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1. Introduction 

After a genome is assembled, the next step is genomic annotation, which can generate data 
that will allow various types of research of the model organism. Complete DNA sequences 
of the organism are then mapped in areas pertinent to the research objectives. In this 
chapter, we explore relevant ongoing research on genes and consider the gene as a basic 
mapping unit. Gene prediction is the first hurdle we come across to begin the extensive and 
intensive work demonstrated in first item, which deals with assembly of the genome. Gene 
prediction can be made with computational techniques for recognizing gene sequences, 
including stop codons and the initial portions of nucleotide sequences; it involves empirical 
rules concerning minimum coding sequences (CDS's) and is limited due to overlapping 
sequences coding forward and reverse. 
Finishing gene prediction step by a computer initiates the functional annotation stage. 
Functional annotation, item 3, can be done initially by computer, using similarity in 
sequence alignment. However, no software is capable of generating a functional 
annotation without many false positive results, since conserved protein domains with 
varied functions make gene sequence alignment difficult. In this case, after automatic 
annotation, the predicted genes need to be revised manually. In manual curation, item 4, 
an expert can more accurately locate frameshifts in the DNA strand. Depending on the 
number of errors found, genomic annotation may be postponed, requiring a return to the 
previous stage of genome assembly. In manual curation, the principal contributions are 
usually correction of the start codon position, gene name, gene product and, finally, 
identification of frameshifts. 
When functional annotation is completed, the genome should subsequently be submitted. It 
occurs after the assembly and annotation steps making the data generated available in 
public-access databanks. Submission is a pre-requisite for publication in scientific journals. 
Another advantage of genome publication in public-access sites is that it permits use of 
various genome analysis tools. For example, searches for genomic plasticity, pangenomic 
study, exported antigens and evaluation of innate and adaptive immune responses. The 
pangenome approach, item 5, concepts of species can be used as a filter for targeting 
candidates for vaccines, diagnostic kits and drug development. For drug development, the 
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core set of proteins is a more likely source of useful information, for developing both 
vaccines and diagnostic materials for a unique pangenome set of a species of interest. 
Genomic plasticity, item 6, is the dynamic property of genomes, involving DNA gains, 
losses, and rearrangement; it allows bacteria to adapt to new hosts and environments. There 
are several mechanisms that can drive these changes, including point mutations, gene 
conversions, rearrangements (inversion or translocation), deletions and DNA insertions 
from other organisms (through plasmids, bacteriophages, transposons, insertion elements 
and genomic islands). Gene acquisition and loss by all these mechanisms influences 
bacterial lifestyles and physiological versatility. Analyses of HGT regions in silico has 
become feasible due to the introduction of next–generation sequencing technologies, which 
allows sequencing of prokaryotic genomes at a faster rate than the earlier Sanger method 
and at a considerably lower operational cost. Consequently, the number of complete 
genome sequences available for analysis has grown and continues to grow rapidly. 
In post-genomics, study of Reverse Vaccinology (RV), item 7, can provide predictions of the 
sub cellular locations of an entire predicted proteome. Additionally, these previous 
annotations, prediction of peptides with high affinity for class I and II MHC proteins is 
another in silico analysis that increases the probability of selecting antigens that can 
promote immune responses in organisms infected by a pathogen. The field of research 
referred to as immunoinformatics, item 8, is giving us the opportunity to analyze antigens 
with greater selectivity and increase the likelihood of developing a successful vaccine. 

2. Gene prediction 

The development of modern sequencing technology has resulted in an exponential increase 
in the number of available genome sequences. To illustrate, in 1997 there were 10 complete 
genome sequences of bacteria available in the NCBI (Lukashin & Borodovsky, 1998); by 
2011, this number had sharply increased to 1,538 http://www.ncbi.nlm.nih.gov/ 
genomes/lproks.cgi. This enormous increase in the quantity of available information 
stimulated the development of tools for gene prediction. The development of these tools is a 
tremendous challenge, and it is a major contribution of Bioinformatics to the field of genomics. 

2.1 Gene prediction strategies 

Gene prediction programs can be divided into two categories: an empirical category, which 
relies on sequence similarity; and ab initio, which uses signal and content sensors. Empirical 
gene predictors search for similarity in the genome; they predict genes based on homologies 
with known databases, such as genomic DNA, cDNA, dbEST and proteins. This approach 
facilitates the identification of well–conserved exons. Ab initio gene finders use sequence 
information of signal and content sensors. Usually, these programs are based on Hidden 
Markov Models. Ab initio can be organized into categories based on the number of genome 
sequences used in gene analysis; it includes single, dual and multiple–genome predictors. 
Integrated approaches couple the extrinsic methodology of empirical gene–finders and 
intrinsic ab initio prediction. This technique significantly improves gene prediction 
protocols (Allen et al., 2004).  

2.2 Eukaryotes 

The complexity of the challenge faced by Bioinformatics is only completely understood 
when we look at the complexity of the eukaryotic genome. Within genomes, genes are not 
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organized in a continuous cluster. Instead, the coding regions (exons) are often widely 
interspersed with non–coding intervening sequences (introns). Furthermore, in many cases 
the intronic region is much larger than the exonic region. These low–density coding 
sequences are evident in the human genome, in which only approximately 3% of the DNA 
generates proteins. The exon and intron issue can be compared to trying to read a non–
continuous article in a journal. In an analogy, one must first identify in which part of the 
journal (genome) the article (gene) of interest is; then, as the DNA sequences are read, it is 
necessary to identify which part is informative (exon) and which part contains random 
information (intron). Also, genes can be altered by alternative splicing, which is a process 
that generates multiple protein sequences from the same gene sequence template 
(Schellenberg et al., 2008). 
Gene prediction methodology for eukaryotes involves two distinct aspects; the first focuses 
on the information utilized for gene recognition, basically recognizing signal functions in the 
DNA strand; the second uses algorithms implemented by prediction programs for accurate 
prediction of gene structure and organization. The signal function search can be divided 
into two mechanisms utilized for locating genes. One classifies the content of the DNA 
strand and the other searches for functional signals in the genome: 
(i) The content sensor classifies the DNA regions into coding and non-coding segments 
(introns, intergenic regions and untranslated regions). This mechanism involves two 
approaches, intrinsic and extrinsic. The extrinsic approach relies on the assumption that 
coding regions are evolutionarily more conserved than non–coding regions. Consequently, 
this methodology employs local alignment tools, like BLAST (Johnson et al., 2008) ; this 
makes it possible to make comparisons within the genome and between closely-related 
species. However, one important flaw in this approach involves the necessity of identifying 
homologies within the database in order to extract results. If none is found, this 
methodology is unable to determine if a region "codes" for a protein (Sleator, 2010). (ii) The 
functional sensor approach searches the genome for consensus sequences. Consensus 
sequences are extracted from multiple alignments of functionally-related documented 
sequences. The functional signals involve transcription, translation and splice sites. 
Transcriptional signals includes the CAP signal at the transcriptional start site and the 
polyadenylation signal located 20 to 30 bp downstream of the coding region. Another 
important signal to identify is the translation initiation site, although this feature has 
limitations due to a lack of knowledge concerning initiation sites in eukaryotes (Mathé et al., 
2002). 

2.3 Prokaryotes 

Unlike eukaryotes, the archaeal, bacterial and virus genomes are highly gene-dense. The 
protein coding regions usually represent more than 90% of the genome. Therefore the 
accuracy of gene predictors depends primarily on determining which of the six frames 
contains the real gene. The simplest approach in gene prediction is to look for Open Reading 
Frames (ORFs). An ORF is a DNA sequence that initiates at a start codon and ends at a stop 
codon, with no other intervening stop codon. One way to locate genes is to look for ORFs 
with the mean size of proteins (roughly 900 base pairs) (Allen et al., 2004). Therefore, long 
ORFs indicate possible genes, although this methodology fails to predict small genes. 
The major problem in simply applying this technique is the possibility of ORF overlap in the 
different DNA strains. This approach must be used along with guidelines to avoid 
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overlapping, choosing the more likely candidates. Also, numerous false positives are found 
in non-coding regions. Due to the high gene density, it is difficult to confidently state that 
any gene predicted in a non–coding region is false. This problem can be minimized by 
searching for homologies in closely–related organisms. If we do not find a conserved 
sequence in related species, it is assumed that the prediction (of a gene) is false. 
Another problem faced by prediction programs in prokaryotes is how to determine the start 
codon of a sequence. The first initiation site in a sequence is not necessarily the true one. To 
solve this problem, programs can employ ribosome binding sites (RBS), which provide a 
strong signal, indicating the position of the true start site. In conclusion, there is a drop in 
prediction accuracy in high–GC–content genomes. Rich GC genomes contain fewer stop 
codons and more spurious ORFs. These false ORFs are often chosen by prediction programs 
instead of the real ones in the same DNA region. Additionally, the longer ORFs in GC–rich 
genomes contain more potential start codons, leading to a drop in the accuracy of 
translation initiation site prediction (Hyatt et al., 2010). 

2.4 Tools 
2.4.1 Glimmer 

The first version of Glimmer (Gene Locator and Interpolated Markov ModelER) was 
released in 1998 ; the 3.02 version was released in 2006. Glimmer is a system for finding 
genes in microbial DNA, especially the genomes of bacteria, archaea, and viruses. Glimmer 
uses interpolated Markov models (IMMs) to identify coding regions and distinguish them 
from noncoding DNA. Glimmer was the primary microbial gene finder used at The Institute 
for Genomic Research (TIGR), where it was first developed, and it has been used to annotate 
the complete genomes of over 100 bacterial species from TIGR and other labs. Like other 
gene prediction programs, Glimmer can be installed and run locally and has a web-based 
platform (Salzberg et al., 1998). All one needs for online gene prediction of a genome is the 
fasta version of the sequence and access to the site:  
http://www.ncbi.nlm.nih.gov/genomes/MICROBES/glimmer_3.cgi. 

2.4.2 FgenesB 

FgenesB is a package developed by Softberry Inc. for automatic annotation of bacterial 
genomes. The gene prediction algorithm is based on Markov chain models of coding 
regions and translation and termination sites. The package includes options to work on 
sets of sequences, such as scaffolds of bacterial genomes or short sequencing reads 
extracted from bacterial communities. For community sequence annotation, it includes 
ABsplit program, which separates archebacterial and eubacterial sequences. FGENESB 
was used in the first published bacterial community annotation project (Tyson et al., 
2004). 

2.4.3 Prodigal 

Prodigal (Prokaryotic Dynamic Programming Genefinding Algorithm) is a microbial 
(bacterial and archaeal) gene finding program developed at Oak Ridge National Laboratory 
and the University of Tennessee. Prodigal focuses specifically on three goals: improved gene 
structure prediction, improved translation initiation site recognition, and reduced false 
positives (Hyatt et al., 2010). The source code is freely available under the General Public 
License and the program can be accessed at http://compbio.ornl.gov/prodigal/. 
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2.4.4 GeneMarkTM 
GeneMark is a public access program for gene prediction in eukaryotes. It is a family of gene 
prediction programs developed at Georgia Institute of Technology, Atlanta, Georgia, USA. 
GeneMark can operate in two ways: the first one is online, where one can make predictions, 
using for comparison one of the many available models; the second option is for novel 
genomes, in this way one can install and run the program locally. The web–based version of 
GeneMark is available at http://exon.biology.gatech.edu/.  
For gene prediction in eukaryotes, GeneMark combines two programs, GeneMark–E* and 
GeneMark.hmm–E. The GeneMark-E program determines the protein-coding potential of a 
DNA sequence (within a sliding window) by using species-specific parameters of the 
Markov models of coding and non-coding regions. This approach allows delineating local 
variations with coding potential. The GeneMark graph shows details of the protein-coding 
potential distribution along a sequence, while the GeneMark.hmm-E program predicts 
genes and intergenic regions in a sequence as a whole. The Hidden Markov models take 
advantage of the "grammar" of gene organization. The GeneMark.hmm programs identify 
the most likely parse of the whole DNA sequence into protein coding genes (with possible 
introns) and intergenic regions. 
The statistical model employed in the GeneMark.hmm algorithm is a hidden Markov model. 
It includes hidden states for initial, internal and terminal exons, introns, intergenic regions 
and single exon genes. It also includes hidden states for start site (initiation site), stop site 
(termination site), and donor and acceptor splice sites. The protein-coding states (initial, 
internal, terminal exons and single exon genes) emit nucleotide sequences modeled by 
inhomogeneous 3–periodic fifth–order Markov chains. The non-coding states (intron and 
intergenic regions) emit sequences modeled by homogeneous Markov chains (Lukashin & 
Borodovsky, 1998). 

3. Automated functional annotation 

Automated functional annotation of genomes can be quite efficient because it is a 
computational process based on the alignment of ORF sequences of the organism with 
sequences from various other organisms (Kislyuk et al., 2010). Public domain databases 
contain full annotations of thousands of prokaryotic organisms (Benson et al., 2008). 
Automatic functional annotation takes advantage of knowledge concerning ORFs of 
homologous organisms, saving considerable time in manual curation (Li et al., 2010). 
However, care must be taken with fully automated functional annotation, since similarity of 
sequences can easily incur false positives (Lorenzi et al., 2010). In this section we discuss the 
advantages and dangers of using fully-automated functional annotation, and we explore 
some features of tools and services for this purpose. 

3.1 Massive sequence alignments must be planned 
Algorithms for alignment of biological sequences are intensively used in automatic 
functional annotation (Aparicio et al., 2006; Meyer et al., 2003). Alignments of ORFs from a 
newly assembled genome with counterpart ORFs can provide the first hints about the new 
genome. For an organism with about 2,000 ORFs, analysis of similar sequences against a 
database of non-redundant (NR) proteins from NCBI can consume several processing hours. 
For example, assuming that this analysis is done on a computer isolated from the internet, 
hardware with 24 Gb RAM and eight processors, totaling 24 GHz CPU, this task will 
consume approximately eight hours of processing time. 
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Though it is a completely automated computer process, the user has considerable 
responsibility to set conditions to be utilized in the computation in order to obtain good 
quality data. These conditions define the quality criteria that best fit the type of organism, 
for example, the cut–off value for a significant alignment with sequences of other organisms 
in the NCBI, the number of homologous sequences to be returned as a result and the file 
format of the output alignment. An additional parameter is required if the sequence search 
(query) and the targeted search sequences (subject) are in different formats (nucleotides 
versus amino acids). This parameter determines the most adequate table for translation of 
codons of the organism in question so that the alignment algorithm of sequences is able to 
interpret the correspondence between the query sequences and the subject. The number of 
parameters of an algorithm for aligning sequences can be quite large, justifying training 
with a heavy workload for optimal utilization. Our objective here is not to explore possible 
situations, but to alert users that the results of these algorithms can improve these 
alignments by reading the manual algorithm and consequently adjusting it to a particular 
situation concerning a query organism or subject. Thus, when beginning a massive 
alignment sequences project involving a novel genome, with an analysis that will take hours 
and create high expectations, it is advisable to use not just the basic configurations in these 
alignment algorithms. It would be useful to take time to weigh and incorporate options that 
will determine the success or failure of these alignments. 

3.2 Knowledge reapplication and time saving 

There has been significant growth in the number of DNA sequences available in public 
databases, because of new genome sequencing technologies, which have made it simpler, 
more efficient and cheaper to obtain complete genomes (Zhao & Grant, 2010). Fully 
assembled and annotated genomes of various forms of bacterial life are available to facilitate 
the processing and inclusion of a newly assembled genome. This wide range of genomes 
provides the opportunity for new research into large-scale SNPs, DNA methylation and 
mRNA expression profiles, and resequencing data (Datta et al., 2010). It also allows 
comparison of annotations from different research groups working with different 
organisms, some of which may be homologous to a newly-sequenced genome. Just as one 
can take advantage of knowledge about the function of genes from different organisms, it is 
also advisable to use the personal knowledge of a researcher on a specific organism in order 
to accelerate the process of automatic annotation. Based on evidence about a high degree of 
evolutionary proximity between a newly-assembled genome and a particular organism 
homolog that already has a fully-assembled and annotated genome, we can choose to use 
only the annotation of such an organism as a resource for a first automatic annotation.  
The problems a researcher would normally encounter when utilizing annotations from 
various genomes could be resolved by comparison with the annotation of a homologous 
organism. This situation is common when one examines the pangenome of a species, as it is 
expected that most of the coding sequences of different strains of bacteria are not very 
different (Trost et al., 2010). In this case, it appears to be advantageous to identify a small set 
of target organisms (subject) in a sequence similarity search, with the objective of providing 
a first genome annotation (query); this may even be a set with only one organism. 

3.3 Error propagation: Automated versus manual annotation 

It is important to bear in mind that the GenBank is not a fully curated database (Benson et 
al., 2008); many genomes may have been deposited only as automatic annotations. With 
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current technology, it is not possible to dispense with manual curation of an automatic 
annotation, or even experimental evidence concerning gene prediction and annotation based 
on sequence similarities (Poptsova & Gogarten, 2010). Although it is not normally feasible to 
initially include experimental verification of gene prediction, it seems reasonable to take 
advantage of expert human annotation of genomes to help determine the outcome of 
automatic annotation. Assuming one is working on the pangenome of an organism, such a 
measure can not only reduce false positives in comparisons of sequence similarities, but also 
determination of homologous genomes based on a particular annotation. During automatic 
annotation, a measure that has the potential to minimize error propagation would be 
allocating different weights for the results of sequence similarity to genes from organisms 
for which there is evidence of expert manual curation. 

3.4 Tools 

The following are some tools for automatic annotation of entire genomes, with brief 
descriptions of their core functionality and instructions on how to use them. 

3.4.1 GenDB 

One of the reasons that GenDB is included among a select set of tools for automatic 
annotation of genomes is the fact that it was developed for the web platform (Meyer et al., 
2003). Geographically dispersed research groups can benefit from web interfaces using 
standard tools and a centralized database. Version 2.4 of GenDB has three modules: core, 
web, and gui. The core module has programs written in perl that allow creation of an 
annotation project, importation of data in fasta / EMBL format, execution pipeline 
automatic annotation, display of circular genomic maps, data export and annotation project 
deletion. Implementation of the programs in the module allows a team of curators to work 
on the web and edit diverse features of various genes. The gui module has editing features 
that are more sophisticated than those of the web module, allowing execution of tasks 
performed by the core module, but with a graphical interface. The GenDB program 
performs sequence alignments using the program Blast (Altschul et al., 1997) and allows 
incorporation of predictions of conserved domains of protein families based on InterPro-
Scan (Hunter et al., 2009),as well as transmembrane domains based on TMHMM (Krogh et 
al., 2001), and indications of export to the extracellular medium through SignalP (Bendtsen 
et al., 2004). 

3.4.2 BLAST2GO (B2G) 

This tool was designed as an interface for Gene Ontology (GO); additional features have 
transformed it into a more comprehensive annotation platform (Aparicio et al., 2006). The 
program menus include various steps initiating annotation, with an automatic alignment of 
genome sequences against a protein-based non-redundant (NR) NCBI database, through 
prediction of conserved domains (InterPro–Scan), GO annotation ratings against the 
enzymatic English Enzymatic Code (EC) and subsequent visualization of molecular 
interactions in a genome by means of maps in the format of the Kyoto Encyclopedia of 
Genes and Genomes (KEEGO). Being a visually oriented tool, it has graphical tools to help 
analyze the vast amount of data generated in the predictions. A user of B2G does not 
necessarily have to perform all the steps of analysis that are offered, but in order to advance 
to the next phase of analysis it is imperative that the previous phase be performed  
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beforehand. Processing of an entire genome with approximately two thousand ORFs can take 
several days, as the first step is always sequence alignment against the NCBI NR base. 
Fortunately, B2G is designed to be a modular analysis tool. If a B2G user has computational 
resources that are more efficient than the shared resources on the public server, the user can 
perform alignment of sequences on his own hardware to generate an output in HTML format 
and continue the alignment processes following annotation with B2G. Should the user be 
dissatisfied with the efficiency of processes of annotating GO terms of the server's common 
B2G, there is a version of B2G than he can run separately with his superior hardware. The 
results generated in the offline mode can be uploaded to the online tool to continue the 
review process using a variety of tools, including statistical comparisons between two 
genomes. B2G was developed with Sun Java technology, which can be run on any operating 
system; however, the B2G offline module is designed to run on the Linux platform. 

3.4.3 CpDB relational schema: a practical example 

This tutorial has approximately 100 steps, including software installation and configuration, 
edition of files by Linux commands or through interfaces with biological sequence 
manipulation programs. The tutorial presumes that the programs Artemis, Java (Sun) and 
Blast version 2.2.20 or previous were locally installed. Many editions of files are made with 
the "sed" program of Linux, which is included in most Linux versions. All of the steps in this 
manual can be automated in order to develop an automatic pipeline for annotation, 
allowing the Corynebacterium pseudotuberculosis DataBase (CpDB), a relational database 
schema and tools for bacterial genomes annotation and pos-genome research, to become 
another web-based automatic annotation environment. For now, this tutorial has an 
instructional character, to help make a student aware of the necessities and difficulties 
involved in the process of automatic annotation of genomes. In order to obtain the tutorial 
files, type the following command in Linux, Ubuntu 10.10 or later: 
svn checkout svn://150.164.37.20/genomes/autoannotation --username=student --
password=bioinfo 
After finalizing the verification of all of the files, this tutorial continues in the document 
"Tutorial.pdf", which will be in the folder "autoannotation". 

4. Manual curation 

Genome annotation is a process that consists of adding analyses and biological 
interpretations to DNA sequence information. This process can be divided (Stein, 2001), into 
three main categories: annotation of nucleotides, proteins and processes. Annotation of 
nucleotides can be done when there is information about the complete genome (or DNA 
segments) of an organism. It involves looking for the physical location (position on the 
chromosome) of each part of the sequence and discovering the location of the genes, RNAs, 
repeat elements, etc. In the annotation of proteins, which is done when there is information 
about the genes (obtained by genome or cDNA sequencing) of an organism, there is a search 
for gene function. Besides general predictions about gene and protein function, other 
information can be found in an annotation, such as biochemical and structural properties of 
a protein, prediction of operons, gene ontology, evolutionary relationships and metabolic 
cycles (Stothard & Wishart, 2006). Consequently, functional annotation or manual curation 
is a fundamental part of the process of assembling and annotating a genome, in which the 
curator is the person responsible for validating the elements. In manual curation, all of the 
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predicted genes will be validated and their products named (Stein, 2001). A more detailed 
description of the gene or gene family product is obtained through similarity analyses using 
protein data banks that contain well-characterized and conserved proteins (Overbeek et al., 
2005). 

4.1 Technical terms used in manual annotation 

In functional annotation done with Artemis, several fields should be filled out to increase 
knowledge about particular genome elements. It is necessary to use annotation terms, which 
involve an official nomenclature developed for this purpose. Some of these terms and 
respective examples are given below: "LOCUS-TAG" is the term used to identify all of the 
genome elements, except for the feature "misc". Generally, one uses an abbreviation to 
identify the particular species, followed by an underline (_) and numbers, for example: 
Cp1002_0001 (Corynebacterium pseudotuberculosis, strain 1002). For tRNAs, the nomenclature 
is the abbreviation, followed by underline, a "t" and numbers, with a specific count, which is 
not included in the total CDS count, among others; for example: Cp1002_t001. For rRNAs, 
the nomenclature is the symbol followed by underline, an "r" and numbers, with specific 
counts, not included in the total CDS count; for example: Cp1002_r001. "PROTEIN_ID" is 
used to designate all of the elements of the genome, except for the feature "misc". It is a 
standardized form for NCBI to identify e proteins; for example: gnl|gbufpa|Cp1002_0001. 
"GENE" is one of the most important topics to be informed in manual annotation, indicating 
the gene symbol of the protein; fore example: pld. The field "SIMILARITY" corresponds to 
information obtained from the best similarity search result – BLASTp. Various types of 
information should be entered into this field, such as similarity among organisms, size of the 
amino-acids sequence analyzed, e-value and also the percentage identity between its own 
protein and the protein found in the data bank; for example: similar to Corynebacterium 
pseudotuberculosis 1002, hypothetical protein Cp1002_00047 (345 aa), e–value: 0.0, 98% ID in 
344 aa. In "PRODUCT", there is a description of the gene product, for which similarity was 
found in the public domain data bank; for example: Phospholipase D. The tag "PSEUDO" 
should be added whenever a protein presents one or various breaks, due to insertion of a 
premature stop codon. These are the famous proteins that have frameshifts or probable 
pseudogenes. Consequently, the manual annotation window has this pattern: 
 
/gene="dnaA" 
/product="Chromosomal replication initiation protein" 
/locus_tag="Cp1002_0001" 
/protein_id="gnl|ufmg|Cp1002_0001" 
/colour=3 
/similarity="Similar to Corynebacterium pseudotuberculosis FRC41, 
Chromosomal replication initiation protein (603 aa), e value: 0.0, 98% id in 599s aa" 

4.2 Steps for manual curation 

Manual curation is a very complex task and is subject to errors for various reasons. One of 
these is a lack of padronization in the interpretation of BLAST results. Another problem is 
propagation of errors, which involves prediction of protein function based on proteins that 
were also predicted but could have imprecise or even incorrect annotation (Gilks et al., 
2002). For these reasons, some criteria are suggested in order to obtain reliable functional 
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annotation. The fundamental step for doing this well is mining data obtained from 
similarity analyses of BLASTp data banks. It is recommended to give greater value to 
annotation of proteins of individuals of the same species or of species that are 
phylogenetically close to the organism under study, the protein of which one wants to infer 
the function of, decreasing in this way the possibility of annotation errors. Another 
parameter is to observe if there is any consensus among the first 10 hits (the same protein is 
identified among various). In this case, even if the best hit is not identified as such, it is 
preferable to identify the sequence as similar to that of an organism that appears various 
times in the BLASTp results and is within the consensus. In cases where there is no 
consensus or when the e-value of the best hit (first BLAST result and which corresponds to 
the best alignment within the data bank that is being researched) is significantly larger than 
that of the following sequences, it is preferable to transfer the annotation of the best hit 
(Prosdocimi, 2003), or if necessary, in cases of non-significant alignments, always also run a 
similarity search at the nucleotide level (BLASTn). Other criteria are also analyzed, such as 
percentage identity between the sequence being analyzed and the sequence in the data 
bank, score value and e-value, as well as pair-by-pair alignment evaluation. This evaluation 
consists of checking the texture of the alignment (evaluating the number of gaps, size of the 
gaps, and the number of conserved substitutions of amino acids). If doubts remain, research 
of domain data banks and protein classification are also commonly utilized. 

4.3 Frame shifts (Pseudogenes) 

Comparisons between non-coding regions of genomes of various prokaryotic species has 
aided in the identification and characterization of genome segments with regulatory roles 
(Pareja et al., 2006), contributing to the elucidation of genetic circuits of transcriptional 
regulation. These non-coding regions, known as pseudogenes, are DNA sequences that are 
highly similar to functional genes but do not express a functional protein, probably because 
of deleterious mutations. These degraded genes contain one or more inactivating mutations, 
such as a nonsense mutation that introduces a premature stop codon, resulting in an 
incomplete protein and a later change in the open reading frame (Lerat & Ochman, 2005). 
When found in the genome, the break region is checked with Artemis, and the quality of the 
bases in that region is also evaluated. Whenever possible, addition or removal of erroneous 
bases can restore the reading frame. If there is no data that justifies addition or removal of 
bases, the genes should be classified as pseudogenes (tag /pseudo). 

4.4 Tools 
4.4.1 Artemis 

The program Artemis, (Berriman & Rutherford, 2003), available for download at 
http://www.sanger.ac.uk/Software/Artemis is a freely-distributed algorithm developed 
for visualization of genomes and for annotation and manual curation. Artemis allows the 
curator to visualize various characteristics of the genome sequences, such as: product coded 
by the predicted gene; presence of tRNAs and rRNAs; search for protein and nucleotide 
similarity in biological data banks; visualization of probable domains and conserved protein 
families; visualization of GC / AT content, and misplaced codon use; and various other 
functions. These data can be visualized in the six phases of translating DNA reads into 
proteins (Rutherford et al., 2000). Also, the program provides a visualization of BLAST visits 
between two complete genome sequences, allowing rapid analysis of the degree of synteny 
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(conservation at the level of genes), the main genomic rearrangements and integration of 
new genomic islands (Field et al., 2005). This algorithm is written in the Java language and is 
available for the following operating systems: UNIX, Macintosh and Windows. Artemis is 
capable of processing data in the formats EMBL and GENBANK, or even sequences in the 
format FASTA. 

4.5 Sequence similarity searches 
4.5.1 BLAST (Basic Local Alignment Search Tool) 

BLAST (Altschul et al., 1990) is a tool that is widely used for the characterization of products 
coded by genes that are identified by gene prediction. It is able to identify a great majority of 
the alignments that attend the desired criteria, with a significant gain in performance (Gibas 
& Jambeck, 2001). This program is available on the NCBI - National Center for 
Biotechnology Information site http://www.ncbi.nlm.nih.gov (Stein, 2001), which is 
considered the central databank for genome information. As shown in the figure, BLAST has 
programs for alignment of protein and nucleotide sequences, among others, according to the 
needs of the work that is to be undertaken:  
 

Program Entry sequence Type of sequence target 

BLASTp Protein Protein 
BLASTn Nucleotide Nucleotide 
BLASTx Translated nucleotide Protein 

TBLASTn Protein Translated nucleotide 
TBLASTx Translated nucleotide Translated nucleotide 

Table 1. Types of BLAST – NCBI programs. 

Through this type of algorithm, we can compare any DNA sequence or protein (query) with 
all of the genome sequences in the public domain (subject) (Altschul et al., 1997). It is 
important to note that the program BLAST does not try to make a comparison of the full 
extension of the molecules that are being compared, but rather it identifies in the data bank 
a sequence that is sufficiently similar to that of the sequence that is being studied. 

4.5.2 Interpreting blast results 

In the manual annotation of genomes, analysis of BLAST parameters, such as the number of 
points obtained (score), gap opening/extension penalties, number of expected alignments in 
the case of scores equal to or superior to the alignment that is being investigated 
(expectation value), and the normalized score (bitscore), are indispensible for the 
interpretation of the results. The smaller the value of "E", the smaller the chance of such a 
comparison being found merely by chance, consequently inferring a greater homology 
between the sequence being investigated and the data base (Baxevanis & Ouellette, 2001). 
Among the sequences with identity above 50%, a general approach is to characterize the 
function of the known sequence and transfer this annotation to the new sequence. Though 
annotation transfer is a common practice, a high rate of error has been reported when this is 
done without due caution (Liberman, 2004). Based on this principle, we consider that for 
sequences with identity above 80%, a simple alignment or a comparison with a protein that 
has been experimentally characterized using BLAST can be sufficient to infer function, as 
long as the pair being compared has similar lengths and align end to end without large 
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deletions or insertions. For pairs with identity in the range of 50–80%, the general approach 
for attributing function includes evaluation of databanks with homologous protein and 
protein domain families.  

4.5.3 PFAM 

Proteins generally are composed of one or more functional regions, or domains. Different 
combinations of domains result in the large variety of proteins found in nature. 
Identification of the domains that are found in proteins can, therefore, provide insight about 
protein function (Sanger Institute, 2009). In sequences with an identity of less than 70%, 
without end to end similarity, the approach that is used is to evaluate the protein domains 
through a search of the Pfam database, which gives very extensive coverage (Mazumder & 
Vasudevan, 2008). The Pfam database is accessible via the Web http://pfam.sanger.ac.uk 
and is available in various formats for download. This databank is contains two 
complementary groupings; Pfam–A is composed of high–quality protein domains that have 
been manually verified, while Pfam–B contains data that has been generated automatically 
from the ProDom databank (Finn et al., 2010). Pfam–B is generally lower in quality, though 
it can suggest new domains that can be added to the manual annotation, if they are not 
available in Pfam–A. Basically, in Pfam, the sequences that are in full alignment are 
identified through a search for a hidden profile using the algorithm Hidden Markov Model 
(HMM), which is later generated using the software HMMER, based on the UniProt 
database (UniProt, 2007). These HMMs are statistical models that capture specific 
information about how much each alignment column is conserved and indicates the 
residuals in this evaluation. 

5. Genomics 

A genome is the complete set of DNA sequences of a living organism; it consists of coding 
and non–coding sequences. Genomics is a discipline of genetics that deals with genomes or 
DNA sequences. Simply put, genomics is the study of genomes. Computational genomics 
derives knowledge from genome sequences and related data, including both DNA and RNA 
sequences as well as experimental data. Computational biology mainly deals with whole 
genome analysis to understand the DNA mechanisms and molecular biology of a species. 
As biological datasets are extremely large, computational biology has become an important 
part of modern biology. 

5.1 Pangenomics 

The efficient and low cost sequencing technologies that are currently available provide 
complete genome sequences of pathogenic, industrially useful, and other economically-
important organisms. Genome sequences, and information that is coded in these sequences, 
can help identify pathogenicity and other important genes. 
Complete genomic sequences of various strains of a species are important to help us 
understand pathogenesis mechanisms and to determine how genetic variability affects 
pathogenesis; it would be difficult to extract such useful information from a single genome 
(Lefébure & Stanhope, 2007). 
A pangenome consists of a "core genome", which contains the gene or sequences present in 
all strains. In other words, genes that are found in all the genomes in a species of bacteria are 
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called the core genome. A "dispensable genome or accessory genome" consists of genome 
sequences present in more than two strains but are not part of the core genome. "Unique 
genomic sequences" or "unique genes" are strain-specific genes. These genes are limited to 
single strain. The pangenome is important for identification and for designing effective 
vaccines and drug targets (Mira et al., 2010). 
There are many web tools and softwares available to manage and efficiently extract data 
from genomes of various strains of the same species. These tools recognize the accession 
numbers allotted to complete genomes submitted to NCBI and to other databanks. Online 
tools developed by the Computational Genomics group of Bielefeld University, Germany, 
EDGAR – "Efficient Database framework for comparative Genome Analyses using BLAST 
score Ratios" http://edgar.cebitec.uni-bielefeld.de are efficient web tools to determine the 
core genome, along with dispensable and unique genes in the form of colored graphs and 
tables (Blom et al., 2009) 
For example, we analyzed the core genome, dispensable genes and unique genes, using 
"EDGAR", of three different Corynebacterium pseudotuberculosis strains, C. pseudotuberculosis 
Cp–I19, C. pseudotuberculosis Cp1002 and C. pseudotuberculosis CpC231. 
This core genome consists of 1,862 genes, with 48 dispensable genes between Cp–I19 and 
Cp1002, 52 dispensable genes between Cp-I19 and CpC231, and 103 dispensable genes 
between Cp1002 and CpC231. There were 208, 46 and 36 unique genes in strains Cp-I19, 
Cp1002 and CpC231, respectively.  

6. Genome plasticity 

The high degree of adaptability of bacteria to a wide range of environments and hosts is 
long known to be influenced by genome plasticity, a dynamic property that involves DNA 
gain, loss and rearrangement (Maurelli et al., 1998). Various mechanisms can drive these 
changes, including point mutations, gene conversions, rearrangements (inversion or 
translocation), deletions and DNA insertions from other organisms (plasmids, 
bacteriophages, transposons, insertion elements and genomic islands) (Schmidt & Hensel, 
2004). 

6.1 Plasmids 

Plasmids contribute to genomic plasticity through their transfer capability. They are also 
able to mobilize co-resident plasmids and integrate into the chromosome. Plasmids may 
harbor antibiotic resistance genes and other genes associated with pathogenicity (Dobrindt 
& Hacker, 2001); e.g., Rhodococcus equi harbors a virulence plasmid that codes for surface-
associated proteins (vap genes) that is absent in avirulent strains (Takai et al., 2000). 

6.2 Bacteriophages 

Bacteriophages are viruses that infect bacteria and which influence genome plasticity 
through transduction mechanisms. Functional phages inject DNA from one bacterium into 
another one without causing damage to the acceptor organism; the DNA can incorporate 
into the acceptor genome leading to adaptive changes. Additionally, prophages (viral DNA 
incorporated in the bacterial chromosome) confer protection against lytic infections and they 
can harbor virulence genes that may be acquired by the acceptor bacterium and directly 
affect its pathogenicity; this has been reported from various species, including Clostridium 
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botulinum, Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli and C. 
diphtheriae (Brüssow et al., 2004). 

6.3 Genomic islands 

Genomic islands (GEIs) affect genome plasticity because of their mobility and their 
capability of carrying a large number of genes as a single block, including operons and 
groups of coding genes with related functions. These GEIs can cause dramatic changes that 
lead the acceptor bacterium to evolve very rapidly compared to wild-type counterparts. 
GEIs are characterized as large DNA regions acquired from other organisms. They vary in 
size (10-200 kb), and can harbor sequences derived from phages and/or plasmids, including 
integrase genes; GEIs are flanked by tRNA genes or direct repeats, which help produce their 
characteristic instability (Hacker & Carniel, 2001). The instability of GEIs is exemplified by 
rapid gene acquisition and/or loss and changes in gene composition, as seen in different 
strains of Burkholderia pseudomallei (Tumapa et al., 2008). Additionally, GEIs can be 
classified into several classes according to gene content. These include Symbiotic Islands, 
which are involved in the association of bacterium with Leguminosae hosts (Barcellos et al., 
2007); Resistance Islands, which harbor genes related to antibiotic resistance (Krizova & 
Nemec, 2010); Metabolic Islands, which contain genes associated with secondary metabolite 
biosynthesis (Tumapa et al., 2008); and Pathogenicity Islands (PAIs), which have a high 
concentration of virulence genes. PAIs are associated with pathogenic bacteria and have 
been implicated in the reemergence of various pathogens as causes of serious disease 
problems (Dobrindt et al., 2000). The first description of a PAI was made in 1990, in vitro 
(Hacker et al., 1990),. The identification was based on the observation of a close relation 
between deletion of hemolysin and fimbrial adhesin coding regions and non pathogenic 
strains of E. coli. This was investigated by gene cloning technique, pulse field 
electrophoresis and Southern hybridization. Using these procedures, they showed that the 
hemolysin and fimbrial adhesin coding genes are located in the same chromosomal region 
in several wild-type strains of E. coli and that they go through deletion events both in vivo 
and in vitro (Hacker et al., 1990). 

6.4 "Black Holes" 

Additionally, it is important to keep in mind that gene deletion is just as important as gene 
acquirement in some organisms. One example of this event is the so called "Black Holes" or 
deletion events of "antivirulence" genes, i.e. genes whose expression in pathogenic 
organisms is incompatible with virulence. The concept of evolution through deletion of 
"antivirulence" genes is based on the premise that genes required for adaptation of one 
organism in a specific niche may inhibit adaptability in another niche, a potential host, for 
example (Maurelli, 2007). In E. coli, loss of cadA, the lysine decarboxylase (LDC) coding 
gene, and ompT, which synthesizes an outer membrane protein, may confer virulence 
(Suzuki & Sasakawa, 2001). The mechanism of action of cadaverine, produced by 
decarboxylation of lysine by LDC, is still unknown. However, there are two hypotheses: 
cadaverine inactivates the synthesized toxin, or cadaverine acts directly on the target cell to 
protect it. Maurelli et al. (1998) demonstrated that when rabbit mucous cells are pre-treated 
with cadaverine and then washed, they are protected from enteroxin effects. Absence of 
Omp-T in Shigella strains and enteroinvasive E. coli strains is crucial for maintaining VirG 
on the cell surface, a pre-requisite for mobility on mammal cells, including bacterial 
dispersion through epithelial cells (Suzuki & Sasakawa, 2001). 
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6.5 Software to identify horizontal gene transfer (HGT) events 

Gene acquisition and loss through HGT influence bacterial lifestyles and their physiological 
versatility (Dobrindt & Hacker, 2001). The increasing number of complete genome 
sequences available for analysis has stimulated in silico research in an effort to identify HGT 
events. Horizontally–acquired regions can be identified based on observation G+C content 
and codon usage patterns, which differ among species and species groups. Sets of genes 
acquired by HGT events show deviations in these patterns that reflect the genomic signature 
of the donor genome (Langille et al., 2008). Various softwares can be used to identify HGT 
events based on base composition patterns (wavelet analysis of G+C content, cumulative GC 
profile, P–web, IVOM, IslandPath and PAI–IDA) and codon usage deviation (SIGI–HMM 
and PAI–IDA). However, due to adaptations in codon usage (Karlin et al., 1998), which tend 
towards homogenous base composition distributions (Hershberg & Petrov, 2009), 
identification of mobile regions based on genomic signature is only possible for regions that 
have recently been acquired from phylogenetically distant organisms, i.e. those that have a 
discrepant genomic signature when compared to the acceptor genome. 
Additionally, identification of HGT events may be aided by concentrating on regions that 
are flanked by tRNA genes, which are "hot spots" for transfer elements since they possess 3'–
terminal insertion sequences that are recognized by various integrases (Hou, 1999). The 
integration of PAIs into these insertion sequences is responsible for their instability, since a 
single integrase may cause excision of the entire region. Insertion/deletion events have been 
demonstrated in PAIs I and II of E. coli strain 536, which are flanked by selC and leuX tRNA 
genes (Blum et al., 1994), and in high pathogenicity islands (HPIs) of several Yersinia 
pseudotuberculosis and Y. pestis strains (Lesic et al., 2004), which frequently insert into ASN3 
tRNA genes.  
However, although efficient in the identification of HGT events, approaches based on 
genomic signature and flanking tRNAs are not aimed at classification of GEIs, since they do 
not consider the overall gene content of the region. Additionally, horizontally acquired 
regions may deviate only in G+C content or codon usage alone, which would be a problem 
for the identification process if only one of these features is used to identify the event. 
However, there are tools designed to identify a specific class of GEIs, pathogenicity islands, 
through a multi-pronged strategy that overcomes such constraints. These tools are named 
PredictBias (Pundhir et al., 2008), IslandViewer (Waack et al., 2006) and PIPS (unpublished); 
they perform analyses based on genomic signature deviations that are not found in closely-
related organisms and finding of genes coding for virulence factors. Although all of these 
programs use similar strategies and are complementary, PIPS deserves special attention 
since it surpasses the others in accuracy and is easy to install. 
In analysis of C. diphtheriae strain NCTC 13129, PIPS outperformed the other approaches, 
identifying 12 out of the 13 PAIs of the reference strain, compared to 10 by IslandViewer 
and six by PredictBias. In the identification of PAIs of uropathogenic E. coli strain CFT073, 
PIPS had an overall accuracy of 93.9% (unpublished) against 89.5% for IslandViewer and 
88.1% for PredictBias. 

7. Reverse vaccinology 

Reverse Vaccinology (RV) (Rappuoli, 2000) starts from the genomic sequence of a pathogen, 
which is an expected coded sequence for all the possible genes expressed during the life 
cycle of the pathogen. All open reading frames (ORF's) derived from the genome sequence 
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can be evaluated with a computer program in order to determine their aptitude as vaccine 
candidates. Special attention is given to exported proteins because they are essential in host-
pathogen interactions. Examples of this interaction can be cited: (i) adherence to host cells, 
(ii) invasion of compliant cells, (iii) damage to host tissues, (iv) resistance to environmental 
stress by the machinery defense of the cell being infected and finally, (v) mechanisms for 
subversion of the host immune response (Sibbald & van Dij, 2009). The word "Reverse" in 
RV can be explained by the reverse genetics (RG) technique. Before the dawn of genomics, 
there were attempts to discover the genes responsible for each phenotype. With Crick's 
central dogma (DNA > RNA > Protein) the research path was reversed. In possession of the 
likely gene sequence, several techniques have been developed to identify changes in the 
phenotype of an organism derived from sequence changes in genes. The principle of Crick's 
dogma is also used by RV; when a gene sequence is found, one can determine whether a 
probable protein encoded by this sequence can be an antigen capable of stimulating an 
immune response in a host organism. 
Long before the creation of the term RV, a number of approaches had been considered to 
determine exported proteins in order to move to the next step of the production of a subunit 
vaccine (Diaz Romero & Outschoorn, 1994). For example, research on exported proteins was 
advanced as an alternative to subunit vaccines based on the polysaccharide capsule of 
meningococci. Vaccines produced with such antigens had a low capacity to induce a 
satisfactory immune response. This research effort on exported proteins includes almost two 
decades of work searching for a vaccine against meningococcal serogroup B, which now 
gives good results. This vaccine currently is the best RV alternative for the production of a 
subunit vaccine for Neisseria meningitidis serogroup B. Meningitis caused by serogroup B 
(Men B) is responsible for approximately half of the worldwide incidence of this disease 
(Diaz Romero & Outschoorn, 1994), and this research result for targeted vaccination is 
commonly used as a demonstration of the usefulness of RV, because of the excellent results. 
Currently, a subunit vaccine against Men B created with antigens targeted by RV is being 
tested in phase-2 clinical trials (Bambini & Rappuoli, 2009). The advantages of RV continue 
to be attractive, enabling vaccine research for organisms whose cultivation in the laboratory 
is difficult or impossible. Reducing the time needed to select target proteins could allow 
investigation of different species or strains at the same time, for selecting vaccine candidates 
that can elicit adaptive immune responses. To achieve these benefits all we need is to have a 
sequenced genome, a personal computer and core software widely available to the scientific 
community. These conditions demonstrate another advantage of using RV, the low cost. 
What we call core software is a set of tools for identifying well-known motifs, such as, for 
example, SignalP, TMHMM, LipoP, and HMMSEARCH. There is still room for innovation 
in the use of core software; the choice of software strategies can be directed to the 
identification of vaccine candidates specific to an organism, such as in the case of gram-
negative (bilayer) or gram positive (monolayer) bacteria, or also according to heuristics for 
selection of vaccine candidates with specific characteristics. For example, membrane or 
exported to the extracellular environment (Barinov et al., 2009). 
The concept of RV was adapted to fit a new reality of widespread availability of genomic 
data (Rinaudo et al., 2009). Instead of researching vaccine targets for a single strain or 
subspecies of an organism, we can do it simultaneously in dozens of genomes, exploring 
potential joint antigens or those exclusive to multiple genomes (Lapierre & Gogarten, 2009). 
The possibility of having a large number of genomes available to implement RV leads to the 
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emergence of the concept of pangenomics RV (PGRV) (Bambini & Rappuoli, 2009). PGRV 
can also apply the concepts of core, extended, and character genomes. The core genome in 
PGRV is composed of exported genes (genes that transcribe exported proteins) that are 
common to all strains, genes that could be candidates for a universal vaccine, while the 
extended genome consists of genes that are absent in at least one of the strains of the studied 
species, while the character genome consists of genes that are specific to a strain (Lapierre & 
Gogarten, 2009). From the standpoint of vaccines, the core and character genomes would be 
good candidates to develop a vaccine that is suitable for all strains, without losing sight of 
the particularities of specific genes in each strain. 

8. Immunoinformatics 

The immune system has considerable diversity in its components, such as, for example, 
immunoglobulin receptors of lymphocytes, or cytokines, with the principle cell types being 
B- and T-cells, which have important roles in inflammation, infection and protection (Evans, 
2008). Immunoinformatics is very complex and can be characterized as a combinatory 
science, since it has a great complexity of regulatory cycles and network type interactions, 
which allows the utilization of computational models to resolve problems that can be 
converted into biological significant responses (Brusic & Petrovsky, 2003). This leads us to 
immunoinformatics, which is the application of informatics techniques to immune system 
molecules, with the main objective of helping develop vaccines through the prediction of 
immunogenic epitopes (Flower & Doytchinova, 2002). 

8.1 Immunological databases 

The immunological databases are a source of data used to explore, refine and develop new 
tools and algorithms (Salimi et al., 2010). There is a large variety of databases that group 
information relevant to the immune system. The Nucleic Acids Research Molecular Biology 
Database Collection http://www3.oup.co.uk/nar/database/c/ included 29 immunological 
databases in March 2011. The International ImMunoGeneTics information system (IMGT), 
the world reference databank for immunogenetics and immunoinformatics, was created by 
Marie-Paule Lefranc in 1989 (Lefranc et al., 2009). This databank is specialized in 
immunoglobulins or antibodies, T-cell receptors (TCR), MHCs, and others. The IMGT is 
constituted of a variety of databanks, including: structure, monoclonal antibody, sequence 
and genome databanks. All of these databanks are curated manually and daily by a team 
that works fulltime, which helps maintain high-quality annotation and standardization of 
the information. Other databases that house information related to epitopes, such as AntiJen 
(Toseland et al., 2005) and FIMM (Schonbach et al., 2000), have not been maintained and 
their data has migrated to other websites. Among these, the most promising epitope 
database seems to be the Immune Epitope Database (IEDB) (Peters et al., 2005), which is a 
curated database that has information based on experimental data associated with the target 
epitope; consequently, it is hoped that all of the information in the various existing 
databanks also migrates to IEDB within the next few years. 

8.2 Epitope prediction 

The principal goal of immunoinformatics is the development of algorithms that can both 
help develop vaccines and analyze the gene products of pathogens, such as viruses and 
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bacteria. This is why it is very important to understand antigen-antibody interactions. 
Macallum et al. (1996) made a detailed analysis of 26 antigen–antibody complexes; they 
found that binding between molecules is very complex, and that there are different 
antibody–antigen classes for different types of molecules. A later study of 59 antigen–
antibody interactions (Almagro, 2004) found results similar to those of Macallum. These 
studies show that tools that can identify molecules and predict their interactions with other 
molecules need to be very accurate and sensitive.  

8.2.1 B cell epitope prediction 

Epitopes of B cells are antigenic regions that are recognized by antibodies of the immune 
system, specifically those that interact with B cell receptors. These epitopes can be 
continuous or discontinuous (Kumagai & Tsumoto, 2001). B–cell epitopes can be used to 
design vaccines and new diagnostic tests (Larsen et al., 2006). As with T cells, there are also 
numerous methodologies to model and predict B–cell epitopes. The classic system to predict 
B–cell epitopes (Hopp & Woods, 1981) uses propensity scale methods (Parker et al., 1986; 
Levitt, 1978). This method attributes a propensity value to each amino acid, based on studies 
of the physical–chemical properties. A combination of various scales can improve the 
prediction results (Pellequer et al., 1991). This work used hydrophilicity scales (Parker et al., 
1986), as well as secondary structure (Levitt, 1978; Chou & Fasman, 1978) and accessibility 
(Emini et al., 1985). The Immune Epitope Database and Analysis Resource, IEDB (Peters et 
al., 2005), utilizes parameters such as hydrophilicity, flexibility, accessibility, turns, exposed 
surface, polarity and antigenic propensity of polypeptides chains, which have been 
correlated with the location of continuous epitopes. All of the prediction calculations are 
based on propensity scales. Another methodology that can be used to predict continuous B-
cell epitopes combines hidden Markov model (HMM) and propensity scale methods (Parker 
et al., 1986; Levitt, 1978); it is called Bepipred http://www.cbs.dtu.dk/services/BepiPred/ 
(Larsen et al., 2006). This methodology has given increased prediction accuracy. Prediction 
of discontinuous B–cell epitopes has also improved, due to an increase in the number of 
three–dimensional (3D) structures of antibody–antigen complexes available in PDB and in 
IMGT/3Dstructure-DB (Kaas et al., 2004) and in the Epitome database (Schlessinger et al., 
2006). 

8.2.2 T cell epitope prediction 

There are two classes of T cells: (1) CD8+ T cytotoxic (Tc) cells, which produce cytotoxins 
responsible for cell lysis, recognize peptides presented by class I MHCs and (2) CD4+ T 
helper (Th) cells, which recognize proteins associated with MHC class II. Interferon γ (IFN–
γ) and tumor necrosis factor β (TNF–β) are produced by Th1 cells. Th2 cells produce 
interleukin 4 (IL–4), IL–5, IL–10 and IL–13. Eptitopes that bind to MHC de class I generally 
are 8–10 amino acids long, with a mean of nine amino acids (Reche et al.., 2002), while 
epitopes that bind to MHC class II are 13–17 amino acids long (Sercarz & Maverakis, 2003; 
Chicz et al., 1992). There are various online tools for predicting T–cell epitopes on the basis 
of MHC class I and class II binding. Prediction of MHC binding is based on motifs 
associated with epitopes or binders for specific alleles. SYFPEITHI is a tool that is widely 
used for prediction of T–cell epitopes and MHC binding; however, these predictions have 
been found to be of low quality (Ruppert et al., 1993). More sophisticated tools that use 
quantitative matrixes, artificial neural network decision trees, hidden Markov models 
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(HMM), support vector machines (SVM), homology modeling, protein threading and 
docking techniques have been developed. The NetMHC 3.2 server 
http://www.cbs.dtu.dk/services/NetMHC/ predicts binding of peptides to a series of 
different HLA alleles using artificial neural networks (ANNs) and weight matrixes. All of 
the previous versions are available online, for comparison and reference. ANNs were 
trained with 57 different human MHCs (HLA), representing all of the 12 HLA alleles, 
supertypes A and B  (Lund et al., 2004). Also predictions are available for 22 animal alleles 
(monkey and rat). ANN prediction values are given in nM IC50 values. Weight prediction 
matrixes use an aptitude score, with a high aptitude score indicating strong binding. 
Predictions can be made for sizes from 8 to 11 for all of the alleles using an ANNs algorithm 
trained with 9mer peptides. Probably because of the limited quantity of 10mer data 
available, this method has better prediction value when an ANNs algorithm is trained with 
10mer data. However, one should be careful with 8mer predictions, since some alleles do 
not link to 8mer to a significant degree. Binding peptides are indicated at output as strongly 
binding (SB) and weakly binding (WB). The allele for each HLA supertype is indicated in 
the selection window for HLA alleles (Lundegaard et al., 2008). 
The NetMHCII 2.2 server http://www.cbs.dtu.dk/services/NetMHCII/ predicts 
peptides that bind to MHC classe II alleles HLA–DR, HLA–DQ, HLA–DP and mouse alleles, 
using ANNs. Predictions can be obtained for the 14 HLA–DR alleles, including the nine 
HLA–DR, six HLA–DQ, and six HLA–DP supertypes and two H2 class II alleles in mice. 
The prediction values are given in nM IC50 values, and in %–Rank for a random set of 
1,000,000 natural peptides. Strongly and weakly binding peptides are indicated in the 
output file (Nielsen et al., 2007). 
Without a doubt, there is a great variety of predictors, which when they are combined can 
be quite precise in the prediction of T–cell epitopes; however, this is only possible when 
well–characterized alleles are available, which is true for some alleles that have been 
predicted as MHC class I alleles, but much less so for those predicted as MHC class II. This 
is even more of a problem in the prediction of B cell proteins, for which it is often necessary 
to have prior knowledge of the structure and sequence of the protein. Nevertheless, it is 
known that no method can go further than the data used to train it, and only through 
extensive compilation and by obtaining high quality data, will it be possible to create 
excellent models that will can be generally applied (Flower & Doytchinova, 2002). 
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