
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Transparent Conducting  

Polymer/Nitride Semiconductor  

Heterojunction Solar Cells 

Nobuyuki Matsuki1,3, Yoshitaka Nakano2, Yoshihiro Irokawa1,  

Mickael Lozac’h1 and Masatomo Sumiya1 
1National Institute for Materials Science, Namiki, Tsukuba, Ibarak,  

2Institute of Science and Technology Research,  

Chubu University, Matsumoto, Kasugai, Aichi,  
3Department of Electrical and Electronic Engineering,  

Faculty of Engineering, Gifu University, Yanagido, Gifu, 

Japan 

1. Introduction  

Energy supplies that depend on fossil fuels evoke significant concern about the future 

depletion of those resources and the emission of carbon dioxide and sulfidizing gas, which 

are believed to cause environmental problems including climate change and acid 

precipitation (Solomon et al., 2007). Solar cells, which convert sunlight directly to electric 

power, are one of the most promising devices for a clean and enduring energy source. The 

standard energy-weighted power density of sunlight, which is defined as air mass 1.5, is 

1kW/m2 under clear and sunny weather conditions (Myers et al., 2000). The maximum 

available amount of sunlight is usually lower than the value described above due to the 

weather and the total hours of sunlight in the region.  

Thus, the first important aim for developing a solar cell is to derive the highest possible 

photovoltaic conversion efficiency from the utilized materials and structure. When a solar 

cell with a single bandgap, Eg, is exposed to the solar spectrum, a photon with less energy 

than Eg does not contribute to the cell output. Therefore, a multilayer structure comprising a 

variety of bandgaps is effective for the collection of photons in a wide range of the solar 

spectrum.  

The current (2010) best research-cell efficiencies of typical solar cells are as follows (Green, 

2010): crystalline Si (25.0%), multicrystalline Si (20.4%), crystalline GaAs (26.4%), CuInGaSe 

(19.4%), CdTe (16.7%), amorphous Si (10.1%), dye-sensitized polymers (10.4%), and organic 

polymers (5.15%). In addition to these, there have been a number of studies focused on 

developing “third-generation photovoltaics” with ultra-high conversion efficiencies at a low 

cost (Green, 2001). More recently, after the discovery of the wide band gap range of 0.65–3.4 

eV in InxGa1-x N, this material is considered to be one of the most promising candidates for 

third-generation photovoltaic cells. 
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Aiming at developing multijunction solar cells based on III-nitrides, we have focused on the 

potential of a transparent conductive polymer (TCP) as a UV-transparent window layer for 

the cell instead of adopting the conventional all-inorganic p-i-n structure. In this chapter, we 

describe the concept and experimental results of the development of TCP/nitride 

semiconductor heterojunction solar cells. In addition, prospects for their further 

development are discussed. 

2. Basic concepts 

2.1 Background 

In 2002, an epochal report on the Eg of InN was published; the Eg, which had been believed 

to be 2.0 eV for many years, was found to be less than 1.0 eV by photoluminescence 

characterization (Matsuoka et al., 2002). Subsequent investigations verified that the correct 

Eg is 0.7 eV (Wu et al., 2003). This fact immediately impelled III-nitride-researchers to 

consider applying III-nitrides to solar cells because InxGa1-xN, which is the III-nitride 

compound obtained from InN (Eg = 0.7 eV) and GaN (Eg = 3.4 eV), is a direct transition 

semiconductor that would widely cover the solar spectrum. Furthermore, the strong Piezo-

electric-field that forms in III-nitride semiconductors, which is a critical problem for optical 

emission devices due to the suppression of carrier recombination (Takeuchi, 1998), will be 

more advantageous to photovoltaic devices in which carrier separation is necessary. There 

have been reports on the theoretical predictions of the conversion efficiency of InxGa1-x N 

solar cells that suggest that the maximum conversion efficiency of InxGa1-x N solar cells will 

reach 35–40% (Hamzaoui, 2005; Zhang, 2008). Experimental results of InxGa1-x N-based solar 

cells have been also reported (Chen, 2008; Zheng, 2008; Dahal, 2009; Kuwahara, 2010). 

Although the potential conversion efficiency of InxGa1-xN solar cells is promisingly high, the 

highest one so far obtained through an InGaN/InGaN superlattice structure remains as low 

as 2.5% (Kuwahara, 2011).  

The challenges for the development of high efficiency InGaN solar cells are mainly 

attributed to the necessity for: (1) a conductive crystalline substrate to grow high quality 

nitride layers in order to reduce series resistance, (2) a high quality film growth technique to 

reduce carrier recombination, (3) high-efficiency p-type doping, and (4) a novel cell design 

that allows absorption in a wide range of the solar spectrum and efficient collection of the 

photo-generated carrier.  

Our research has targeted issues (3) and (4) above by introducing a novel Schottky contact 

consisting of a transparent conducting polymer/nitride semiconductor heterojunction. In 

this section, the advantages of the polymer/nitride semiconductor heterojunction are 

described in comparison with those of a conventional nitride p-n homojunction. In 

addition, the optical and electrical properties of the transparent conducting polymers are 

shown. 

2.2 Issues with solar cell window layer  

Figure 1 shows a schematic structure of the InxGa1-x N-based solar cell that exhibits  
2.5% conversion efficiency (Kuwahara, 2011). Due to the low doping efficiency and 
activity of Mg in p-type III nitride semiconductors, the InxGa1-x N-based solar cell requires 
a highly conductive front layer on top of the p-type layer to collect the photo-generated 
carriers. 

www.intechopen.com



 
Transparent Conducting Polymer/Nitride Semiconductor Heterojunction Solar Cells 

 

309 

 

Ti/Au Ni (5 nm)/Au(5 nm)

Ti/Al/Ti/Au

10 pairs

Ga0.09In0.10N:Si/GaN:Si

3 nm/3 nm

50 pairs

Ga0.83In0.17N/Ga0.93In0.07N

3 nm/0.6 nm

 

Fig. 1. Schematic of InxGa1-x N-based solar cell exhibiting 2.5% conversion efficiency 
(Kuwahara, 2011).  

In Figure 1, the electrode  on the window side consists of a Ni/Au semitransparent thin film 
similar to that in the conventional III-nitride-based photoelectric devices. Despite the 
transparency of the Ni/Au thin-film being as low as 67%, this material is utilized because it 
forms good ohmic contact with the III-nitride semiconducting layer (Song et al., 2010). With 
the aim of increasing the transparency of the window-side electrode, indium tin oxide (ITO) 
was applied to a III-nitride light-emitting diode (LED) (Shim et al, 2001; Chang et al., 2003). 
In the same study, although the light emitting intensity in the ITO/GaN LED was enhanced 
compared with that of a Ni/Au/GaN LED under the same current density, the lifetime of 
the device was significantly shortened due to the heat generated by the high contact 
resistance between ITO and GaN. Thus, ITO is not a suitable alternative candidate for the 
metal semitransparent layer unless the contact resistance problem is solved. The low optical 
transparency and/or the high contact resistance of the front conductive layer are a critical 
disadvantage for solar cell applications; therefore, new materials that can overcome these 
issues are highly desirable.  

2.3 Conducting polymers as electrodes  

Recently, the electronic properties of conducting polymers have been significantly improved 
and they have been extensively applied in various electric devices (Heeger, 2001).  
The study of polymers began with the accidental discovery of vinyl chloride by H. V. 
Regnault (1835). Thereafter, various kinds of polymers were found and industrialized 
including ebonite (1851), celluloid (1856), bakelite (1907), polyvinyl chloride (1926), 
polyethylene (1898; 1933), nylon (1935), etc. Polymers show good electrical insulating 
properties due to the lack of free electrons; therefore, they have been extensively applied as 
electrical insulators. However, in 1963, D. E. Weiss and his colleagues discovered that 
polypyrrole became electrically conductive by doping it with iodine (Bolto et al., 1963). In 
1968, H. Shirakawa and his colleagues accidentally discovered a fabrication process for thin-
film polyacetylene. In 1975, A. G. MacDiamid noticed the metallic-colored thin-film 
polyacetylene when he visited Shirakawa’s laboratory. Thereafter, collaborative works by A. 
Heeger, A. G. MacDiamid, and H. Shirakawa began and soon they found a remarkable 
effect that the electrical conductivity of the polyacetylene thin-film increased over seven 
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orders of magnitude, from 3.2×10-6 to 3.8×102 -1 cm-1, with iodine doping (Shirakawa et al., 

1977). Since these early studies, various sorts of -conjugated polymer thin films have been 
produced and efforts to improve their conductivity have been made.  

We briefly describe the origin of conductivity in degenerate -conjugated polymers below 

(Heeger, 2001). In degenerate -conjugated polymers, stable charge-neutral-unpaired-
electrons called solitons exist due to defects at the counterturned connection of the 
molecular chain. When the materials are doped with acceptor ions like I2, the acceptor ion 
abstracts an electron from the soliton; then the neutral soliton turns into a positively-
charged soliton while I2 becomes I3-. If the density of the positively-charged solitons is 
low, the positively-charged soliton tends to pair with a neutral soliton to form a polaron. 
The polaron is mobile along the polymer chain, thus it behaves as a positive charge. 
However, the mobility of the polaron is quite low due to the effect of Coulomb attraction 
induced by the counterion (I3-). The Coulomb attraction is reduced by increasing the 
density of the counterions, which block the electric field. Thus, a high doping 

concentration of up to ~20% is required to gain high conductivity of over 102 -1 cm-1. 
Typical conducting polymers that have high conductivity are fabricated based on 
polyacetylene (PA), polythiophene (PT), polypyrrole (PPy), polyethylenedioxythiophene 
(PEDOT), and polyaniline (PANI) (Heeger, 2001). 

2.4 Transparent conducting polymers as Schottky contacts  

Among the various kinds of conducting polymers, we have focused primarily on 

polyaniline (PANI) and poly(ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) 

because of their high conductivity (~1000 -1 cm-1) and high optical transparency (>80%) 

(Lee et al., 2006; Ha, 2004). Conducting polymers with high optical transparency are known 

as transparent conducting polymers (TCPs). PANI and PEDOT:PSS also have the advantage 

in a high workfunction of 5.2–5.3 eV (Brown, 1999; Jang, 2008). This workfunction value is 

comparable to that of Ni (5.1 eV) and Au (5.2 eV). The high workfunction properties of 

PANI and PEDOT:PSS make them feasible candidates as hole injection layers in polymer 

light emitting devices (Jang, 2008). If we assume that a heterojunction consists of a metallic 

layer and an n-type semiconductor, it is expected that electric barrier, or Schottky barrier, 

will form at the metal-semiconductor interface. The ideal Schottky barrier height, B, is given 

by following equation (Schottky, 1939; Mott, 1939): 

  B mq q       (1) 

where q is the unit electronic charge, m is the workfunction of the metallic material, and is 

the electron affinity of the semiconductor. In general, the experimentally observed Schottky 

barrier is modified due to the influence of image-force surface states of the semiconductor 

and/or the dipole effect (Tung, 2001; Kampen, 2006). Nevertheless, the ideal Schottky 

barrier height estimated from Eq. (1) is still useful to evaluate the potential barrier 

formation. There have been precedential reports on heterojunctions consisting of TCPs and 

inorganic monocrystalline semiconductors including: sulfonated-PANI/n-type Si (Wang et 

al., 2007; da Silva et al., 2009), PEDOT:PSS/SrTiO3:Nb (Yamaura et al., 2003), and 

PEDOT:PSS/ZnO (Nakano et al., 2008). The ( )m  values of these TCP/semiconductor 

heterojunctions, and those of PEDOT:PSS or AlN with III-nitrides including AlN, GaN and 

InN, are summarized in Table 1.  
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TCP  Semiconductor  
m

(eV) 

  

material m (eV)  material (eV)   References 

PANI 5.3a), b) 

n-type Si 4.05 c), d) 1.25 a) Brown et al., 1999; 
b) Jang st al., 2008 
c) Wang et al, 2007 
d) da Silva et al., 2009 
e) Grabowski et al., 2001 
f) Wu et al., 1999 
g) Wu et al., 2004 

h) Yamaura, 2003 

i) Nakano et al., 2008 

AlN 0.25e) 5.05
GaN 3.3f) 2.0
InN 5.7g) -0.4

PEDOT:PSS 5.2 a), b) 

SrTiO3:Nb 4.1h) 1.1

ZnO 4.3i) 0.7

AlN 0.25e) 4.95

GaN 3.3f) 1.9

InN 5.7g) -0.5

Table 1. Summary of workfunction barrier height properties of TCP/inorganic 
semiconductor heterojunction. 

The theoretical Schottky barrier height ( )m   is considerably high for AlN and GaN. 

Thus, it was expected that combinations of these TCPs and III-nitrides would exhibit high-

quality Schottky contact properties. When light is irradiated on the Schottky contact, the 

hole-electron pairs that are photo-generated in the depletion region of the semiconductor 

are separated due to the strong electric field. As a result, the carriers can be collected as a 

photocurrent. This suggests that the TCP Schottky contact can be a novel window layer for 

III-nitride solar cells as an alternative to a p-type layer. Based on this, we began to study 

transparent conducting polymer/nitride semiconductor heterojunction solar cells. 

3. Fabrication processes 

3.1 Sample preparation for optical transmittance, workfunction, and conductivity 
characterizations 

Synthetic silica plates (500 m thick) were utilized as the substrates to prepare samples for 
characterization to determine their optical transmittance, workfunction, and conductivity. A 
conductive polymer-dispersed solution of PEDOT:PSS (Clevios PH500, H. C. Starck; without 
dimethyl sulfoxide dopant) or PANI (ORMECON - Nissan Chemical Industries, Ltd.) was 
utilized to form the transparent conductive polymer films on the substrate. The same 
fabrication process was applied to both the PEDOT:PSS and PANI samples. The procedure 
was as follows: 
1. The substrate (2 × 2 cm2) was cleaned using ethanol and acetone for 5 min each in an 

ultrasonic cleaning bath at ambient temperature.  
2. The cleaned substrate was set in a spin coater (MIKASA Ltd., 1H-D7), and the polymer-

dispersed solution were dropped onto the substrate using a dropper. 
3. The substrate was spun at a 4000 rpm rotating speed for 30 s. 
4. The drop and spin procedures were repeated 4 times in total to obtain a sufficient 

thickness. 
5. The coated sample was baked in air at 130 °C on an electric hotplate for 15 min. 
The resulting PEDOT:PSS and PANI film thicknesses were measured using a surface 
profilometer (Dektak 6M) and were found to be 420 and 170 nm, respectively. In the spin-
coat process, we applied the same conditions to both the PEDOT:PSS and PANI samples. 
Their thicknesses unintentionally differed due to differences in the viscosities of their source 
solutions. 
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In order to measure the conductivity, a coplanar electrode was fabricated by adding Ag paste 
to the TCP/synthetic silica plate sample. The electrode-gap width were both 3.3 mm and the 
lengths were 10.7 and 11.2 mm, respectively, for the PEDOT:PSS and PANI samples.  

3.2 Transparent conducting polymer/nitride semiconductor heterojunction solar cells 

We fabricated a TCP/III-nitride heterojunction solar cell structure by employing 
PEDOT:PSS or PANI for the TCP layer and epitaxial GaN (epi.-GaN) for the III-nitride layer 
(Matsuki et al, 2009, 2010, 2011). Silicon-doped gallium nitride (GaN) was grown on a 
sapphire (0001) substrate (sapp (0001)) surface by typical metal-organic vapor-phase epitaxy 
(MOVPE). Ammonia and trimethylgallium were used as the N and Ga sources, respectively. 
Nitrogen was used as the carrier gas. An undoped buffer GaN layer with a thickness of 1 

m was deposited, followed by the growth of a 2 m thick Silicon-doped layer. The carrier 
concentration and electron mobility of the GaN film was determined to be 6.3 × 1017 cm-3 
and 360 cm2/V·s, respectively, by Hall measurement. 
The PEDOT:PSS or PANI thin film was formed on the epi.-GaN surface using the same 
process described in section 3.1. Then, in order to fabricate isolated cells, the TCP film was 
divided into several ~3–9 mm2 square-shaped sections using a scratching tool. Finally, an 
ohmic contact for the GaN layer was made by soldering indium metal onto the area from 
which the TCP layer was removed. Figure 2 shows the schematic structure of the fabricated 
TCP/epi.-GaN heterojunction solar cell. 

4. Characterization methods 

4.1 Photoemission electron spectroscopy for workfunction determination 

The workfunctions of the TCPs were determined using photoemission electron 
spectroscopy. The photoemission electron yield Y is expressed as follows Kane (1962): 

 ( )n
tY h E    (2)  

where  is a proportional constant, h is Planck’s constant,  is the frequency, Et is the 
threshold energy, and the value of n ranges from 1 to 5/2 depending on the system. For 
metallic materials, an n value of 2 is recommended, and the Et is consistent with the 
 

 

Fig. 2. Schematic of TCP/epi.-GaN sample.  
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photoelectric workfunction. Thus, if we modify Eq. (2) to the following form (Eq. (2)′), we 

can determine Et by extrapolating the linear portion of a Y1/2 vs. h plot: 

  1/2 ( )tY h E   .  (2)’  

We employed a photoemission yield spectrometer (AC-3, Riken Keiki Co., Ltd.) to 

determine the workfunctions of the TCPs. The sample, which was prepared as described in 

section 3.1, was installed in the spectrometer and the photoemission yield was measured in 

air.  

4.2 Evaluation of current-voltage characteristics  

The diode (rectifying) and photovoltaic characteristics were evaluated using an electronic 

measurement system consisting of an electrometer and a light source. It is necessary for the 

diode characterization to cover a wide current range from ~10-11 to ~10-1 A to estimate the 

Schottky barrier height (SBH) based on the saturation current of the thermionic emission 

theory (Crowell, 1965). Thus, for the evaluation of the diode characteristics, we employed a 

high-precision electrometer with a built-in voltage source (Keithley 6487) and performed the 

measurement under dark conditions. The sample was put on a measurement stage and 

probe needles were connected to the indium and TCP parts. A xenon-arc light source (HX-

504/Q, Wacom Electric Co., Ltd.) was utilized for the evaluation of the photovoltaic 

characteristics. The light passed though an AM1.5 filter (Bunko Keiki Co., Ltd) and guided 

onto the TCP side by an aluminum mirror. The values for the source voltage and measured 

current were acquired by a computer through a GPIB-USB device (National Instruments  

Co. ltd.). 

4.3 Capacitance measurements 

The depletion layer width and built-in potential of the GaN layer in the TCP/GaN 
heterojunction solar cell were estimated using a capacitance measurement setup. A solartron 
1255B frequency response analyzer was utilized for the measurement. The sample was set 
on a sample stage, which was in a vacuum chamber to avoid any influences from light and 
humidity. 

5. Experimental results and discussion 

5.1 Conductivity, transparency, and workfunction of polyaniline and PEDOT:PSS 

The electrical conductivity was evaluated using a current-voltage (I-V) measurement  

setup under dark conditions. The conductivities estimated from the result of the I-V 

measurements were 3.4×102 S/cm and 5.7×10-1 S/cm for PANI and PEDOT:PSS, 

respectively.  

The optical transmittance was evaluated using a UV-visible-near-infrared spectrophotometer 

(UV-3150, Shimadzu Co., Ltd.). Figure 3(a) shows the optical transmittance spectra of the 

PEDOT:PSS and PANI films. Both of the films exhibited transmittance greater than 80% within 

the wavelength region between 250 and 1500 nm. This is superior to conventional transparent 

contact materials such as transparent conductive oxides or semi-transparent metals (Kim et al., 

2002; Satoh et al., 2007), which exhibit significant drops in transparency particularly near the 

UV region, as seen in Figure 3.  
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The workfunctions of the TCPs were estimated using an ultraviolet photoelectron emission 
spectrometer (AC-3, Riken Keiki Co., Ltd.). Figure 3(b) depicts the photoelectron emission 
spectra of the PEDOT:PSS and PANI films. The spectra consist of two parts: one with a 
constant slope and another that linearly increases against the photon energy. The 
workfunction of PEDOT:PSS and PANI were found to be 5.3 and 5.2 eV, respectively, from 
Figure 3(b) by assuming that the threshold energy for photoelectron emission is located at 
the intersection point of the two straight lines that are fitted to the constant-slope and 
linearly-increasing-slope regions of the plots. These workfunction values show good 
agreement with those reported previously (Brown et al., 1999; Jang et al., 2008). 
 

0 500 1000 1500
0

20

40

60

80

100

 

T
ra

n
s
m

it
ta

n
c
e

 (
%

)

Wavelength (nm)

PEDOT:PSS

PANI

ZnO-SnO2

(Satoh et al., 2007)

Pt (Kim et al., 2002)

 

4.5 5.0 5.5 6.0 (
P

h
o

to
e

le
c
tr

o
n

 y
ie

ld
s
)1

/2
 

(a
rb

. 
u

n
it
s
)

 PANI

 PEDOT:PSS

Photon energy (eV)

(b)

 

(a)     (b) 

Fig. 3. (a) Optical transmittance spectra of PEDOT:PSS and PANI films. The transmittance 
spectra of ZnO-SnO2 (Satoh et al., 2007) and semi-transparent Pt (Kim et al., 2002) thin films 
are also shown for comparison. (b) Photoelectron emission yield spectra of PEDOT:PSS and 
PANI films. 

5.2 Diode characteristics of transparent conducting polymer/nitride structures 

Figure 4(a) shows the current density-voltage (J-V) characteristics of the TCP/epi.-GaN 

samples. The diode ideality factor, n, and the SBH, B, were evaluated by fitting the 
theoretical values obtained using the following equation based on the thermionic emission 
theory (Crowell, 1965):  

 2* exp exp 1B qV
J A T

kT nkT

               
 (3) 

where q is the electronic charge, A* represents the effective Richardson constant, which is 

defined as * 2 3* 4 eA m k h  (26.4 A/(cm2·K2) for GaN), T is the absolute temperature, k is 

the Boltzmann constant, V is the applied bias, m* is the effective electron mass (0.2 me for 

GaN), and h is Planck’s constant. The n and B values derived using the J-V characteristics 
were 3.0 and 0.90 eV, respectively, for PEDOT:PSS/epi.-GaN, and 1.2 and 0.97 eV, 
respectively, for PANI/epi.-GaN. The low reverse leakage current, which ranged between 
10-8 and 10-9 A/cm2 at a reverse bias voltage of -3 V, indicates that the TCP/epi.-GaN 
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heterojunctions had a Schottky contact property comparable to that exhibited by 
conventional metal Schottky contacts.  
The depletion width, WD, in the n-type GaN of the TCP/epi.-GaN heterojunction is 
expressed by 

  02 S
D Built in

D

W V V
qN

 
   (4) 

where S is the relative dielectric constant of GaN and equals 8.9 (Wu, 2009), 0 is the 
vacuum dielectric constant, Vbuilt-in is the built-in voltage formed in GaN, V is the bias 
voltage, and ND is the donor concentration. The space charge, QSC, in the depletion layer is 

given by SC D DQ qN W , thus, the depletion layer capacitance CD is obtained by  

 0

2( )
SC S D

D
built in

Q q N
C

V V V

 




 

 
. (5)  

Equation (5) can also be written in the following form:  

 
2

0

2( )1 built in

S DD

V V

q NC  
 

 . (5)’ 

Equation (5)’ suggests that if 1/CD2 exhibits linear plots against V, Vbuilt-in can be obtained at 

the V-intercept of extrapolated fit-line of the plots. Figure 4(b) shows the plot of 1/CD2 as a 

function of the applied voltage. The frequencies used for the capacitance measurements 

were 100 Hz and 1 KHz for the PANI/epi.-GaN and PEDOT:PSS/epi.-GaN heterojunctions, 

respectively. The frequency for measurement was chosen within a range that was 

sufficiently lower than the cut-off frequency, which is described in section 5.4. In Figure 4(b), 

both the data sets are linear and straight lines were successfully fitted to the data. The 

determined diode characteristics of the TCP/epi.-GaN heterojunction determined from the 

J-V characteristics and capacitance measurements are summarized in Table 2. The observed 

barrier height was comparable to that obtained by conventional metal Schottky contacts 

(Tracy et al., 2003). In the case of the conventional metal Schottky contacts, elaborate surface 

cleaning processes and moderate metal deposition in ultra-high-vacuum conditions are 

required to attain good Schottky contact with a B of more than 1 eV. It is worth noting that 

the good Schottky contact properties in the TCP/epi.-GaN heterojunction were achieved 

with convenient spin coating of a water-dispersed TCP solution onto the GaN layer in air at 

ambient temperature.  

The observed B of the TCPs were much lower than expected from the energy 

difference m  . There are various possibilities for the lower barrier heights including the 

Schottky effect, which is caused by the electronic mirror force, interface dipole effect, surface 

defects of GaN, inhomogeneous workfunctions in the TCP film, and/or residual 

contamination (Sze, 1981; Kampen, 2006). However, the major candidates for the 

modification of the barrier height have been discussed and are still controversial even in 

conventional metal/semiconductor Schottky heterojunctions (Tung, 2001). Further detailed 

investigation is required to determine which effects dominate in lowering the barrier in the 

TCP/epi.-GaN heterojunction.  
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Fig. 4. (a) J-V characteristics and (b) Capacitance-voltage plots of TCP/GaN heterojunction 
solar cells. 

 
 

 
Polymer 
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(nm) 

Schottky 
contact 

area  
(mm2) 
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C-V 

n 
B 

(eV) 

WD 

(nm) 
VBuilt-in 

(V) 

PANI 170 7.1 1.2 0.97  39 0.94 
PEDOT:PSS 420 3.0 3.0 0.90  40 0.95 

Table 2. Diode characteristics of PEDOT:PSS/epi.-GaN (0001) and PANI/epi.-GaN.  

5.3 Photovoltaic characteristics of transparent conducting polymer/nitride 
semiconductor heterojunction solar cells 

Figure 5(a) shows the photovoltaic characteristics (J-V measurements under AM1.5 light 
irradiation) of the PANI/epi.-GaN and PEDOT:PSS/epi.-GaN samples. Table 3 represents a 
summary of the resulting photovoltaic and resistivity characteristics, which include open-
circuit voltage (VOC), short-circuit current density (JSC), maximum output power (Pmax), fill 
factor (FF), shunt resistivity, and series resistivity. Note that the VOC exhibited high values 
(>0.5 V), which was much higher than the photovoltage observed in metal Schottky contacts 
on n-type GaN (Zhou et al., 2007) or PEDOT:PSS Schottky contacts on ZnO (Nakano et al., 
2008). The superior photovoltages of the TCP/epi.-GaN heterojunctions are attributed to the 
following advantages conveyed by our process and substance properties: the ambient 
temperature fabrication resulted in less process damage and GaN exhibits less electron 
affinity (3.3 eV) than ZnO (4.4 eV) (Wu et al., 1999).  
However, the rather small shunt resistivity and large series resistance that are observed, 
especially in the PANI/epi.-GaN heterojunction solar cell, are clearly due to the 
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deterioration of VOC and FF. The optimization of the deposition process of TCP and 
introduction of a metal comb-shaped electrode on the TCP layer will improve VOC and FF. 
Figure 5(b) depicts external quantum efficiency of the PANI/epi.-GaN heterojunction solar 
cell. In order to visualize the capabilities of the photovoltaic device, the transmittance of 
PANI and the solar light intensity are also plotted as a function of wavelength. 
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Fig. 5. (a) Photovoltaic characteristics of PANI/epi.-GaN and PEDOT:PSS/epi.-GaN 
heterojunction solar cells. (b) External quantum efficiency of PANI/epi.-GaN heterojunction 
solar cell, transmittance of PANI (T), and solar light intensity (SLI) as a function of 
wavelength. 

 
 

Polymer 
thickness 
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contact area 

(mm2) 

Photovoltaic characteristics  Resistivity 

VOC 

(V) 
JSC 

(mA/cm2) 
FF 

Pmax 
(mW/cm2) 

 
 

Rsh 

(k/cm2) 

Rs 

(/cm2) 

PANI 170 7.1 0.73 0.41 0.42 0.13  21.2 310.3 

PEDOT:PSS 420 3.0 0.80 0.25 0.54 0.11  36.8 17.4 

Table 3. Photovoltaic characteristics of PEDOT:PSS/epi.-GaN and PANI/epi.-GaN.  

5.4 Frequency-dependent capacitance and its application to deep-level optical 
spectroscopy (DLOS)  

In this study, we found that the capacitance of the TCP/epi.-GaN heterojunction exhibits 

significant dependence on the frequency of measurement. Figure 6 shows the capacitance-

frequency (C–f) characteristics of the samples. The characteristics were measured under 

zero-bias conditions. As seen in the graph, the capacitance is constant at a lower frequency; 

however, it starts to drop at a specific frequency and then rapidly decreases towards the 

higher frequencies (cut-off). The frequencies at which the capacitance begins to drop are 

located at ~20 Hz and ~6 kHz for the PEDOT:PSS/epi.-GaN and PANI/epi.-GaN samples, 

respectively. It is obvious that the difference in the specific frequencies between the two 
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samples is due to differences in the intrinsic properties of the TCPs. Conductivity in TCPs is 

generated by a polaron in the -conjugated bond; this polarized state causes a Debye-type 

dielectric dispersion response against an applied alternating electric field (Cole et al., 1941).  
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Fig. 6. C-f characteristics of TCP/epi.-GaN heterojunction solar cells. 

Referring to a previous study on the frequency-dependent capacitance of PANI film (Mathai 

et al., 2002), the characteristics can be analyzed by assuming an equivalent circuit consisting 

of a frequency-independent capacitive element, C0, in parallel with a resistive element, R, 

both in series with a constant low-value resistance. Based on this model, the frequency-

dependent capacitance of TCP, Cp, is given by the following equation: 

 0 2
0

1

(2 )
pC C

fR C
   (6)  

where f is the applied bias frequency.  
Furthermore, considering that the capacitance of the depletion layer, Cd, is in series with CP, 
then the measured total capacitance of the sample, Ctotal, can be expressed by 

 
p d

total
p d

C C
C

C C





. (7)  

The solid lines shown in Figure 5 represent the results of the least-square fit of the analytical 

curve produced based on Equations (6) and (7). The excellent fitting results indicate that the 

assumed model is adequate. The values of R and C0, which were derived from the fitting, 

were 5.3×102 and×10-9 F·cm-2, respectively, for PANI/epi.-GaN and 8.4×104and
×10-9 F·cm-2, respectively, for PEDOT:PSS/epi.-GaN. The large difference in the R values 

between the two samples is reasonable if we take into account the large difference in the 

conductivity between PEDOT:PSS (5.7×10-1 S/cm) and PANI (3.4×102 S/cm). 

We describe below that the transparent Schottky contact fabricated by TCP is applicable not 
only to the photovoltaic device but also to defect density investigation. Nakano et al. 
applied deep-level optical spectroscopy (DLOS) to the PANI/epi.-GaN samples (Nakano et 
al., 2010, 2011a, 2011b). DLOS allows the deep-level density in semiconductors to be 
estimated by detecting the change in capacitance, which is caused by discharging the deep-
levels by exciting electrons with monochromatic light. The measurement process was as 
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follows. The residual electrons in the deep levels were excluded by applying a reverse bias  
(-2 V) and extending the depletion layer. Then, the bias was removed for 1 second to fill the 
deep levels with electrons in the dark. After that, the same reverse bias was again applied to 
form the depletion layer followed by monochromatic light illumination that excites electrons 
in the deep levels up to the conduction band. The difference in the capacitance between the 

filled state and post-excited states (discharged) was detected as C. The density of the deep-

levels is estimated by 2NDC/Ci, where ND is the donor concentration and Ci is the initial 
capacitance that is obtained in the filled state in the dark. Figure 7 shows the resulting DLOS 
spectra. Interestingly, both the spectra acquired at 1 and 10 kHz bias frequency show no 
characteristic peaks; however, when the bias frequency was increased to 100 kHz, several 
peaks appeared in the spectrum. This specific frequency, 100 kHz, corresponds to the point 
where the total capacitance dropped down to a negligible level compared to the capacitance 

at 1 and 10 kHz. This means that the Ci became smaller comparable to C, thus, 2NDC/Ci is 
effectively enhanced enough to be detectable.  
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Fig. 7. DLOS spectra of PANI/epi.-GaN heterojunction solar cell.  

In Figure 7, five photoemission states are clearly revealed with onsets at ~1.40, ~1.70, ~2.08, 
~2.64, and 2.90 eV below the conduction band, which are denoted as T1, G1, G2, T2, and T3, 
in addition to the near-band-edge (NBE) emissions of GaN at 3.3–3.5 eV. For all the deep 
levels, electron emission to the conduction band is a dominant process due to their positive 
photocapacitance transients. The T1, T2, and T3 levels are identical to the deep-level defects 
that have been commonly reported for GaN, whereas the G1 and G2 levels look like the 
specific deep levels characteristic of AlGaN/GaN heterointerfaces that were reported 
recently (Nakano et al., 2008). Using the TCP Schottky contact, we successfully revealed the 
deep-level states in the near-surface region of the n-GaN layer. These experimental results 
and further detailed investigations can provide important information on the electronic 
properties that is needed to improve the performance of the device in optical and electronic 
fields. 

5.5 Future perspective of TCP/nitride semiconductor heterojunction solar cells  

In order to increase the output power of TCP/nitride semiconductor heterojunction solar 
cells, the nitride portion is required to be substituted from GaN to InxGa1-x N. The presumed 
difficulty in developing the TCP/n-InxGa1-x N heterojunction is the lowering of the barrier 
height since the electron affinity significantly increases with an increase of the In content. 
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One of the most plausible solutions for this issue is to insert a several-tens-nanometer-thick 
GaN or AIN layer between TCP and n-InxGa1-x N. With this device structure, it is expected 
that the barrier height at the TCP/nitride semiconductor interface will be maintained at a 
high value and an internal electric field should be formed. 
The cost of the sapphire substrate will become a high barrier for reducing the production 
cost of III-nitride based solar cells. Matsuki et al. have shown that high quality GaN can be 
grown on mica plates (Matsuki et al., 2005), which are inexpensive and flexible. Applying 
such a novel alternative to sapphire for the epitaxial growth substrate will be effective for 
developing large area TCP/nitride semiconductor heterojunction solar cells.  
TCPs have a high transparency from 250 nm to the visible wavelength region, as described 
in section 5.1. Thus TCP/nitride semiconductor heterojunction photovoltaic devices also 
have a high potential for applications in ultraviolet sensors. 

6. Conclusion 

We have fabricated TCP/nitride semiconductor heterojunction solar cell structures by the 
spin-coating method using PEDOT:PSS or PANI as the TCP layer and Si-doped GaN as the 
semiconductor layer. The devices exhibited high quality rectifying properties and have an 
approximately 1 eV barrier height. Both the PANI/epi.-GaN and PEDOT:PSS/epi.-GaN 
heterojunction solar cells exhibited ultraviolet-sensitive photovoltaic action. The observed 
open-circuit voltage was superior to previously reported values for metal/GaN Schottky 
photo-detectors. A characteristic frequency-dependent behaviour of the interface 
capacitance was found for the TCP/epi.-GaN solar cells. The C-f characteristics were 
analyzed based on the dielectric dispersion theory and the intrinsic capacitance and 
resistance were obtained. The considerable reduction of the interface capacitance in the high 
frequency region allowed for highly-sensitive detection of deep levels in GaN by DLOS 
measurements.  
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