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1. Introduction 

Modern PV devices are a direct outcome of solid state devices theory and applications of the 
last forty years. They are devices made of crystalline structures and basically, when 
illuminated with solar light, they convert solar photons into electric current. In the following 
a quick explanation of how this happens is presented. What is a solar cell? What is the basic 
function behind a cell’s operation? Typically, in an illuminated p-n junction, photons are 
absorbed and electron-hole pairs are generated. These carriers diffuse in opposite directions 
(separated by the existing electrostatic field at the junction), and within their respective 
diffusion lengths. Electrons at the p-side diffuse through the junction potential and holes 
(similarly) get to the opposite directions. Under open-circuit conditions, the voltage across 
the cell is given by the following formula: 

 ln(1 )L
oc

o

I
V kT

I
   (1) 

Where k is Boltzmann’s constant, T (in Kelvin) is the cell temperature, IL is the light-
generated current, and Io is the p-n junction’s reverse saturation current (see below). Cell 
theory and p-n junctions under a bias are briefly discussed in the next section.  

2. Background theory: The p-n junction 

Photonic device (solar cells included) operation is based on a p-n junction: two regions of 
the semiconducting material doped p and n type respectively and brought together in 
contact form a p-n junction. At thermal equilibrium, the p-n dope bulk semiconducting 
crystal, in order to keep its equilibrium, develops an internal field and develops its own 
built-in potential; the latter is total due to p- and n-type carrier migration across the 
junction. 
Donor and acceptor atoms embedded in the lattice of the host material provide electrons 
and holes (as potential current carriers) that are free to wander in the crystal. In principle 
these carriers move randomly in the lattice, however, guiding these carriers accordingly 
could lead to non-zero currents coming off such semiconductors, and therefore to current 
producing devices. A semiconductor sample doped with donors and acceptors becomes a p-
n junction and therefore a device with two regions tending to overlap at their boundary.  
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If the interface is at (say) x = 0 position, free electrons and free holes diffuse through the 
interface and inevitably form space charge regions as shown figure 1 below: 
 
 
 

 
 

Fig. 1. pn-junction (e.g. of a Si sample) with the depletion W region shown: both sides of the 
interface are shown, with their space charge distributions respectively.  

A static electric field develops at the interface (figure above) emanating from the (+) 
region and prohibiting respective carriers to further access the PN regions. From basic pn-
junction theory, we can solve for the electric field and the potential developed by means 
of Poisson’s equation. If the limits of the depletion region are –xp and xn (W = xp + xn) 
respectively, we can derive expressions for both field and potential developed at the 
junction: 
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Where maximum field value is Emax = E(at x = 0) = - (q Nd /) xn; q is the electronic charge, 
Nd,a stands for donor and acceptor atom concentrations (per volume) respectively,  is the 
total sample’s dielectric constant (or the product of the relative times the free space dielectric 
constants, e.g. r = 11.7 for Si). Based on expressions (2, 3) and on the fact that potential 
generated at the junction is the negative integral of the electric field across the depletion 
region, we can in principle derive the potential V(x) across the junction: it can be shown that 
V(x) is as follows:  
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Fig. 2. Potential V as a function of x across the depletion region. Note (a) the two branches of 

V across both sides of the junction’s boundary (x = 0) in accordance with (4) and (5) (b) the 

built-in voltage Vbi at the right edge of the junction [1, 2, 3]. Note also that built-in voltage is 

normally computed as shown in the inset.  

It is a straightforward matter to produce explicit results about widths in the junction area 

(w, xn, -xp) in terms of device doping levels and built-in voltage values. The built-in voltage 

is determined from (4) at x = xn: 
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3. Diode currents 

The fundamental current equation for p-n junctions is derived based on considering that the 

built-in voltage is reduced down to Vbi – Va , by the forward bias voltage Va, helping 

majority carriers to escape and diffuse in the neighboring regions while, once electrons and 

holes reach the edges of the depletion region to the p and n regions, they diffuse accordingly 

according to a decaying exponential law of the type exp(x/Ln,p); the latter includes distance 

x and the diffusion length for electrons and/or holes respectively. Excess minority carriers 

diffuse in both regions according to the following expressions: 

 
/ ( )/

( ) ( 1)
x L x x L

no

p n p
p x p e e    (7) 

 
/

( ) ( 1)
x L

po

p
n x n e    (8) 

www.intechopen.com



 
Solar Cells – New Aspects and Solutions 328 

Where pno is holes in the n-region, Lp is the diffusion length of holes in the n-region, and 

where p represents excess holes in the n-region. Diffusion currents can be calculated by 

means of the diffusion equation along with suitable boundary conditions: 
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p p
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Based on the above expressions, current density of the p-n junction due to a forward bias Va 
is found to be as follows (see also (1)): 

 
/ )

( 1)
V V

o

a tJ J e   (11) 

(Where Vt is the thermal voltage (kT/q)) 

4. p-n junctions as solar cells 

Fundamentally, solar cell modeling correlates incident solar photon fluxph (# of photons 
cm-2 s1) with generation and recombination carrier rates in the interior of the device. Photo-
generated concentrations of diffusing carriers are typically modeled through the diffusion 
equation (under appropriate boundary conditions): 
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Photon-collection efficiency is usually defined as the ratio of total current over solar photo-
flux (cm-2 s-1): 
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The numerator in (13) is total photo-induced current in the p and n-regions  
minus recombination current. Boundary conditions include continuity of carrier 
concentrations at the junction x (j), and the dependence of the first derivative of carrier 
concentration on recombination velocity sp, at the edge of the window layer as shown in 
the figure below: 
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Figure-3 shows a generally accepted modeling geometry of a p-n junction solar cell. These 
two regions are separated by the depletion region (of thickness w): majority electrons 
from the n-region migrate to the p-region, and majority holes reciprocate from the latter 
region.  
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Fig. 3. Typical modeling geometry of a solar cell: w is the depletion width, J is the exact 
interface, L is the width of the p-region and d is the n-region (window layer). Note that the 
n-region is the window for solar photons. 

Minority holes generated in the window layer (x from –d to 0) are: 
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Note that at x = 0: 
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Maximum hole- current density generated in the n-region is: 
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The surface recombination velocity sn at the edge of the p-region is 
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The diffusion equation reads as follows: 
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Solution of (18) is of similar kind with (12) along with boundary conditions (17): 
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x= - d x= 0 
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The total current out of the cell is the sum of all currents minus recombination components 
from each region, especially recombination at the w region. Excess carriers in solar cells (as 
in any photonic device) are minority electrons and holes in the p and n regions respectively. 
When a cell is illuminated, solar photons excite electron hole pairs in all regions: the p-, n- 
and depletion regions. The latter may be become of great significance for the following 
reason: excited electrons and holes do split away from each other due to the existing 
electrostatic field. This means that these excess carriers will reach the edges of the depletion 
region in a very short time. Note also that typically, mean diffusion lengths of these carriers 
are much longer than t he actual width of the depletion area (even in pin devices). This 
makes the depletion region especially attractive for illumination: electrons and holes will 
separate from each other quickly, and they will diffuse in the bulk parts of the cell very fast 
assisted by the electrostatic field. In addition, space availability in the mid-region provides a 
chance for excess layer s that can be tuned to desired solar photons for subsequent 
absorption, thus enhancing device performance. This is why multi-layers are used in the 
intrinsic region (long depletion region in p-n junctions). If tuned quantum wells are grown 
somewhere in the middle, incident solar illumination will push electrons in the quantum 
wells and to tunneling or thermionic escape. The notion of additional band gaps integrated 
in the intrinsic region has been adopted successfully recently. For instance, successful cells 
with more than one band gaps have been designed and realized, where two or three cells 
are connected in series forming tandem cells with the advantage of voltage increase. This is 
possible due to the series connection of the tandem cells. Tandems provide excess voltage 
but they lack in current, in other words, due to the differences of the layers involved, current 
matching will be enforced due to the series connection. If these structures can ensure 
relatively high current outputs, then, along with increased voltage one should expect 
efficiency improvements. In the next we outline the behavior of a cell in tandem: top cell of 
AlAs/GaAs and bottom cell of a pin GaAs/Ge/Alloy for long wavelengths.  

5. Heterojunction cells 

Improved cell design has to include more than one band-gap for larger number of absorbed 
photons. P-i-n (from now on pin diode) diode designs offer wide intrinsic regions between 
the p- and n- regions of a p-n junction, where photo-carriers have a great chance to be 
generated and quickly swept away to the ends of the two-lead diode. This is possible due to 
the electrostatic field that develops at the depletion region. Illumination of the structure at 
the intrinsic region or a pin increases the chances of more photo-excited carriers. On the 
other hand, for a pin diode exposed to solar light and with a thin p-layer, minority electrons 

from the p-region may cross very fast (n ~ fraction of s) the junction at the p-i interface and 
be swept away to the load by the electric field in the mid-region of the cell. More than one 
band gaps in the mid region may lead to quantum wells where quantum size effects may 
take over as long as thickness values are in the order of 5 to 8 nm. Superlattice-like 
structures may be grown in the intrinsic region in order to accommodate both short and 
long solar wavelengths. It is commonly accepted that thin bulk window layers grown on top 
of a wide mid-region with quantum wells may offer a two-fold advantage (a) short 
wavelengths absorbed at the top and longer wavelengths absorbed in the mid region where 
a superlattice structure is essentially tuned at specific wavelengths. Thus, by growing a 
superlattice in the middle of a pin region (rather by changing the mid-region into a multi-
quantum well (mqw) sequence) one may reach the main objective: to capture more solar 
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photons with energies higher than the band gap of the host material. The figure below 
depicts an intrinsic multi-quantum well area, where discrete energy levels cause a widening 
of the host material’s gap (commonly GaAs with gap at 1.42 eV).  
 

 

Fig. 4. Detail from a superlattice structure (typically GaAs/alloy and GaAs/Ge (as proposed 
in this study). The dashed line represents the Fermi level at thermal equilibrium. The optical 
gap can be tuned to desired energy values. 

Figure 5 shows a superlattice covering the mid region of a pin cell: 
 
 
 
 
 
 
 

Fig. 5. A p-i-n GaAs/alloy superlattice developed in the mid-region of a pin cell: the middle 
section depicts: the top layer (blue) is the wide gap alloy (e.g. AlAs) and the bottom layer is 
GaAs (host material); GaAs is also grown in the superlattice as the low gap medium.  

Such a cell design (shown above) is an expanded p-n junction with a wide superlattice mid-
region occupying the intrinsic or low doped region between p and n. To reduce cost such a 
structure can be compromised by inserting a short period tuned superlattice as a small 
percentage of the device as a total.  

6. Top cell (AlAs/GaAs) 

Modeling of the top region may be performed in two ways, by considering the equivalent 
circuit of the device and/or by solving for excess carriers and subsequent electric currents 
and current densities in the solid state. In this brief outline we are considering the first 
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approach by starting from the basic illuminated diode equation and adopting standard 
results regarding maximum power, short circuit current and open-circuit voltage values. 
Starting from the fundamental solar cell equation, we can derive maximum power 
conditions: 
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 (20) 

Where Im, Vm are maximum current and voltage values, and where  = q (kT)-1.  
And  
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Efficiency (as power out over power in) is shown to be: 
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It is clear from (22) that the quantity in brackets is the fill factor (FF) of the device which is 
found based on maximum voltage values and open circuit voltage: 
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Highly efficient solar cells have been found to have open-circuit voltages within a range 
from 1 to 1.08V. The table below indicates how open circuit voltage controls maximum 
voltage (voltage at maximum power point). Assuming short circuit current at 30mA/cm2, 
under one-sun (100mW/cm2), the efficiency is depicted below by Table 1:  
 

Voc(V) Vm(V) FF (%) (%) 

1.02 0.926 0.907 27.75 

1.03 0.938 0.906 27.99 

1.04 0.948 0.905 28.23 

1.05 0.958 0.904 28.50 

Table 1. Open circuit and maximum voltages, Fill Factor (FF) and collection efficiency  
(300 Kelvin). The cell is the top AlAs/GaAs that serves as a window to the solar flux.  

It is of advantage to suggest an undoped GaAs-Ge multi-quantum well (MQW) in a 
standard pin-design, namely, p-intrinsic (MQW)-n geometry that includes lattice-matched 
GaAs and Ge layers in the intrinsic region of the PV device. This formation could offer the 
advantage of 1eV absorption (at the appropriate quantum well width), without 
compromises in device transport properties, such as mobility or conductivity. GaAs-based 
layers provide (a) high mobility and absorption values and (b) a chance for fine-tuning of 
the optical gap with specific solar photon wavelength. Recently, high efficiency cell designs have 
been proposed where two pn cells are grown in tandem (series connection), where the top 
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cell is a bulk (e.g. GaAs/AlAs cell) and the bottom is a superlattice-based pin cell optimized 
at long wavelengths. Such devices offer efficiency increase by acting simultaneously: top 
unit near 20% and bottom unit near 30% (when they operate on their own) lead to structures 
(quantum cells) with overall efficiencies in excess of 35% (under one sun and with 
recombination effects and scattering included). As seen in Figure 5 below, the superlattice 
approach offers a tool for capturing solar photons at desired wavelengths with the 
appropriate quantum mechanical tuning. In other words, ground eigen-states in quantum 
wells match specific wavelengths (corresponding to photons with the same energy);  
 

 

Fig. 6. Regions of the solar spectrum covered by the superlattice cell and the top cell 
(visible). The superlattice can be tuned at ~1 eV. Dashed arrows indicate region of feasible 
absorption from the superlattice region 

As seen from the figure above, almost full spectrum absorption can be achieved with 
materials that absorb at desired photon energies. Specifically, visible photons may be 
absorbed by means of a GaAs/AlAs bulk cell, and IR radiation absorption can be achieved 
via GaAs (1.42 eV) and Ge (0.67 eV) respectively with superlattice or superlattice sections 
tuned at desired wavelengths. The n-region of the pin cell can be selected to be Ge in the 
bulk, ensuring absorption at the tail of the solar spectrum (for Ge: wavelength absorbed at  

 = 1.24/0.67 = 1.85 m, see last arrow in the figure above). How is the current formed in the 
superlattice layer? The answer hides in the quantum nature of this region: quantum wells 
quantized the energy of the captured electrons (and light and heavy holes in the valence 
band); photo-excited electrons escape thermionically from the wells and form excess current 
in the conduction band. On the other hand, incident IR photons are expected to be absorbed 
in the MQW area. Projected excess carrier population (electrons with recombination 
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included) is of the order of 1012 to 1013 cm-2 per eigen-state. Thermionic current density 
values have been found to be near order of 30mA/cm2 and open-circuit voltage values 
above 1V, at one sun.  Overall (for a composite cell see figure 3) collection efficiency values 
are initially projected well in excess of 35%, which is a key for immediate improvement to 
even higher collection efficiency. Total current density is dominated by the lowest of the two 
sub-cell currents, and open-circuit voltage values are the sum of the two sub-cell Voc values. 
Total current from the bottom cell is the sum of thermionic and nearest neighbor hopping 
currents. Preliminary results reach estimates of efficiencies from each of the two (lattice-
matched) sub-cells in excess of 21% per cell (predicted synergy of the two sub-cells in excess 
of 40%). Loss mechanisms at interfaces and quantum wells and their role in overall 
efficiency determination will also be included. Advantages of the design are:  
i. Solar spectrum matching in both visible and IR ranges through layer band gap-

matching selection. 
ii. Lattice-matching  
iii. Increased carrier transport due to GaAs. It is conceivable that even the 40%-plus  target 

of conversion efficiency can be reached with such designs 
Heterostructure and (most recently) multijunction solar devices exhibit better performance 
in transport properties, when compared to bulk solar cells: especially in quantum well 
devices, photo-excitation causes carrier accumulation in discrete energy levels, with 
subsequent escape to the conduction band (minus recombination losses) via standard 
mechanisms such as tunneling, thermal escape or nearest neighbor hopping conduction. 
Full spectrum absorption and triple junction solar cells have become key factors for high 
efficiency collection in PV structures of various geometries. Most recently, successful 
photovoltaic device (PV) designs have shown high efficiency values well above 30%, and 
efficiency levels in excess of 40% have been reached by means of triple junction 
metamorphic solar cells and under high sun concentration  (good candidate for 
concentrated PV or CPV). Multijunction solar cells offer a great advantage over their bulk 
counterparts: by incorporating lattice-matched alloys, one may succeed in designing a 
device with more than one energy gaps thus increasing the number of absorbed solar 
photons. During the last decade, various groups have modeled and developed multijunction 
solar cells in order to increase overall collection efficiencies. Emphasis has been given in two 
types of PV devices (a) lattice-matched solar cells and (b) metamorphic (lattice-mismatched) 
solar cells. In particular, III-V multijunction solar cells have shown the greatest progress in 
overall efficiency. The broader impact of this project is a new design proposal for high 
efficiency solar cells. The target is to exceed 45% collection efficiency for very efficient 
photovoltaic devices. It is more than clear that once such a cell is realized, the field of 
concentration photovoltaics (CPV) will benefit greatly: solar cells with (a) record high 
efficiency values (b) under several hundred suns (Fresnel optics at 500+ suns) and (c) small 
in size (low area hence less material) is already attracting interest for mass production in 
many places in the world. In recent years, it has been proposed by us a new design for a 
high efficiency and lattice-matched solar cell (HESC), where both visible and infrared 
portions of the solar spectrum are absorbed according to the structure’s geometric material 
arrangement: simultaneous absorption of both short and long wavelengths. In this on-going 
research enterprise, the synergy between a highly efficient triple junction cell and a highly 
efficient superlattice or a multi-quantum well region, is presented as a new and innovative 
way for further efficiency increase. It is well established by now, that triple junction solar 
cells are exceeding the upper threshold of collection efficiency to ever higher levels, namely 
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above 38%   with latest threshold at 41.1% (Fraunhofer Institute, Germany). Currently, a cell 
that will operate above the 40% threshold is in target, with ultimate target the efficiency at 
or near 50%.  The cell design is based on a p-i-n bulk device model with three distinct areas, 
two of which are complete PV-heterostructures on their own; in other words, these two 
regions could stand alone as two independent solar cell structures with quite acceptable 
performance (of the order of 21% and more as it has been demonstrated by our group 
recently). The power output of the PV composite device is a function of the individual 
power outputs from each sub-cell in the PV unit. On the other hand, triple junction solar 
cells seem to lead the way to high efficiency photovoltaics especially in the area of 
concentrated photovoltaics (CPV), where small cell area and therefore less material (hence 
lower material costs) may lead to high PV performance. The latter are triple junctions of 
lattice-matched and non-lattice matched III-V heterostructures with two tunnel junctions 
between the layers.  

7. Suggestions for modeling  

Fully develop a theoretical model of PV composite PV devices by first principle calculations 
and computations based on realistic device parameters; propose a composite PV structure 
with two major cells: a triple junction and multi-layer tuned cell, with the prospect of high 
efficiency near 50%. Modeling tools include several established math software packages. Seek 
for a composite photovoltaic device that combines properties of direct-gap crystalline 
semiconductors and absorption in the entire spectrum, mainly in the visible and in the infrared 
(NIR/IR) wavelength ranges, and which is configured as a two-part solar cell: a top triple 
junction and a multi-layer p-i-n bottom unit tailored to IR infrared wavelengths.  
The solar spectrum (a 6,000 oK, see in Figure 5) offers the option of finding suitable band gaps 
for highest absorption. Material selection shows a blue shift in the absorption via wide  
gap materials as shown (AlAs). Low gap materials offer wavelength matching in the IR range 
(note the dashed arrows indicating optical gaps corresponding to various wavelengths.  
It is of advantage to exploit quantum wells grown on n-type or low-doped substrates.  
 

 

Fig. 7. Tuned quantum wells at 1eV solar photons: shown are energy levels and optical gap 
increase 

GaAs 

Electrons 

Holes 

1-eV and 

optical gap 
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Superlattice structures in both cases mentioned above are at the designer’s disposal, in the 

sense that appropriate quantum well geometries may lead to desired solar photons 

absorption. Enhancement of cell performance can be achieved by replacing the intrinsic 

region with tuned multi-quantum well (MQW) layers, designed for specific wavelengths. 

Thermionic emission, hopping conduction and tunneling are dominant mechanisms of 

photo-carrier transport in heterostructures (against losses due to recombination processes). 

Photo-excited layers thermally escape from quantum wells (minus recombination losses):  

incident solar photons typically generate 1012 to 1013 net photo-excited carriers per unit area 

(cm2), after recombination effects have been taken into account. This population is expected 

to migrate to the conduction band assisted by the escape mechanisms named above and the 

built-in electrostatic field in the p-i-n region.  

By selecting suitable geometry of the quantum wells that leads to one or two energy levels 
in the quantum wells, ground state of electron-hole pairs at 1eV may be formed, and a 
second state at the very edge of the GaAs layer conduction band (see Fig 2): this event has 
been shown to act in favor of nearest neighboring hopping electrons from site to site 
(QW). Thus a three-fold advantage of the superlattice/MQW region is that (1) excess (in 
addition to carriers from the bulk part of the device) carriers are trapped and thermally 
escape to the conduction band and (2) nearest neighbor hopping conduction (NNH) 
becomes a second conduction mechanism and (3) band gaps of other materials may be 
represented via energy levels in quantum wells. The total current from the intrinsic region 
will be the sum of the thermionic and the NNH current components (minus 
recombination losses). Subsequent well width selection may lead to further refinement of 
solar photon absorption. Near infrared and infrared portions of the solar spectrum can be 
covered by suitable width selections, with equal amount of modeling effort (from the 
point of view of computations, it is a mere change of parameters for slightly different 
optical gaps). It is also interesting to note at this point that quantum well width could be 
modeled as a random variable, leading to a random distribution of optical gap values (as 
function of well width) and hence a smeared distribution of optical gap values and 
absorbed photon wavelengths, for the benefit of the photovoltaic device. Thus, IR photon 
absorption in the neighborhood of 1eV is feasible. In addition, the superiority of transport 
properties of the proposed quantum-PV device should be noted compared to its III-N-V 
“high” efficiency counterpart: our proposed superlattice cell is mainly a GaAs device 
perturbed by thin Ge layers, and therefore this region exhibits much higher electron 
mobility. In the absence of tunneling (thick potential barriers) total currents are in essence 
the sum of (a) bulk currents from the mainly bulk pin device (b) thermionic and (c) 
hopping current components, due to free electrons in the GaAs conduction band, assisted 
by the overall electrostatic field in the intrinsic region. Recent modeling and simulation 
have shown that the top cell retains visible absorption (AlAs/ (Al) GaAs/GaAs at ~21%) 
or to include a highly efficient triple junction cell (in this proposal, our own choice 
(InP/GaAs/GaAs at 30% efficiency). The bottom multi-well cell operates at longer 
wavelengths (1eV or 1,240nm), and therefore the whole of the unit absorbs in both 
regimes visible and IR respectively. Since germanium and gallium arsenide layers are 
lattice-matched, it is conceivable that a superlattice would fit in between the p- and n-
regions of the device. Advantages of such designs are summarized below: 
1. less material to grow 
2. small area (exposed to sun-light cell aperture) 
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3. less complexity in the structure overall 
4. reduced scattering of drifting and diffusing carriers 
5. reduced carrier trapping and recombination (carriers in MQW region separate from 

their corresponding holes as being away from the quantum wells) 
6. faster growth conditions attainable 
7. lower fabrication costs 
 
 

 

Fig. 8. Proposed cell structure: top cell p-n junction, tunnel junction (TJ) (purple) and p-i-n 
bottom cell with superlattice in the middle; P region (green), N region (yellow). Top cell is 
the window facing the sun (anti-reflected coating and surface texturing not shown).  

As seen from the figure above, there are several options for further design and optimization (a) 
top region offers the possibility of another superlattice tuned at selected wavelengths (b) layers 
and alloys other than GaAs can be used (in the lattice-matched fashion) (c) tuned superlattice 
(bottom cell) can be split is more than one narrow units tuned at desired solar spectrum peaks 
(d) cell can be of small area (less material used) or of large area for higher exposure.  

8. Some thoughts on concentrated photovoltaics (CPV) 

Concentrated light on small solar cells can become of great advantage: a small size cell 
(~2 mm2 area) may be placed at the focal point of a Fresnel optical system. Concentrated 
light causes higher carrier absorption from the bulk of the device and therefore higher 

Tuned 

Superlattic
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current generation. Currently III-V multijunction cells have shown to have the  
highest collection efficiency. Efficiency (%) increases logarithmically with solar power up 
to about 500 suns (one sun = 100mW/cm2). Currently, it seems that CPV cells show the 
highest efficiency (consistently above 38%) with latest record efficiencies at 41.1% 
(Fraunhofer Institute). As it can be seen from equation (11) and the efficiency expression: 
 = (Voc Jsc FF)/Pin, the efficiency of a solar cell increases logarithmically with Jsc. Such a 
behavior has been observed, in fact,  increases with increasing current generation 
(maximum value in the neighborhood of 550 suns).  
 

 

Fig. 9. Current status of cell performance and improvement since the mid seventies. Note 
that MJ cells have taken the lead in the high efficiency race. Latest (2010) results: 41.1% 
collection efficiency (Fraunhofer Institute at 454 suns) [© 2009 Spectrolab, Inc. All rights 
reserved].  

As seen from the figure above, multijunction cells, with more than one band gaps, take the 
lead in current and voltage production (recall that efficiency varies with open-circuit voltage 
and short-circuit current). CPV systems have given a boost of solar power production 
globally because they combine (a) highly efficient cells with small exposure area and (b) less 
costly optical system and components. As of 2009, CPV systems operate at 28 – 30% total 
efficiency (cell plus optics) and seem to be coming dynamically in the global PV market.  

9. Conclusions: The immediate future 

Photovoltaics is the child of progress in condensed matter physics, and has matured to the 
point that solar energy has been competing with fossil fuel energy sources. Small in size 
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highly efficient solar cells are the answer for our future energy needs. The 40% threshold has 
already been reached and current research shows that 50% photovoltaics will soon be a 
reality. It seems that such high conversion will be succeeded by means of small size highly 
efficient solar cells. By small size we mean from the mm level down to nano-sized PV 
particles mounted to Fresnel-type optical systems with high solar concentration. Global 
energy production based on high efficiency PV will solve the energy needs of all nations and 
will slow down planet pollution. No nuclear waste and zero chance for accidents will guide 
common sense in immediate future. The concept of tuned superlattices was outlined and its 
advantages have been presented. Well-understood and lattice-matched materials, such as 
GaAs/Alloy and Ge, along with improved growth techniques pave the way to high 
efficiency photovoltaic devices. Integrated circuit techniques are also available for cells of 
minute size (e.g. 5 mm2), which is a dramatic reduction of material and hence of cost.  
Reduced size photovoltaic cells, under high solar concentration (currently from 450 to 500 
suns), have opened the avenue for a competitive PV industry in the near future. 
Concentrated Photovoltaics (CPV-farms) will eventually dominate the world energy 
production. PV system price range has been steadily reducing from $0.40/KWh (mid-1990’s) 
to mere $0.20/KWh in 2008. Market penetration of the PV industry increases steadily (under 
1GW in the US to 6GW by the year 2015). It is expected that the average KWh will be ~10 
cents by or before 2015, with a steady GW plant installation. High efficiency solar cells 
(~50%) and parallel optical system advancement (total system at 30%), will lead to a very 
strong PV industry, for the benefit of all.  
Current modeling of the top structure has indicated top efficiency values in excess of 21% 
(power out vs. power in) while for the bottom cell preliminary calculations indicate 
collection efficiency in excess of 25%. The bottom cell is a GaAs-superlattice-Ge structure, 
where quantum size effects occur. Photo-excited carriers in the middle region are electrons 
trapped in quantum wells (thin germanium layers sandwiched by gallium arsenide layers). 
Thin Ge layers (20 nm) are tuned at 1eV. They act as quantum traps and confine electrons in 
a discrete set of energy levels (one or two at the most). From these traps photo-electrons 
escape to the conduction band (minus the lost ones). Some advantages of our design over 
other high-efficiency full-spectrum solar cells are: (a) No excess tunnel junctions are needed 
to connect the cells (b) The superlattice region includes germanium layers tuned to absorb 
photons near 1eV (or more, depending on the quantum well thickness) (c) High mobility of 
carriers in both cells (top, bottom); the latter is a direct advantage over existing III-N-V high 
efficiency competing (nitrogen based) solar cell structures (d) Perfect lattice matching among 
the layers (e) Parallel carrier transport via (i) tunneling (ii) hopping and (iii) thermionic 
carrier escape. In the case at hand, tunneling is not a part of the action; instead thermionic 
emission currents are of importance. Maximum efficiency over 40% is expected via the 
synergistic action of the two cells.  
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