer chemotherapeutic agents directly to the tumour bed. 

2. Microdialysis 

Present-day microdialysis is the result of several decades of technological advancement. An 
understanding of the principles underlying the technique is an essential prerequisite to 
appreciating its potential uses and limitations. 

2.1 Principles, uses and limitations 
2.1.1 Principles 

Microdialysis enables sampling of the extracellular fluid (ECF). A microdialysis catheter or 

probe with a semi-permeable membrane at its tip is placed into the tissue of interest. 

Perfusate with a similar composition to the ECF is then slowly and continuously infused 

through the catheter. Substances of interest diffuse across the semi-permeable membrane 

into the catheter, and the resulting dialysate is collected in microvials, which are changed at 

regular intervals and subsequently analysed (see Figure 1).  

Diffusion of substances from the ECF, across the membrane, and into the flowing perfusate, 

is often incomplete. Thus, the concentration of a substance within the dialysate represents a 

fraction of that in the ECF. The extraction fraction or relative recovery is defined as the ratio of 

a substance’s concentration in the dialysate (Cdialysate) compared to the actual concentration 

in the ECF (CECF).  

Relative Recovery = Cdialysate / CECF x 100% 

A number of variables may influence the relative recovery including the flow rate, the semi-
permeable membranes length and pore size, and the properties of the substance of interest 
itself (see Table 1) (de Lange et al. 1997, de Lange, de Boer and Breimer 1999, Hutchinson et 
al. 2000, Benjamin et al. 2004, Helmy et al. 2009, Chefer et al. 2009, Blakeley et al. 2009). 
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Reducing the perfusate flow rate increases the time available for diffusion of substances 
across the semi-permeable membrane, and in turn increases the relative recovery of a 
substance (Tossman and Ungerstedt 1986, Hutchinson et al. 2000). This must be balanced 
against the reduced dialysate volumes obtained over time, which usually necessitate longer 
sampling intervals. Increasing the length of the semi-permeable membrane along which 
diffusion can occur also increases the relative recovery of a substance (Tossman and 
Ungerstedt 1986, Hutchinson et al. 2000) but the dimensions of the tissue being probed may 
limit this. Increasing the pore size of the semi-permeable membrane increases the size of 
molecules that are able to diffuse across it. Most microdialysis catheters used clinically are 
low molecular weight cut-off (LWCO) with a membrane pore size permitting molecules of 
approximately 20kDa (such as glucose and its metabolites) to diffuse across them. Recently 
high molecular weight cut-off (HWCO) catheters have been utilised with a larger membrane 
pore size permitting molecules of approximately 100kDa (such as cytokines) to diffuse 
across them. There are a number of methodological difficulties with using such catheters to 
measure the concentration of macromolecules (Helmy et al. 2009). One concern is that the 
increased membrane pore size used may lead to net efflux of fluid from the perfusate into 
the ECF thus influencing the composition of the ECF itself and compromising the validity of 
data obtained. There have been efforts to counter this net fluid efflux with the addition of a 
colloid to the perfusate. Various properties of the molecule being measured may also 
influence its relative recovery such as its shape, charge, hydrophobicity or hydrophilicity, 
hydrodynamic radius, and interaction with other molecules, such as dimerisation. The effect 
of these factors is that even molecules of a similar molecular weight may have considerably 
different relative recoveries in-vivo. Other factors may also alter the relative recovery. The 
diffusion coefficient has been estimated to increase by 1-2% for every degree Celsius 
increase in temperature. The diffusion coefficient within an aqueous solution is almost 
always greater than in tissue due to the increased diffusional path (or “tortousity”) of the 
latter (Blakeley and Portnow). 
 

 

Fig. 1. Microdialysis components. micropump is seen on the right, microdialysis catheter in 
the centre, and microvials on the left. 
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Factor Effect 

Microdialysis dependent 

Perfusate flow rate Decreasing recovery with faster flow rate 

Membrane length Increasing recovery with larger membrane 

Membrane pore size 
Larger molecules recovered with 

increasing pore size 

Context dependent 

Analyte properties 
Recovery of molecules of similar size may 

be very different 

Solution properties 
Recovery in-vitro and in-vivo may be very 

different 

Temperature Increasing recovery with temperature 

Table 1. Factors affecting relative recovery 

In-vitro studies have calculated the relative recovery for specific molecules under different 

experimental conditions in which the concentration of a substance in the external medium is 

known or directly measurable. Using such methods the in-vitro recovery for glucose and its 

metabolites using a LWCO catheter with a 10mm membrane at a flow rate of 0.3microl/min 

has been estimated at between 70-100% (Hutchinson et al. 2000, Blakeley and Portnow). The 

in-vitro recoveries of macromolecules such as cytokines using similar methods with a 

HWCO catheter are variable but usually far lower (Helmy et al. 2009). Although some 

investigators have used these calculated relative recoveries to correct dialysate 

concentrations measured, this has proved unreliable because, as mentioned previously, 

diffusion within aqueous test solutions differs significantly from diffusion within tissue in-

vivo. 

Several methods of determining relative recovery in-vivo have been described in attempt to 
overcome the shortcomings of in-vitro estimates (see Table 2) (Benjamin et al. 2004, Chefer et 
al. 2009, Blakeley and Portnow). These methods include the no-net-flux method, the flow-
rate method, and the use of standards whose concentration is known (both exogenous and 
endogenous). In the no-net-flux method, perfusate containing several different 
concentrations of the analyte of interest (both above and below the anticipated concentration 
in the ECF) is perfused through the microdialysis probe and the amount of this analyte 
gained or lost from the probe is determined. Using this method the relative recovery may be 
calculated as the gradient of the linear regression that describes the dialysate concentration 
of the analyte being studied as a function of experimenter controlled variations in the 
perfusate concentration. In the flow-rate method, it is assumed that at a flow rate of zero (i.e. 
stasis) equilibrium between perfusate and the ECF is eventually achieved and that 
increasing the flow rate leads to a reduced relative recovery in a predictable but non-linear 
fashion. By infusing at different flow-rates and measuring the concentration of the analyte of 
interest, it is therefore possible to calculate the relative recovery (Hutchinson et al. 2000). 
Other methods rely on the use of an internal standard to estimate in-vivo relative recovery. 
Often, the perfusate contains a known concentration of a radiolabelled molecule similar to 
the analyte of interest. By determining the loss of this molecule during microdialysis it is 
possible to calculate its relative recovery. Alternatively, some investigators have made use 
of urea – which is assumed to have the same concentration throughout all water 
compartments in the body – as an endogenous standard. By determining the difference 
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between the concentration of urea in plasma, and the concentration in dialysate collected, an 
estimate of the relative recovery of similar small molecules may be obtained (Brunner et al. 
2000, Sorg et al. 2005). 
 

Method Principle 

No-net-flux 
When analyte concentrations within 

perfusate and ECF are equal, there is no-
net-flux 

Variable flow rate 
When flow rate is zero (i.e. stasis) 

equilibrium occurs between perfusate and 
ECF 

Internal standard 
(Exogenous e.g. radiolabelled) 

Fraction of exogenous standard lost from 
perfusate is equal to fraction of analyte 

extracted from ECF 

Internal standard 
(Endogenous e.g. urea) 

Fraction of endogenous standard and 
analyte extracted from ECF is equal 

Table 2. In-vivo methods of determining relative recovery 

There are a number of methodological difficulties in estimating relative recovery using these 

described in-vivo techniques, particularly in the context of glioma research. The no-net-flux 

method requires an accurate estimation of the concentration of analytes in-vivo but the 

concentration of the cytokines and growth factors involved in gliomagenesis can vary by 

several orders of magnitude. The flow-rate method requires very slow flow rates to increase 

the accuracy of the regression analysis, which in turn necessitates long collection periods to 

obtain sufficient sample volume. The use of an internal standard relies on the assumption 

that it has a similar relative recovery to the analyte of interest, which, for the reasons 

mentioned above, may not be valid.  These methodological difficulties in estimating relative 

recovery using in-vivo techniques have led some commentators to the conclusion that the 

ratio of the concentration of related physiological substances (such as the ratio of 

lactate/pyruvate, or pro-/anti-inflammatory cytokines) may be a more robust and valuable 

measurement than attempts to determine the absolute concentration of these molecules in 

the ECF (Helmy et al. 2009). 

2.1.2 Uses 

Until relatively recently few studies had applied microdialysis to patients undergoing 
surgical biopsy or resection of their brain tumours. To this end, clinical studies using 
microdialysis in patients with brain tumours offer a number of potential advantages over 
other methodological approaches. First, in contrast to traditional in-vitro studies, clinical 
microdialysis studies permit the assessment of brain tumours in-vivo, recognising the 
complex interactions between tumour- and host-related factors, and the role these 
interactions play in tumourogenesis. Second, by applying microdialysis to patients with 
brain tumours, rather than animal models of such tumours, clinical microdialysis eliminates 
the possibility of erroneous interpretation of interspecies differences or of limitations of the 
brain tumour model itself. Third, clinical microdialysis provides a direct measure of 
analytes within the ECF when compared with imaging techniques. Fourth, microdialysis 
easily allows repeated evaluation over an extended time course. Microdialysis therefore 
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provides a unique method of continuously measuring brain and tumour chemistry allowing 
investigation of metabolites and macromolecules involved in tumourogenesis, the dynamic 
changes in the concentration these molecules over time, and their response to chemo- and 
radiotherapy. Finally, retrograde microdialysis offers the potential for the direct 
administration of chemotherapeutic agents to brain tumours. 

2.1.3 Limitations 

Several confounding factors must be considered when performing or interpreting studies 

that utilise microdialysis to investigate brain tumours. First, although microdialysis is a 

direct measure of analytes within the ECF, the concentration of a substance within the 

dialysate still represents only a fraction of that in the ECF. As discussed above, this relative 

recovery depends upon a large number of variables and estimation by in-vitro and in-vivo 

techniques has proved unreliable. Second, the invasive nature of microdialysis probe 

insertion may result in trauma artefact. A recent consensus meeting on microdialysis in 

neuro-intensive care recognised that data was unreliable for at least one hour after insertion 

(Bellander et al. 2004). In patients with brain tumour undergoing resection or debulking, the 

trauma artefact may be considerably longer, particularly if the macromolecules such as 

growth factors and cytokines are being monitored. Third, the precise location of the catheter 

tip may greatly influence the data obtained by microdialysis. Studies that have applied 

microdialysis to patients with brain tumour have demonstrated significantly different 

metabolic profiles at the tumour centre, tumour periphery or border, and grossly normal 

peri-tumoural tissue (Roslin et al. 2003, Marcus et al.). 

These confounding factors are at least partially mitigated by the use of physiologically 

meaningful ratios (rather than absolute concentrations), the omission of the first few hours 

of data obtained post-insertion, and the careful note of catheter locations intra-operatively 

and using post-operative imaging (see Table 3). The combination of microdialysis with other 

research methods such as animal studies, in-vitro techniques and imaging provides a 

powerful research paradigm. 

 

Limitation Strategy 

Relative recovery variable 
Use physiological ratios rather than 

absolute concentrations 

Trauma artefact 
Minimise trauma and wait for data to 

normalise 

Location of probe 
Note location intra-operatively and image 

post-operatively to confirm 

Table 3. Limitations of microdialysis and strategies to avoid 

2.2 Equipment and technique 
2.2.1 Equipment 

The equipment required for microdialysis includes perfusion fluid, microdialysis syringes, 
microinfusion pumps, microdialysis catheters, and microvials (See Figure 1). Not all 
commercially available microdialysis equipment is suitable or certified for human use and 
this must be carefully considered before selecting study apparatus. Perfusion fluid should 
be as close to the cerebral ECF as possible and CMA CNS perfusion fluid composed of NaCl 
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(147 mM), KCl (2.7 mM), CaCl2 (1.2 mM), and MgCl2 (0.85 mM) in water, is often used. 
Perfusion fluid is contained in microdialysis syringes with a capacity of approximately 
2.5ml. Microinfusion pumps are portable battery driven pumps that compress syringes at a 
slow predefined rate, which is usually fixed (0.3microl/min) but may be adjustable 
(0.1microl/min to 5microl/min). Microdialysis catheters vary in their membrane length (10-
30mm) and pore size (LWCO/20kDa or HWCO/100kDa), and by their physical properties 
(such as shaft size). Conventional clinical microdialysis uses LWCO catheters. Clinical 
microdialysis studies investigating macromolecules such as cytokines or growth factors 
require HWCO catheters to maximise recovery of these substances. Fluid is collected in 
microvials designed to collect micro volume samples and minimise evaporation. 

2.2.2 Technique 

All patients must be thoroughly counselled beforehand about the potential (but very low) 

additional risk of haemorrhage and infection, and written informed consent obtained. Pre-

operatively all the microdialysis equipment should be checked. Particular attention must be 

paid to the microdialysis catheter, syringe and perfusion fluid to ensure that their packaging 

remains intact and sterility maintained. Many clinicians advocate priming the catheter so 

that the system is already functional prior to insertion. This ensures constant fluid flow at 

the catheter tip and theoretically reduces sedimentation and non-specific binding of proteins 

to the catheter membrane. The microdialysis syringe is filled with CNS perfusion fluid, and 

connected to the microdialysis catheter using strict aseptic technique. The microdialysis 

syringe is placed in the microinfusion pump and a microvial placed at the distal end of the 

microdialysis catheter to collect the dialysate. Upon closing the lid of the microinfusion 

pump a 5-minute flush cycle is initiated followed by an automatic decrease to the preset 

flow rate.  

Operative insertion of the microdialysis catheter into cerebral parenchyma may be via a 
closed or an open technique following tumour biopsy or resection respectively. In the closed 
technique stereotactic biopsy of brain tumour tissue is performed and then the microdialysis 
catheter inserted so that the catheter tip lies in the region of interest. Multiple catheters can 
be placed through a single burr hole using multiple different trajectories. The advantage of 
this technique is that traumatic artefact is minimised. In the open technique the brain 
tumour is resected and then the microdialysis catheter placed into the region of interest. 
Intra-operative real-time three-dimensional ultrasound probes have been used to assist 
catheter placement (Homapour et al.). Although there is greater traumatic resection artefact 
associated with open placement the risk of inadvertent complications, such as intracerebral 
haematoma, is theoretically lower because the catheter is inserted under direct visualisation 
and blood vessels can be avoided. The precise position of catheters within the brain is 
critical to interpreting clinical microdialysis studies but a number of terms have been used 
in the literature with conflicting and overlapping definitions. To avoid confusion during 
subsequent discussion we will define catheter locations in the following way: Tumour (T) 
catheters are either within grossly affected tumour tissue, or within 5mm of the resection 
margin of such tissue; Peritumour (PT) catheters are within 5mm-20mm of the tumour or 
resection margin; Brain Around Tumour (BAT) catheters are within grossly unaffected brain 
at least 20mm away from the tumour or resection margin. Once in place the catheter may be 
secured using a commercial “bolt” or by tunnelling the catheter and stitching it into place, 
depending on whether a closed or open approach insertion technique is used respectively. 
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Term Definition 

Tumour (T) 
Within grossly affected tumour tissue, or 

within 5mm of the resection margin of such 
tissue 

Peritumour (PT) 
Within 5mm-20mm of the tumour or 

resection margin 

Brain Around Tumour (BAT) 
Within grossly unaffected brain at least 

20mm away from the tumour or resection 
margin 

Table 4. Definitions on the location of microdialysis catheters 

Imaging should be performed to confirm the catheter position post-operatively. Most 
commercially available microdialysis catheters are fashioned with a “gold-tip” that is visible 
on CT to facilitate their identification. The initial microvial (containing flush) is not 
analysed. Subsequent microvials are numbered and exchanged sequentially at predefined 
intervals. Microvials are either analysed immediately or stored in -80c for subsequent 
analysis. Studies have shown that the concentration of glucose and its metabolites within 
microdialysate is equivalent with measured immediately or after storage in this manner 
(Hutchinson et al. 2000). 
Glucose and its metabolites are frequently measured using commercial point-of-care 
analysers such as the ISCUS or CMA 600 (CMA Microdialysis AB, Solna, Sweden), which 
employ an enzyme-kinetic technique. Several techniques can also be used to analyse the 
macromolecules present within dialysate. Because the volumes of liquid are small and the 
concentrations of substances very low, techniques such as Enzyme-Linked Immunosorbent 
Assay (ELISA), High Performance Liquid Chromatography (HPLC), or Mass Spectroscopy 
(MS) are often employed. 

2.2.3 Troubleshooting 

Although microdialysis is generally a robust technique if difficulties do arise and dialysate 
is not obtained, a systematic approach is advocated. The micropump should be examined 
and new batteries placed (if not already done). The catheter insertion site should be 
examined to check that the catheter remains secure and is not obviously displaced. The 
microvials can be removed and replaced to ensure that they click into place appropriately. 
Once confident these components are satisfactory the system may be flushed by re-opening 
and then closing the lid of the micropump. 

3. In vivo assessment of pathogenesis 

To date, almost a dozen clinical studies have utilised microdialysis in patients with cerebral 
tumours; with approximately half of these devoted to investigating gliomagenesis, and the 
remaining to evaluating treatment with chemo- and radiotherapy. Studies investigating 
gliomagenesis may be further subdivided into those utilising LWCO or HWCO 
microdialysis catheters.  

3.1 Low molecular weight cut off 

In a landmark Swedish study in 2003 Roslin et al studied the baseline concentration of 
glucose and its metabolites, glycerol and glutamate in patients with high grade glioma 
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(HGG) (Roslin et al. 2003). The group performed an in-vitro recovery experiment, which 
confirmed relative recoveries of greater than 90% of the substrates of interest. Fifteen 
patients with HGG undergoing brain biopsy were recruited and two LWCO catheters were 
placed stereotactically: one within the tumour (T), and one 10mm outside the contrast 
enhancing region in the peritumour region (PT). Surprisingly, the only significant difference 
between dialysates obtained from T and PT was lactate, which was more concentrated in T 
than PT (p<0.05). This is in contrast to in-vitro studies (Klegeris, Walker and McGeer 1997), 
animal studies (Behrens et al. 2000), and subsequent clinical microdialysis studies (Marcus et 
al.), all of which demonstrate an increased concentration of glutamate and other metabolites 
within tumour cell lines and tissue respectively. The possible reasons for this incongruity 
are discussed below (see Section 3.2) 
Investigators in Italy also used LWCO microdialysis catheters to establish the baseline 
concentration of other small molecules including amino acids, adenosine, and choline in 21 
patients with HGG (Melani et al. 2003, Bianchi et al. 2004). An in-vitro recovery experiment 
was carried out and demonstrated the relative recovery of adenosine estimate to be 43.4 ± 
5.1% (relative recovery was not calculated for amino acids and choline). Unlike the Swedish 
study patients underwent tumour resection and three microdialysis catheters were placed 
using an open technique: one into the tumour resection margin (T), one into peritumoural 
tissue 10mm away from the resection margin (PT), and one into grossly normal brain 
around the tumour at least 20mm away from the resection margin (BAT). Samples were 
analysed using various methods including HLPC. The group found that concentration of 
adenosine and glutamate were significantly reduced in T compared with BAT (p<0.05), the 
concentration of aspartate was unchanged, and the concentration of the remaining amino 
acids and choline were all significantly increased in T compared with BAT (p<0.01). 
Interestingly epilepsy, which occurs in approximately a third of patients with brain tumours 
(Villemure and de Tribolet 1996), was found to be an important confounding variable when 
the concentrations of aspartate, glutmate and GABA were considered. 

3.2 High molecular weight cut off 

Flannery et al were the first group to take advantage of HWCO catheters to assess the 

cysteine protease Cathepsin S (CatS) in gliomagenesis (Flannery et al. 2007). In total 11 

patients with suspected HGG were recruited. Of these 11 patients, one was subsequently 

found to be a low-grade glioma (LGG), 2 were cerebral metastases, and the remaining 8 

cases confirmed HGGs. A further patient with suspected hydrocephalus that was 

undergoing intracranial pressure monitoring was also included as a control. All patients 

underwent tumour resection with insertion of a single microdialysis catheter at the tumour 

resection margin (T). Analysis of CatS was by activity and ELISA concentration assays. 

Unfortunately, the absence of paired catheter data makes interpretation of the study’s 

findings difficult but there was no significant relationship between CatS concentration and 

function, and the grade of brain tumours investigated. 

A more recent study utilising HWCO catheters in patients undergoing surgery for intrinsic 
brain tumours set out to first to repeat earlier measurements of glucose and its metabolites, 
glycerol and glutamate, and second to assess the concentration of macromolecules such as 
growth factors, cytokines and other proteins involved in the pathogenesis of HGGs (Marcus 
et al.). Eight patients with suspected HGG were recruited. Of these 8 patients, one was 
found to have a lymphoma, and the remaining 7 cases confirmed HGGs. A further patient 

www.intechopen.com



 
Clinical Microdialysis in Glioma 

 

153 

with traumatic brain injury was included as a non-tumour control. All but one of the 
patients with cerebral tumours underwent surgical resection with the first microdialysis 
catheter placed at the tumour resection margin (T) and the second inserted at least 20mm 
away in macroscopically unaffected brain around tumour (BAT). The remaining one patient 
had an image-guided biopsy of their tumour with stereotactic insertion of a catheter into the 
tumour margin (T). Microdialysates were first assessed for small molecules using the CMA 
600 or ISCUS analyser. Tumour microdialysates were found to have a significantly lower 
glucose, higher lactate/pyruvate (L/P) ratio, higher glycerol and higher glutamate 
compared to the brain around tumour. These findings suggest that the tumour margin of 
HGGs is particularly metabolically active and are consistent with previously published in-
vitro and animal studies, but differ from the previous clinical microdialysis study by Roslin 
et al. There are a several reasons that may account for the discrepancy between these 
studies. First, the small number of cases in both studies necessitates cautious interpretation 
of their findings as variation in patients, their pathology and tumour heterogeneity may all 
have influenced the concentration of glucose and its metabolites, glycerol and glutamate. 
Second, Roslin et al introduced catheters following biopsy using a closed stereotactic 
technique while Marcus et al introduced catheters after tumour resection using an open 
technique. Trauma artefact may therefore have influenced findings (though in the Marcus et 
al study measurements were taken at least 4 hours post-operatively to try and reduce this 
effect). Third, while Roslin et al placed the tumour catheters in the tumour centre, Marcus et 
al placed tumour catheters at the tumour resection margin or tumour periphery. It is 
possible that the core of the tumour, which is often necrotic, may be less metabolically active 
than the brain-tumour interface. 
In the same study Marcus et al analysed all the remaining microdialysate samples for 

macromolecules using a sandwich ELISA like procedure. There was great variability in the 

dialysate concentrations of the various growth factors (TGF-alpha, VEGF, EGF), cytokines 

(IL-1a, IL -1b, IL-1ra, IL-6, IL-8) and matrix metalloproteases and their tissue inhibitors 

(MMP2, MMP9, TIMP1, TIMP9). Nevertheless, microdialysates were found to have 

significantly raised MMP2/TIMP1 and IL-8 in T compared to BAT samples suggesting an 

environment favouring invasion and angiogenesis respectively.    

4. In vivo assessment of therapies 

In addition to using microdialysis to evaluate the baseline concentration of molecules 

involved glioma pathogenesis, several studies have also made use of the technique to 

investigate the response to treatment with chemo- and radiotherapy.  

4.1 Chemotherapy  

Microdialysis may be used to evaluate both chemotherapeutic pharmacokinetics and 

pharmacodynamics. Interestingly, the earliest example of clinical microdialysis in patients 

with brain tumours to investigate a drug’s pharmacology focused not on chemotherapy but 

on the antimicrobial rifampicin. Mindermann et al recruited 5 patients with HGG and 3 

patients with LGG (Mindermann 1999). All patients received a single pre-operative dose of 

600mg rifampicin 3 hours before skin incision. Patients then underwent craniotomy and 

tumour resection with a single microdialysis catheter placed distantly from the resection 

margin in grossly unaffected brain around tumour (BAT). A LWCO catheter was infused 
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with two solutions of different concentrations of rifampin at a rate of 3µl/m. The loss or gain 

of rifampin from the two solutions was determined and rifampin concentration then 

calculated using the no-net-flux method. Intra-operatively solid tissue samples were also 

taken from tumour tissue, peri-tumour tissue and unaffected brain around tumour tissue. 

The concentration of rifampin was greatest within solid tissue samples from tumour and 

peritumour, followed by BAT microdialysates, and then solid tissue samples from 

unaffected brain around tumour. The rifampin concentration in all compartments exceeded 

the minimum inhibitory concentration (MIC) for staphylococci and streptococci. 

Blakeley et al used clinical microdialysis to investigate the pharmacokinetics of high dose 
methotrexate (12g/m2) (Blakeley et al. 2009). The group performed an in-vitro recovery 
experiment, which demonstrated a relative recovery of 43.6 ± 2.6%. Four patients with 
recurrent HGG were recruited and underwent biopsy or resection as clinically indicated. A 
LWCO microdialysis catheter was then placed into either the contrast-enhancing or non-
enhancing residual tumour (T). Samples were analysed using liquid chromatography/mass 
spectroscopy. Methotrexate penetration in T was found to be variable with the highest 
concentrations measured within the contrast-enhancing regions. Nevertheless, the 
concentration of methotrexate in all regions exceeded the minimum concentration required 
for 50% cell kill against glioma cell lines in vitro. 
Portnow et al used clinical microdialysis to investigate the pharamcokinetics of another 
chemotherapeutic drug temozolamide (TMZ) (Portnow et al. 2009). Contemporary post-
operative management of patients with a HGG is with daily TMZ tablets and concurrent 
radiotherapy. Phase I studies of TMZ suggested that peak levels in blood occurred 
approximately an hour after ingestion and patients are therefore typically instructed to take 
their tablets an hour prior to radiotherapy to potentiate their oncotoxic effects (Dhodapkar 
et al. 1997). The group first performed an in-vitro recovery experiment, which demonstrated 
a relative recovery of 87 ± 5.5%. Portnow et al then recruited 9 patients of which 6 patients 
had HGG, and 3 had non-small cell lung cancer. All patients underwent resection and a 
single LWCO microdialysis catheter was placed within 5mm of the tumour resection margin 
(T). Post-operatively one patient refused TMZ, and in another the microdialysis catheter was 
occluded. In the remaining 7 patients microdialysates were analysed using HPLC to 
determine the concentration of TMZ. Concentrations of temozolamide in the brain 
measured in their study were consistent with previous studies but it was noted that the 
mean time to reach peak level in the brain was 2.0 ± 0.8 hour. The clinical corollary of their 
findings is that current chemoradiation regimens may be improved by advising patients to 
take their tablets 2 hours before radiotherapy sessions. 

4.2 Radiotherapy 

A series of studies by a group in Sweden have used microdialysis to monitor patients 

undergoing radiotherapy. The focus of their first study was Boron Neutron Capture 

Therapy (BNCT), an experimental technique in which patients are injected with boron, 

which preferentially binds to tumour cells, and then treated with neutron beam 

radiotherapy generating oncotoxic alpha particles and Lithium ions. The technique is 

theoretically attractive because of the short path length of alpha particles (approximately 

one cell diameter) compared to conventional gamma radiation. Bergenheim et al used 

clinical microdialysis to determine the pharmacokinetics of boronophenylalanine (BPA) 

with a view to optimising the timing of radiation (Bergenheim et al. 2005). An in-vitro 
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experiment determined a mean BPA recovery of 66.8 ± 8.8%. The group also monitored 

glucose and its metabolites, glutamate and glycerol throughout the procedure. Four patients 

with WHO grade IV glioblastoma multiforme (GBM) were recruited. One patient 

underwent gross total resection, one a subtotal resection, and two stereotactic biopsies. In 

the patients that underwent resection a microdialysis catheter was placed within 5mm of the 

resection margin (T), and in the patients undergoing biopsy catheters were placed within 

viable tumour tissue (T). In all patients a second catheter was placed at least 20mm outside 

of the radiological bulk of the tumour in macroscopically normal brain around tumour 

(BAT). Microdialysates were analysed using the CMA 600 analyser, except for boron that 

was measured using an inductively coupled atomic emission spectrometer. The 

concentrations of boron varied considerably depending on the tissue sampled: in T samples 

the pharmacokinetic profile of BPA followed that of blood, while in BAT uptake was 

generally very low with a delay of up to 8 hours in relation to blood levels. No significant 

changes in glucose and its metabolites were noted during BNCT treatment. An increase in 

the concentration of glycerol was noted in T and PT 1-3 days after BNCT treatment while 

BAT levels were low and unchanged. Glutamate also showed high levels in PT compared to 

BAT, although no obvious changes were observed over time.  

In their second study the Swedish group evaluated the levels of glucose and its metabolites, 

glycerol and glutamate in patients with HGG undergoing conventional post-operative 

radiotherapy (Tabatabaei et al. 2008). Thirteen patients with HGG were recruited with one 

catheter placed within the tumour (T), and a second 10mm outside the contrast-enhancing 

area in the peritumour region (PT). Samples were obtained at least 20 hours before 

radiotherapy commenced, and then continued for at least 20 hours after the fifth 

radiotherapy session. Baseline levels of glucose were significantly lower, and the L/P ratio 

significantly higher, in dialysates from T compared with PT. Radiotherapy did not influence 

glucose and its metabolites, or glycerol or glutamate. 

Bergenheim’s group subsequently extended their approach to utilise HWCO catheters 

enabling evaluation of macromolecules during conventional radiotherapy (Wibom et al.). 

Eleven patients with HGG were underwent stereotactic biopsy with insertion of two 

microdialysis catheters: one placed into the contrast enhancing tumour (T), and a second 

outside it in the peritumour region (PT). Reference samples were also collected 

subcutaneously from patients’ abdomen. Microdialysates were analysed using gas 

chromatography – time-of-flight mass spectroscopy. Marked differences in metabolomic 

patterns were noted between T and PT, and between brain and abdominal microdialysates. 

In addition, dynamic changes occurred with radiotherapy in T and PT microdialysates. 

5. Retrograde microdialysis 

A novel use of clinical microdialysis is to deliver chemotherapeutic agents through a process 
termed retrograde microdialysis. The technique offers a number of potential advantages. 
First, the precise placement of catheters allows chemotherapy to bypass the blood-brain 
barrier and be administered directly to the tumour bed. Second, equilibration occurs across 
a semi-permeable membrane ensuring the therapeutic concentration is maintained. Third, 
simultaneous measurement of metabolism allows direct assessment of a drug’s effects. The 
therapeutic principle was first explored by Ungerstedt’s group in Sweden who treated three 
patients with GBM by adding the oncotoxic non-physiological amino acid L-2, 4 
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daminobutyric acid (DAB) to perfusate (Ronquist et al. 1992). This was extended by 
Bergenheim et al who recruited 10 patients with GBM that underwent stereotactic biopsy 
with the insertion of two microdialysis catheters: one in the contrast enhancing tumour (T), 
and the second 10mm outside the contrast enhancing region in the peritumour region (PT) 
(Bergenheim et al. 2006). Catheters inserted into T were LWCO with 30mm membranes, and 
were perfused with 80 or 120mmol/l DAB at a rate of 2µl/m. Samples were analysed for 
metabolites using a CMA 600 analyser, and for amino acids using HPLC. During treatment 
with DAB a significant increase in a number of amino acids including glutamate was 
observed suggesting cellular toxicity. PT samples were unaffected suggesting treatment 
effects was localised to the tumour compartment. Although the sample size was too small to 
determine whether there was an effect on clinical outcome, the study nevertheless provides 
evidence to support the feasibility of the technique. 

6. Conclusion 

In the last decade there has been a surge of interest in the application of clinical 
microdialysis to neuro-oncology. In this chapter we have reviewed the principles of 
microdialysis, and systematically appraised studies on the use of the technique to 
investigate gliomagenesis, the effect of treatment with chemotherapy and radiotherapy, and 
the potential for administration of drugs with retrograde microdialysis. The utility of the 
technique lies in its use alongside other methods such as in-vitro, animal and imaging 
studies. 
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