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1. Role of TRP channels in glioma growth and progression 

Gliomas are primary brain tumours believed to arise from glial cells or their progenitors. 

They account for 78% of malignant brain tumours (Shwartzbaum et al., 2006). The vast 

majority of gliomas is high-grade glioblastoma multiforme (GBM), and is characterized by 

almost unrestrained growth. Consequently, the median survival of patients with GBM was 

approximately 12 months (Huncharek & Muscat, 1998). While research has generated 

abundant information regarding the growth characteristics of these cancers, clinical care 

remains palliative and the prognosis dismal (Butowski et al., 2006). Gliomagenesis and 

progression are complex processes only partly understood. At molecular level, tumor 

progression and the associated heterogeneity is likely the result of multiple mutations in 

certain key signaling proteins (Furnari et al., 2007). Among these proteins, the Transient 

Receptor Potential (TRP) channel family has been identified to profoundly affect a variety of 

physiological and pathological processes (Kiselyov et al., 2007; Nilius et al., 2007). Members 

of TRP channels control cellular homeostasis by regulating calcium flux, cell proliferation, 

differentiation and apoptosis; moreover, in the last years an additional role for TRP ion 

channel family in malignant cancer growth and progression  has been recognized (Xu et al., 

2001; Wisnoskey et al., 2003; Xin et al., 2005; Bidaux et al., 2007; Prevarskaya et al., 2007; 

Gkika & Prevarskaya, 2009). Approximately thirty TRPs have been identified to date, and 

are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM 

(Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane 

protein) and TRPN (NomPC-like) (Montell, 2003) (Fig.1).  

The expression levels and activity of members of the TRPC, TRPM, and TRPV families 

have been correlated with malignant growth and progression (Duncan et al., 1998; 

Tsavaler et al., 2001; Wissenbach et al., 2001; Thebault et al., 2006; Amantini et al., 2007; 

Caprodossi et al., 2008; Nabissi et al., 2010). TRP channels may regulate glioma growth 

and progression at different levels by controlling cell proliferation, inhibiting apoptosis, 

stimulating angiogenesis and triggering the migration and the invasion during tumor 

progression (Table 1).  
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Fig. 1. TRP superfamily. TRP subgroups are represented in square, the members are 
indicated for each subfamily.  

2. Role of TRPC and TRPV channels in cell cycle arrest and cytokinesis in 
malignant glioma 

Growth control of cancer cell populations has been studied extensively over the past 
decades and research has identified a multitude of transmembrane TRP channels involved 
in this process (Schönherr, 2005; Santoni et al., 2011) (Fig.2). While our understanding of 
their exact role in the physiology of cell proliferation remains tentative, many TRP channel 
agonists or antagonists also stimulate or retard cell population growth, which support the 
notion that TRP channels are intrinsic component of the cell cycle. In particular, calcium 
Ca(2+) signaling plays an important role in normal and aberrant cell proliferation, and some 
members of the Ca(2+)-permeable TRPC family have demonstrated a role in the 
proliferation of many types of cancer cells (Malarkey et al., 2008). Using a combination of 
molecular, biochemical and biophysical approaches, it was demonstrated the expression of 
five TRPC channel proteins (TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6) in patient biopsies 
and cell lines derived from glioma patients (Tables 1). Activation of TRPC channels typically 
occurs through the triggering of phospholipase C and this signaling cascade is the target of a 
number of G-protein-coupled receptors and receptor tyrosine kinases. An important form of 
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TRP channel  Function/s References 

 
 
 
TRPC1 

Chemotaxis in response to EGF 
stimulation 
Calcium signaling during cytokinesis 
(Multinucleated-giant cells), stimulates 
proliferation 
Up-regulates hypoxia-induced VEGF 
expression 
Histamine-induced Ca(2+) entry 

Sontheimer, 2010 
 
Bomben & Sontheimer, 2018 
Bomben & Sontheimer, 2010 
 
Wang et al., 2009 
 
Barajas et al., 2008 

 
TRPC3 

Ca(2+) influx, PAR-1-mediated astrocytic 
activation 
[Ca(2+)]i signaling 

Nakao et al., 2008 
 
Grimaldi et al., 2003 

TRPC4 Histamine-induced Ca(2+) entry Barajas et al., 2008 

 
 
 
 
 
TRPC6 

Increase  intracellular Ca(2+) induced by 
PDGF, stimulates G2/M phase  transition 
and clonogenic ability; increases tumor 
volume in a subcutaneous  mouse model 
of xenografted human tumors and 
decreases  mean survival in mice in an 
intracranial model 
Increases [Ca(2+)]i elevation coupled to 
NFAT activation; stimulates hypoxia-
induced Notch1-driven growth, invasion 
and angiogenesis 

Ding et al., 2010 
 
 
 
 
 
 
Chigurupati et al., 2010  
 

TRPV1 Ca(2+) influx, p38MAPK-dependent 
apoptosis 

Amantini et al., 2007 

 
TRPV2 

Inhibition of cell survival and 
proliferation, increase sensitivity to Fas-
induced apoptosis in an ERK-dependent 
manner 

Nabissi et al., 2010 

TRPM2 ROS-induced cell death Ishii et al., 2007 

TRPM8 Increases intracellular Ca(2+), BK channel 
activity, cell migration 

Wondergem et al., 2008 
Wondergem & Bartley, 2009 

Table 1. Expression and function of TRP channels in human gliomas 

TRPC activation has been shown downstream of the epidermal growth factor receptor 

(EGFR) (Odell et al.,2005) that is the major growth factor receptor activated in malignant 

gliomas. Indeed, mutated or amplified EGFR is often observed in malignant gliomas and 

has been associated with the increased cell proliferation seen in them (Bryant et al., 2004). In 

Cos-7 cells, EGFR activation causes phosphorylation of TRPC4 and results in channel 

insertion into the plasma membrane (Odell et al., 2005). Additionally, knockdown of TRPC4 

in human corneal epithelial cells suppresses epidermal growth factor (EGF)-induced cell 

proliferation, again linking proliferation to TRPC channels (Yang et al., 2005). Among TRPC 

channels, TRPC6 and TRPC1 seem to play a major role in the control of cell cycle and glioma 
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cell proliferation. Functional TRPC6 channels were overexpressed in human U251, U87, and 

T98G glioma cell lines. Moreover, increased TRPC6 expression was found in GBM biopsies 

compared with normal brain tissue, suggesting a role for TRPC6 in malignant growth of 

gliomas in vitro and in vivo (Ding et al., 2010). TRPC6 channels have been implicated in cell 

proliferation and hypertrophic gene expression through the activation of the calcineurin-

nuclear factor of activated T-cell (NFAT) pathway in normal (K. Kuwahara et al., 2006; 

Onohara et al., 2006) and malignant cells (Bomben & Sontheimer, 2008). Because glioma cells 

lack the expression of voltage-gated calcium channels (Kunzelmann, 2005) and Ca(2+) 

signaling promotes G1/S phase transition and cell cycle progression in a variety of cell types 

(Lipskaia & Lopré, 2004; M. Kuwahara et al., 2006), the TRPC6-mediated sustained elevation 

of [Ca(2+)]i and calcineurin-NFAT pathway activation is vital for the proliferation and 

malignant growth of gliomas under hypoxia. Consistently, inhibition of hypoxia-induced 

TRPC6 expression causes a dramatic decrease in NFAT activation (Bucholz & Ellenrieder, 

2007). In glioma cells, inhibition of TRPC6 activity or expression by using a dominant-

negative mutant TRPC6 (DNC6) or RNA interference, respectively, attenuated the increase 

in intracellular Ca(2+) induced by platelet-derived growth factor (PDGF), suppressed cell 

growth and clonogenic ability, induced cell cycle arrest at the G2/M phase, and enhanced 

the antiproliferative effect of ionizing radiation. Cyclin-dependent kinase 1 (CdK1) 

activation and cell division cycle 25 homolog C (Cdc25) expression regulated the DNC6-

induced cell cycle arrest. Inhibition of TRPC6 activity also significantly reduced tumor 

volume in a subcutaneous mouse model of xenografted human tumors and increased mean 

survival in mice in an intracranial model (Ding et al., 2010). In addition to TRPC6 a role for 

TRPC3 in glioma cell proliferation has been suggested. The TRPC3 channel has been found 

to cause intracytoplasmic calcium oscillations in rat glial cells (Grimaldi et al., 2003). In rat 

cortical astrocytes, thrombin via Ca(2+) signal, induces TRPC3 upregulation and enhanced 

proliferation, and these effects were inhibited by TRPC3 blockers and siTRPC3 RNA 

(Shirakawa et al., 2010). Ca(2+) mobilization mediated by TRPC3 is associated with 

thrombin-induced morphological changes in human astrocytoma cells (Nakao et al., 2008).  

Glioblastoma multiforme proliferates extensively and cells often undergo incomplete cell 

divisions, resulting in multinucleated cells. Cytokinesis, which begins at the onset of 

anaphase, is the division of remaining cytoplasmic substances in the cell, aside from the 

nuclear events of mitosis (Glotzer, 2005; Eggert et al., 2006). Recent evidence (Bomben & 

Sontheimer, 2010) indicated that the functional loss of TRPC1 channels involved in agonist-

induced calcium entry and reloading of intracellular Ca(2+) stores disrupts glioma 

cytokinesis leading to bizarre and greatly enlarged multinucleated glioma cells (GMGCs) 

showing slow growth (Palma et al., 1989). Pharmacological inhibition of TRPC1 expression 

using the continuously administration for up to 4 days of the chronic inhibitor of TRPC 

channels, SKF96365, or TRPC1 suppression using a doxycycline inducible shRNA 

knockdown approach, causes loss of functional channels and store-operated calcium entry 

in glioma cells, and a significant decrease of tumor size, respectively. This effect is 

associated with reduced cell proliferation and, frequently, with incomplete cell division due 

to arrest at the G2/M phase of the cell cycle (Stark & Taylor, 2006).  Cytokinesis is typically 

described with two key components being the central spindle and the contractile ring. RhoA 

guanosine triphosphatase GTPase is one key player in contractile ring formation, which is 

important for actin nucleation and myosin activation (Bement et al., 2006). Recently reports 

www.intechopen.com



New Insight on the Role of Transient 
Receptor Potential (TRP) Channels in Driven Gliomagenesis Pathways 

 

167 

have indicated an association between TRPC1 and RhoA (Mehta et al., 2003) and  

independently of TRPC6 and RhoA in certain cell types (Singh et al., 2007). Finally, receptors 

belonging to the TRPV channel family have been found to inhibit in vitro glioma cell 

proliferation. In this regard, we have recently reported that TRPV2 mRNA was expressed in 

benign astrocyte tissues, and its expression progressively declined in high-grade glioma 

tissues as histological grade increased. TRPV2  negatively controls glioblastoma survival 

and proliferation. In U87 glioma cells, silencing of TRPV2 by RNA interference (siRNA) 

affects several genes controlling cell cycle and proliferation (Nabissi et al., 2010). Down-

regulation of CD95/Fas and parallel up-regulation of CCNE1, CDK2, E2F1, Raf-1 gene 

expression was observed in siTRPV2-U87 glioma cells as respect to controls. Moreover, 

TRPV2 knock-out increased glioblastoma proliferation and survival in an ERK-dependent 

manner. Inhibition of ERK activation by treatment of siRNA-TRPV2 U87 glioma cells with 

the specific MEK-1 inhibitor PD98059, promoted Fas expression and restored Akt/PKB 

pathway activation leading to reduced cell survival and proliferation (Nabissi et al., 2010). 

Conversely, TRPV2 transfection of primary MZC glioblastoma cells also reduced glioma 

viability and proliferation  (Nabissi et al., 2010). 

 

 

Fig. 2. TRP and glioma progression. In each square are represented the members of the TRP 
family, that are involved in the main processes driving glioma progression. 

3. Role of TRPC and TRPV channels in hypoxia-induced angiogenesis of 
human gliomas: Role for VEGF and angiopoietin-1 

Tumor microvessels are highly tortuous with sluggish flow and diminished gradient for 

oxygen delivery and increased susceptibility to thrombosis and microhemorragies. The 
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GBM microvasculature provides little support in oxygen/nutrient delivery, paradoxically 

contributing to exacerbate a metabolic mismatch between supply and demand leading to 

progressive hypoxia and eventually necrosis. In addition with the poor vascular architecture, 

endothelial cells associated with tumor vasculature fail to form tight junctions and have few 

associated pericytes or astrocytic foot processes leaving the integrity of the brain blood 

barrier compromised. This process requires that endothelial cells respond to a variety of 

extracellular signals that activate receptors responsible for growth and differentiation. VEGF 

(Vascular Endothelial Growth Factor), and Angiopoietin are key molecules in the promotion 

of angiogenesis via activation of the VEGFR (VEGF Receptor), and Tyrosine kinase with 

immunoglobulin-like and EGF-like domains 1 (TIE) expressed on vascular endothelial cells 

(Lutsenko et al., 2003). The Ca(2+) is another important second messenger and its entry 

through plasma membrane affects the angiogenesis. VEGF causes an increase in intracellular 

Ca(2+) concentration in cultured endothelial cells (Criscuolo et al., 1989) through both 

intracellular Ca(2+) release and extracellular Ca(2+) entry (Brock et al., 1991; Faehling et al., 

2001; Wu et al., 1999; Cheng et al., 2006) and up-regulates vascular permeability (Criscuolo 

et al., 1988). Many of its physiological functions are dependent on Ca(2+) influx (Kawasaki 

et al., 2000; Faehling et al., 2002) through a store-independent mechanism (Pocock et al., 

2000). Vascular permeability has been shown to be dependent on calcium influx, possibly 

through a TRPC-mediated channels. In particular, recent data indicate that TRPC6 represent 

an obligatory component of cation channels required for the VEGF-mediated increase in 

cytosolic calcium and subsequent downstream signaling that leads to processes associated 

with angiogenesis. The TRPC6 channel can be activated by VEGF. Overexpression of a 

dominant negative TRPC6 construct in human microvascular endothelial cells (HMVECs) 

inhibited the VEGF-mediated increase in cytosolic calcium, migration, sprouting, and 

proliferation. In contrast, overexpression of a wild-type TRPC6 construct increased the 

proliferation and migration of HMVECs (Hamdollah Zadeh et al., 2008). Inhibition of 

TRPC6 in HUVECs by pharmacological or genetic approaches arrested HUVECs at G2/M 

phase and suppressed VEGF-induced HUVEC proliferation and tube formation. 

Furthermore, inhibition of TRPC6 abolished VEGF-, but not FGF-induced angiogenesis in 

the chick embryo chorioallantoic membrane (Ge et al., 2009). Reduced oxygen availability 

(hypoxia) in the surrounding brain tissue is a major driving force behind GBM angiogenesis, 

and the low oxygen environment in the brain is positively related to GBM aggressiveness 

and poor prognosis (Hockel & Vaupel, 2001). The role of Hif-1α in tumor growth and 

invasion is well established (Semenza, 2003). Hif-1α protein was undetectable or low in 

glioma cells under normoxic conditions but increased markedly under hypoxia. Similarly, 

Notch1 activity was low in glioma cells but was elevated after the hypoxic switch. In 

addition to Notch1, other components of the Notch pathway were increased in glioma cells 

after the hypoxic switch. Specifically, the levels of Jagged-1 protein were increased under 

hypoxia. The molecular signals that link tissue hypoxia, Hif-1α activation to tumor 

angiogenesis are poorly understood. In glioma cells, the expression of TRPC6 is low or 

undetectable. Hypoxia by inducing Notch1 activation, increases TRPC6 expression in 

primary GBM and cell lines derived from GBM. Knockdown of TRPC6 expression inhibits 

glioma angiogenesis. Moreover, pharmacologic inhibition of Notch blocked the hypoxia-

induced upregulation of TRPC6. The induction of TRPC6 expression in gliomas was TRPC 

subtype specific because other members of TRPC subfamily were unaffected. Although  
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Notch signaling is critical for TRPC6 upregulation, it remains to be determined whether the 

Notch pathway directly or indirectly, through cross-talk with other transcription factors 

(Gustafsson et al., 2005; Song et al., 2008), regulates TRPC6 transcription. TRPC6 activity is 

increased with EGFR activation (Odell et al., 2005), suggesting a link between growth factor 

response to tumor growth, and angiogenesis. Functionally, TRPC6 causes a sustained 

elevation of intracellular calcium that is coupled to the activation of the calcineurin-nuclear 

factor of activated T-cell (NFAT) pathway. Pharmacologic inhibition of the calcineurin-

NFAT pathway substantially reduces hypoxia-induced glioma progression (Mosieniak et al., 

1998; Chigurupati et al., 2010). The activation of TRPC6 by Galphaq induces RhoA activation 

and increased [Ca(2+)]i that stimulate thrombin-induced increase of actinomyosin-mediated 

endothelial cell contraction, cell shape change and consequently increased endothelial 

permeability. Inhibitor of Galphaq or phospholipase C and the Ca(2+) chelator, BAPTA-AM, 

abrogated thrombin-induced RhoA activation. By contrast, activation of TRPC6 by oleoyl-2-

acetyl-sn-glycerol (OAG), the membrane permeable analogue of the Galphaq-phospholipase 

C product, diacylglycerol, induced RhoA activity. Receptor-operated Ca(2+) activation was 

mediated by TRPC6. Thus, TRPC6 knockdown significantly reduced Ca(2+) entry and 

prevented RhoA activation, myosin light chain phosphorylation, and actin stress fiber 

formation as well as inter-endothelial junctional gap formation in response to either OAG or 

thrombin (Singh et al., 2007). Lysophosphatidylcholine (lysoPC) has been also found to 

induce a rapid translocation of TRPC6 in endothelial cells, that triggeres calcium influx 

resulting in externalization of TRPC5. Activation of this novel TRPC6-TRPC5 channel 

cascade by lysoPC, inhibits endothelial cell migration. TRPC5 siRNA down-regulates the 

lysoPC-induced rise in [Ca(2+)]i and reverts the inhibition of EC migration (Chaudhuri et al., 

2008), suggesting a negative role played by this channel in the regulation of EC migration. 

Finally, the phosphatase and tensin homologue (PTEN), has been found to serves as a 

scaffold for TRPC6 channel by enabling cell surface expression of the channel. Ca(2+) entry 

through TRPC6 induces an increase in endothelial permeability and directly promotes 

angiogenesis (Kini et al., 2010) (Fig 3). PTEN is a dual lipid-protein phosphatase that 

catalyzes the conversion of phosphoinositol 3,4,5-triphosphate to phosphoinositol 4,5-

bisphosphate and thereby inhibits PI3K-Akt-dependent cell proliferation, migration, and 

tumor vascularization. Recently, a PTEN phosphatase-independent mechanism in 

regulating Ca(2+) entry through TRPC6 has been reported. PTEN tail-domain residues 394-

403 permit PTEN to associate with TRPC6, and thrombin promotes this association. Deletion 

of PTEN residues 394-403 prevents TRPC6 cell surface expression and Ca(2+) entry (Kini et 

al., 2010). Other TRPC channels have been found to be involved in glioma angiogenesis. 

Studies in zebrafish, have demonstrated that the involvement of TRPCs channels in 

angiogenesis represents a reminiscent of the role of TRPC channels in axon guidance (Yu et 

al., 2010). Activation of TRPC1 seems to be essential for the angiogenesis in vivo. 

Knockdown of TRPC1 by antisense oligonucleotides severely disrupted angiogenic 

sprouting of intersegmental vessels (ISVs). In vivo time-lapse imaging revealed that the 

angiogenic defect was attributable to impairment of filopodia extension, migration, and 

proliferation of ISV tip cells. TRPC1 acts synergistically with VEGFA in controlling ISV 

growth, and appeared to be downstream to VEGFA in controlling angiogenesis (Yu et al., 

2010). Recently a role for TRPC1 in hypoxia-induced VEGF expression in U87 glioma cells 

has been reported. TRPC1 siRNA markedly inhibits hypoxia-induced up-regulation of  
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VEGF mRNA and protein levels (Wang  et al., 2009). TRPC1-dependent Ca(2+) influx 
induced by VEGF also increases endothelial permeability. Angiopoietin-1 (Ang1) that exerts 
a vascular endothelial barrier protective effect by blocking the action of permeability-
increasing mediators such as VEGF, inhibited the VEGF-induced Ca(2+) influx and 
increased the endothelial permeability in a concentration-dependent manner. Ang1 
interfered with downstream IP3-dependent plasmalemmal Ca(2+) entry. Anti-TRPC1 
antibody (Ab) inhibited the VEGF-induced Ca(2+) entry and the increased endothelial 
permeability. TRPC1 overexpression in endothelial cells augmented the VEGF-induced 
Ca(2+) entry, and application of Ang1 opposed this effect. Consistent with the coupling 
hypothesis of Ca(2+) entry, Ang1 by inhibiting the association of IP3 receptor (IP3R) and 
TRPC1, abrogates the increase in endothelial permeability (Jho et al., 2005). Although the 
previously reported study has been focused on Ang1 regulation of TRPC1 activation, we 
cannot rule out the involvement of other relevant TRPC channels. TRPC4 acts as a functional 
homologue in mouse endothelia to TRPC1 in humans (Nilius et al., 2003; Tiruppathi et al., 
2002). For agonist-induced Ca(2+) entry in mouse aortic endothelial cells, TRPC4 was essential 

as either a channel-forming subunit or a constituent required for channel activation  (Freichel 
et al., 2001). Because TRPC1 and TRPC4 can oligomerize (Hofmann et al., 2002), it is possible 
that both may be needed for the VEGF-induced Ca(2+) entry. The importance of TRPC4 in 
regulation of endothelial permeability in mice has been reinforced by the observations that the 
effects of Ang1 on VEGF-induced Ca(2+) entry and permeability were mimicked by deletion of 
the TRPC4 gene in mice (Tiruppathi et al., 2002). Finally, VEGF-induced activation of Ca(2+) 
entry can also occur via TRPC6 which is activated by PLC-generated DAG (Pocock et al., 2001, 
2004). TRPC4 has been also found to control thrombospondin-1 (TSP-1) secretion and 
angiogenesis in renal cell carcinoma (RCC) (Veliceasa et al., 2007). TRPC4 loss has been lead to 
impaired Ca(2+) intake, misfolding, retrograde transport and diminished secretion of 
antiangiogenic TSP-1, thus enabling angiogenic switch during RCC progression.  TRPC4 has 
been recently reported to be expressed in glioma cells (Wang et al., 2009), however at present 
no data on the role of this channel in the inhibition of glioma angiogenesis has been provided 
so far. Membrane-stretch activated TRPV calcium channels have been known to mediate the 
orientation of endothelial cells lining blood vessels thus influencing the angiogenesis. So, 
TRPV4 channels expressed in the plasma membrane of capillary endothelial cells is required 
for mechanical-induced changes in focal adhesion assembly, cell orientation and directional 
migration. Recent reports indicate that activation of the mechanosensitive TRPV4 in capillary 
endothelial cells, stimulates phosphatidylinositol 3-kinase-dependent activation and binding 
of additional 1 integrin receptors, which promotes cytoskeletal remodeling and cell 
reorientation. Inhibition of integrin activation using blocking Abs and knock-down of TRPV4 
using siRNA, suppress capillary cell reorientation. Activation of TRPV4 channels by force 
transfer from integrins and CD98 may enable compartmentalization of calcium signaling 
within focal adhesions. This early-immediate calcium signaling response required the distal 
region of the 1 integrin cytoplasmic tail that contains a binding site for the integrin-associated 
transmembrane CD98 protein, and application of external force to CD98 within focal 
adhesions activated the same ultra-rapid calcium signaling response (Matthews et al., 2010). 
Thus, mechanical forces that physically deform extracellular matrix (ECM) guide capillary cell 
reorientation through an "integrin-to-integrin" signaling mechanism mediated by activation of 
mechanically gated TRPV4 channels on the cell surface (Thodeti et al., 2009). We have recently 
reported the expression of TRPV4 channels in glioma cell lines (Santoni et al., 2011), however 
the potential role of TRPV4 in the migration of endothelial cells during glioma angionenesis is 
at present unknown.  
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Fig. 3. Different modes of TRPC6 activation and cellular response, in glioma cells A) Spike in 
[Ca2+]i entry  induces endothelial cell (EC) contraction, cell shape and permeability; B) while 
prolonged [Ca2+]i entry by LysoPC-induced TRPC6 activation inhibits EC migration.   

4. TRPC and TRPM channels stimulate glioma cell migration and invasion 

Glioblastoma multiforme is extremely invasive and consequently the clinical prognosis for 
patients is dismal. Invasion by glioma cells into regions of normal brain is driven by a 
multifactorial process involving cell interactions with ECM and with adjacent cells, as well 
as accompanying biochemical processes supportive of proteolytic degradation of ECM, and 
active cell movements (Bomben et al., 2010). These processes bear a striking resemblance to 
the robust inherent migration potential of glial cells during embryogenesis. Invasion and 
migration of glial tumors differ from other tumors where local spread is very limited and 
dissemination occurs hematogenously or via the lymphatic system. As they spread and form 
metastasis, glioma cells migrate through the narrow extracellular brain spaces often 
following the path of nerve fiber or blood vessels. Invading glioma cells commonly assume 
an elongated spindle-shaped morphology, suggesting that the cells have shrunk to fit into 
the narrow space into the brain (Sontheimer, 2008). Several studies have focused on the 
understanding of different molecular mechanisms expressed by invading tumor cells. 
Gliomas utilize a number of proteins and pathways to infiltrate the brain parenchyma 
including ion channels and calcium signaling pathways. Ion channels have recently 
involved in glioma invasion as a means to control cell volume or regulating Ca(2+) signaling 
pathways in invasive cells. Calcium signaling has been shown to play important roles in 
glioma cell invasion (Komuro & Kumada, 2005).  Cell shrinkage by adaptation of cell size 

Spike in [Ca2+]i entry Prolonged [Ca2+]i entry 
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and volume to fit into narrow spaces is a prerequisite for cell movement and migration. 
Most immature cells that can migrate are well equipped to accumulate and release 
intracellular ions to shrink. How cell movement and invasion are coupled to the controlled 
activation of Ca(2+) channels is only partially understood (Mcferrin & Sontheimer, 2006). In 
glioma cells, invasion appears to involve a coordinated reduction in cell volume, which is 
mediated by the efflux of Cl− and K+ through ion channels. The Cl− efflux is accompanied by 
the movement of K+ ions. The principal pathway for K+ efflux from glioma cells appears to 
be via Ca(2+)-activated bradykinin (BK) channels, which have the unique ability to couple 
changes in intracellular Ca(2+) to changes in membrane K+ conductance and are expressed 
highly in glioma cells (Ransom & Sontheimer, 2001). In glioma cells, migration is 
accompanied by oscillatory changes in intracellular Ca(2+)  in response to different stimuli 
(Grimaldi et al., 2003), which activate BK K+ channels, and the velocity of cell migration of 
glioma cells correlates with oscillatory changes in intracellular Ca(2+) concentration (Bordey 
et al., 2000). Among ion channels contributing to Ca(2+) signaling, cytoskeleton changes, 
movement and migration, the TRPM and TRPC channel families seem to play an important 
role. Thus, triggering of TRPM8 by the specific agonist, menthol (Wondergem & Bartley, 
2009), as TRPC3 and TRPC6 (Kim et al., 2009) increases glioma cell [Ca(2+)]i that in turn 
activates BK channels. Thus. TRP-mediated activation of Ca(2+) influx appears to be the 
prerequisite for cell migration and this Ca(2+) signal is instructive with regards to cell 
volume changes that occur down-stream. Cell shape, adhesion and migration have been 
regulated by actomyosin contractility. TRPM7-like transcripts current has been identified in 
rat microglia (Jiang et al., 2003). TRPM7 plays a role in linking receptor-mediated signals to 
actomyosin remodelling and cell adhesion. Activation of TRPM7 by BK, leads to a Ca(2+) 
and kinase-dependent interaction with the actomyosin cytoskeleton. Overexpression of 
TRPM7, by increasing the intracellular Ca(2+) levels resulted in cell spreading, adhesion and 
formation of focal adhesions (Clark et al., 2006). The effects of TRPM7 on cell morphology is 
directly dependent on integrin activation or is associated to increase in cytosolic Ca(2+) 
concentrations that affect the actomyosin cytoskeleton. The integrin activation can lead to 
the remodeling of the actomyosin cytoskeleton that promotes cell spreading via outside-in 
signaling pathways. Alternatively, Ca(2+) is an important second messenger in actin 
remodeling including polymerization, severing of filaments and F-actin–membrane 
interactions. The TRPC channels play a role in store-operated calcium entry (SOCE), and in 
particular TRPC1 is involved in SOCE in glioma cells  (Bomben & Sontheimer, 2010). 
TRPC1-dependent migration and chemotaxis have been reported in different cell types such 
as myoblasts (Louis et al., 2008), renal epithelial (Fabian et al., 2008) and nervous cells 
(Wang & Poo, 2005) (Fig.2). Recently, (Bomben & Sontheimer, 2010) showed that TRPC1 
channel association with lipid rafts is essential for glioma chemotaxis in response to stimuli, 
such as EGF, but not chemokinesis. EGF stimulation affects both TRPC trafficking 
(Bezzerides et al., 2004) and activation (Beech, 2005; Liu et al., 2009), and TRPC1 channel 
localization to the leading edge of migrating glioma cells. TRPC1 channels co-localize with 
the lipid raft proteins, caveolin-1. Chemotaxis toward EGF was lost when TRPC channels 
were pharmacologically inhibited or by shRNA knock-down of TRPC1 channels, yet 
without affecting unstimulated cell motility. Lipid raft integrity was required for gliomas 
chemotaxis; thus disruption of lipid rafts not only impaired chemotaxis but also impaired 
TRPC currents and decreased store-operated calcium entry. TRPC6 is markedly up-
regulated under hypoxia in a manner dependent on Notch activation. The Notch-regulated 
transcriptional targets that are responsible for the development of the aggressive and 
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malignant phenotypes in GBM remain poorly characterized. Notch signaling mediates 
hypoxia-induced tumor migration and invasion under hypoxic environment (Sahlgren et al., 
2008). TRPC6 has been found to markedly inhibited glioma cell migration and invasion in 
response to hypoxia by regulating actin cytoskeleton assembling and disassembling which 
control cell shape, allowing the cell to move along the surface. The last step of invasion 
requires cytoskeletal rearrangements and formation of lamillipodia and fillopodia for which 
the family of Rho GTPases plays an important role. Most Rho proteins, cycle between GTP-
bound active and GDP-bound inactive state. From the family members, Rho stimulates 
formation of stress fibres and focal adhesion, Rac is required for the formation of 
lamellipodia and Cdc42 regulates cell polarity and fillopodia formation (Teodorczyk & 
Martin-Villalba, 2009). A role for TRPC6 in Rho activation and actin cytoskeleton 
rearrangements has been suggested (Albert & Large, 2003). The TRPC6-mediated Ca(2+) 
entry may contribute to invasion by promoting actin-myosin interactions and the formation 
and disassembly of cell-substratum adhesions that are important for glioma migration (Kim 
& Saffen, 2005). Moreover, a role for TRPC3 activation has been also proposed. Thus, Ca(2+) 
entry in type I astrocytes and rat C6 glioma cells induced by OAG was InsP3-independent 
and inhibited by a TRPC3 antisense (Grimaldi et al., 2003). In addition, TRPC3 is 
functionally involved in Ca(2+) entry and thrombin stimulated morphological changes (cell 
rounding) induced by PAR-1 activation in 1321N1 human astrocytoma cells (Nakao et al., 
2008). Finally, GBM cells express TRPM8 mRNA and protein, and its involvement in 
menthol and hepatocyte growth factor/scatter factor  (HGF/SF) increase of [Ca(2+)]i and 
glioma cell migration has been reported (Wondergem et al., 2008). Menthol a TRPM8 
agonist, stimulated influx of Ca(2+), membrane current, and migration of human 
glioblastoma DBTRG cells. The effects on Ca(2+) and migration were enhanced by pre-
treatment with HGF/SF. The effects on Ca(2+) also were greater in migrating cells 
compared with non-migrating cells. 2-Aminoethoxydiphenyl borate inhibited all menthol 
stimulations. In addition, menthol, by increasing [Ca(2+)]i, in human glioblastoma cells, 
resulted in activation of the large-conductance Ca(2+)-activated K+ membrane ion channels 
(BK channels). Kinetic analysis showed that menthol increased channel open probability 
and mean open frequency after 5 min, and this increase was abolished either by added 
paxilline, tetraethylammonium ion or by Ca(2+)-free external solution. In addition, 
inhibition of BK channels by paxillin reverses menthol-stimulated increase of [Ca(2+)]i 
and cell migration. Finally, menthol stimulated the rate of DBTRG cell migration into 
scratch wounds made in confluent cells, and this also was inhibited by paxilline or 
tetraethylammonium ion (Wondergem & Bartley, 2009). Invasion and metastasis are 
biologic hallmarks of malignant tumour. The invasion of ECM requires active degradation 
of ECM components. Tumour cells themselves secrete proteolytic enzymes 
(metalloproteinases, MMPs) or induce host cells to elaborate proteases (Pluda, 1997; Price 
et al., 1997; Liotta & Kohn, 1997). Glioma cells secrete MMPs to degradate the ECM 
surrounding invading cells (Levicar et al., 2003). In this regard, cannabidiol (CBD) has 
been found to impair the migration of U87 glioma cells in a cannabinoid receptor-
independent manner (Vaccani et al., 2005), by increasing the tissue inhibitor of MMP1, 
(TIMP-1) (Ramer et al., 2010) and down-regulating the MMP-2 expression (Blazquez et al., 
2008). Since CBD represents a specific ligand for TRPV2 (Qin et al., 2008), and being 
TRPV2 downregulated in the more invasive malignat gliomas (Nabissi et al., 2010), 
activation of this channel may represent an important  target in anti-invasive 
chemotherapeutic strategy in GBM patients.  
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5. TRPV and TRPM channels trigger cell death in human glioma cells 

Members of the TRPV and TRPM channels have been found to regulate apoptotic and 
necrotic cell death processes, respectively, as well as resistance to apoptotic stimuli in 
glioblastoma cells. In this regard, a role for TRPV1 in the apoptosis of glioma cells has been 
reported (Amantini et al., 2007). Thus, TRPV1 mRNA and protein expression was evidenced 
in normal astrocytes and glioma cells and tissues (Contassot et al., 2004; Amantini et al., 
2007). TRPV1 expression inversely correlated with glioma grading, with a marked loss of 
TRPV1 expression in the majority of grade IV glioblastoma tissues. In addition, TRPV1 
activation by the synthetic ligand, capsaicin (CPS) induced apoptosis of U373 glioma cells, 
and involved rise of Ca(2+) influx, p38MAPK activation, mitochondrial permeability 
transmembrane pore opening and transmembrane potential dissipation and caspase-3 
activation (Amantini et al., 2007). Similarly, an other TRPV1 agonist, 
arachidonylethanolamide (AEA) induces apoptosis of human glioma cells in a TRPV1-
dependent-manner (Contassot et al., 2004). Resistance of cancer cells to chemotherapeutic-
induced cytotoxicity during tumor progression partially depends by a decrease sensitivity 
to CD95/Fas-induced apoptosis (Amantini et al., 2009). Induction of cell death by some 
cytotoxic drugs seems to depend to an intact Fas/FasL system. Tumour progression by 
exerting selective pressure alters Fas status and subsequently affects the sensitivity of cancer 
cells to chemotherapy (Sindhwani et al., 2001). Glioblastoma cells are resistant to Fas-
induced cell death. We have recently reported that TRPV2 negatively controls glioblastoma 
survival as well as resistance to Fas/CD95-induced apoptosis in an ERK-dependent manner. 
Silencing of TRPV2 by RNA interference (siRNA) in U87 glioma cells down-regulated 
Fas/CD95 and procaspase-8 expression, and up-regulated Bcl-XL mRNA expression. 
Moreover, TRPV2 siRNA increased glioblastoma survival to Fas/CD95-induced apoptosis 
in an ERK-dependent manner (Nabissi et al., 2010). Inhibition of ERK activation by 
treatment of the siRNA-TRPV2 U87 glioma cells with the specific MEK-1 inhibitor PD98059, 
reduced Bcl-XL protein levels, promoted Fas/CD95 expression and restored Akt/PKB 
pathway activation leading to reduced cell survival and increased sensitivity to Fas/CD95-
induced apoptosis (Nabissi et al., 2010). These events are consistent with previous evidence 
showing that PI3K pharmacological inhibitors inhibited calcium overload and cell death in 
TRPV2-transfected mouse cells (Penna et al., 2006). Consistently, TRPV2 transfection of the 
primary MZC glioblastoma cells also reduced glioma viability and increased spontaneous 
and Fas/CD95-induced apoptosis, by inducing Fas/CD95 expression (Nabissi et al., 2010). 
Among TRPM channels, a role for the Ca(2+) permeable TRPM2 channel in glioma cell 
death has been reported. Thus, insertion of TRPM2 in human A172 glioma cells enhanced 
cell death induced by H2O2  (Ishi et al., 2007).  

6. TRP channels as cross-road of deregulated transcriptional activity in 
glioma stem like-cells 

Evidence that malignant gliomas may arise from and contain a minority tumour cells with 
stem cell-like (GSCs) properties has been increased by the demonstration that GSCs 
maintain the potential for self-renewal and multi-lineage differentiation that recap the 
phenotype of the original glioma (Galli et al., 2004; Singh et al., 2003; Yuan et al., 2004), Since 
GSCs has been suggested to play an important role in glioma initiation, growth, and 
recurrence, it is extremely important to understand the signal pathways that contribute to 
their formation and maintenance, with the future aims to eliminate GSCs from the bulk 
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tumor mass as a therapeutic strategy (Reya et al., 2001). Recent evidences adscript an 
emergent role of TRP channels in  regulating neurogenesis (Tai et al., 2009) as well as neural 
differentiation (Shin et al., 2010), suggesting that deregulation of specific TRP target genes 
may be involved in gliomagenesis (Van Meir et al., 2010; Liu et al., 2010). In this regard, the 
expression of TRPV2 in normal neural stem/progenitor cells (NS/PC) from olfactory bulb 
and GSC lines derived from GBM patients, and a role of this TRP channel in the regulation 
of cellular proliferation and differentiation, have been observed (Nabissi et al., personal 
communication). Stem cells proliferation is maintained by a balance between proliferative 
and antiproliferative signals and any genetic or biochemical modifications that lead stem 
cells to become independent of growth signals, could induce an  uncontrolled proliferation 
and possible tumorogenesis (Li & Neaves, 2006). GSCs divide core regulatory pathways 
with normal neural stem cells (NPSs), sharing developmental programs that lead NSCs to 
differentiate into astrocytes, oligodendrocytes and neurons (Galli et al., 2004; Singh et al., 
2003), but induce in GSCs an aberrant differentiation (Cheng et al., 2010). GSCs are reported 
to express CD133 and nestin and to differentiate into cells expressing neuronal or glial cell 
markers upon growth factor depletion (Gunther et al., 2008). In addition to these NSC 
characteristics, glioma-derived neurospheres or CD133+ cells are tumorigenic and when 
transplanted into SCID mice formed secondary tumors with phenotypic and cytogenetic 
similarities to the patient tumor from which they were originally derived (Singh et al., 2003; 
Lee et al., 2006). Recent findings in GSCs demonstrated that the upregulation of classical 

pathways associated with neural development, as Notch, WNT, Hedgehog and TGF/BMT 
pathways (Clark et al., 2007; Silver & Steindler, 2009), induce in GSC-derived GBMs an 
invasive, angiogenetic, proliferative and chemoresistant phenotype (Sanai et al., 2005). So, 
modulation of these pathways may represent novel therapeutic approach for GBM. Notch is 
a family of hetero-dimeric transmembrane receptors composed of an extracellular domain 
responsible for ligand recognition, a transmembrane domain, and an intracellular domain 
involved in transcriptional regulation (Stockhausen et al., 2010). Notch proteins (and 
ligands)contain extracellular EGF-like repeats, which interact with the DSL domain of 
ligands. Activation of Notch upon ligand binding is accompanied by proteolytic processing 
that releases an intracellular domain of Notch (NICD) from the membrane tether. The NICD 
contains the RAM23 domain (RAM), which enhances interaction with the CSL protein, NLS 
(Nuclear Localization Signals), a CDC10/Ankyrin repeat domain ANK, which mediates 
interactions with CSL and other proteins, and a PEST domain rich in proline, glutamate, 
serine and threonine residues (Kopan, 2002). When Notch receptor is triggered by the 
ligands on the neighboring cells, the intracellular domain of the Notch receptor (NICD) is 

released from the membrane, after successive proteolytic cleavages by the -secretase 
complex. NICD then translocates into the nucleus and associates with the transcription 
factor RBP-J. This complex by secruiting other co-activators, stimulates the expression of 
downstream genes as Cyclin-D1, EGFR, and MAPK (Mitogen-Activated Protein Kinase) 
inducing cell proliferation, angiogenesis and chemoresistance, in GSCs (Stockhausen et al., 
2010). Regarding the role of Notch signaling in GBM, gene microarray analysis have 
demonstrated that its expression in brain tumors correlated with good versus poor 
prognosis (Phillips et al., 2006). Moreover, in GBM tissue samples, high expression of Notch 
signal has been associated with high nestin levels, suggesting a correlation between GSCs 
and Notch expression (Purow et al., 2005; Lino et al.,2010; Boulay et al., 2007; Shih & 
Holland, 2006). Infact, Notch signaling plays a pivotal role in the maintenance of NSCs  
and leads to GSC-driven brain tumor development ( Lino et al., 2010; Louvi & Artavanis-
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Tsakonas, 2006). Recently, has been demonstrated that Notch activation is increased 
during hypoxia and hypoxia direct GBM to the development of an aggressive phenotype 
and resistance to radiation and chemotherapy (Flynn et al., 2008). Regarding the 
relationship between Notch signaling and TRP channels, a direct correlation has been 
demonstrated in human glioma cell lines where TRPC6 transcripts have been found to be 
increased under hypoxic condition and the involvement of Notch in hypoxia-induced 
TRPC6 expression in glioma has been demonstrated. Silencing of Notch1 gene inhibits 
TRPC6 expression suggesting that Notch1 is required for hypoxia-induced TRPC6 over-
expression (Chigurupati et al., 2010). In response to hypoxia, the hypoxia inducing factors 

(HIF1- and HIF-2) are stabilized and as a consequence VEGF and TGF are up-
regulated (Birlik et al., 2006). Moreover, hypoxia-induced endothelial cell proliferation is 
associated with an increase of AP-1 expression, elevated store-operated calcium entry, 
and enhanced TRPC4 expression (Fantozzi et al., 2003), suggesting that additional TRP 
channels may regulate angiogenic signals (Fig.4). The interplay between GSCs and the 
endothelial compartement seems to be critical in gliomagenesis. Thus, GSCs closely 
interacting with the endothelial cells in vascular niche, promote angiogenesis through 
VEGF release (Bao et al., 2006a; Folkins et al., 2009). GSCs are reported to express CD133 
 

 

Fig. 4. The putative role of TRP channels in neural and glioma stem cell-like  differentiation 
and angiogenesis. A schematic representation of different TRP members involved in the 
regulation of neuro- and glioma-genesis 

and nestin (Yuan et al., 2004; Gunther et al., 2008) and have been demonstrated to have 
multipotent differentiative potential (Galli et al., 2004; Singh et al., 2003). Several authors 
have hypothesized that CD133+ tumor stem cells are the source of the recurrent tumors after 
treatment (Chua et al., 2008; Bleau et al., 2009) and the CD133+ cell population was enriched 
after radiation or chemotherapy and exhibited an increase in DNA repair capacity (Bao et 
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al., 2006b). A series of pathways, including the Sonic hedgehog (Shh) and Notch, have been 
shown to be implicated in glioma’s resistance to alkylating agents and/or the maintenance 
of brain tumor stem cells (Ulasov et al., 2011; Clement et al., 2007). Moreover, 
overexpression of Dkk-1, a gene encoding for a Wnt antagonist protein, has been shown to 
sensitize the U87 glioma cells to the cytotoxic effects of bis-chloronitrosourea (BCNU) and 
cisplatin (Shou et al., 2002). In this regard, an inverse correlation between TRPV2 and SHH 
and Notch pathways (Phillips et al., 2006; Nabissi et al., 2010) in regulating chemoresistance 
to the alkylating agent bis-chloronitrosourea (BCNU), can be supposed. TRPV2 expression 
progressively declined in high-grade glioma tissues as histological grade increased, while 
Notch and SHH signaling was activated in GBM. Knockdown of TRPV2 gene in gliomas 
increased the resistance to BCNU cytotoxicity which was associated with Ras/MEK/Erk 
and Akt overexpression in chemosensitive glioma cells, while TRPV2 overexpression 
augmented the chemosensitivity of resistant glioma cells to BCNU. In addition, down-
regulation of TRPV2 reduced Fas expression and Fas-mediated apoptosis (Nabissi et al., 
2010). Parallelely, upregulation of Notch 1, increased the resistance of glioma cell to 
apoptosis (Purow et al., 2005). Finally, forced Notch 1 overexpression in glioma cells 
increased the proliferation and the formation of nestin-positive, neurosphere-forming stem 
cells (Zhang et al., 2008). Overall, these data suggest that in gliomas, TRPV2 could be a 
downstream gene target of Notch signaling rescuing glioma cells to apoptosis and 
promoting cell proliferation.  
 

7. Conclusions and prospectives 

In this chapter, we have summarized current basic and translational changes and highlight 

the striking scientific advances regarding the expression and the function of the TRP 

channel family in glioma growth and progression, that promise to improve the clinical 

course of this lethal disease. These include a more comprensive view of the interplay 

between changes in TRP channel expression and functions (e.g., TRPC, TRPM and TRPV 

family) and alterations in transcriptional and growth factor pathways (e.g., Notch, PTEN, 

HIF-α, EGFR) driving the uncontrolled cellular proliferation, aberrant angiogenesis, intense 

migration and invasion, increased resistance to apoptosis. Clearly, the identification of 

cluster of TRP ion channels altered during glioma progression presents an opportunity for 

improving the understanding of this cancer. The progress and depth of understanding of 

the role of ion channels, including the TRP family in glioma, together with truly 

manipulable experimental models, now offer a real opportunities for the development of 

effective target therapy (Santoni & Farfariello, 2011). Despite significant gaps in our 

understanding, a wealth of information now exists about clinical and biological behaviour of 

these tumours, the genetic pathways involved in gliomagenesis and the nature and the role 

of their alterations. The challenge is now to integrate all of this knowledge in an 

interdisciplinary way to full understand this disease and how its heterogenicity contributes 

to the relatively poor therapeutic responses of GBM patients. In regard to stem cell issue, the 

fact that the glioma-like stem cells (GSCs) that play an important role in the development 

and recurrence of malignat glioma, not only express TRP channels, but also show functional 

alterations in their expression and transcriptional regulation, combined with the evidence 

that they displayed nearly identical Ca(2+) transients and pharmacological sensitivities to 

TRP channel antagonists (Nabissi et al., personal communication; Weick et al., 2009), may 
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offer a new target for regulating GSC proliferation and developing novel therapeutic 

strategies. We are only at the begin of a new story; further studies on the expression and 

function of TRP channels in gliomas and GSCs must to be required to understand their 

contribute to malignant transformation and tumour progression, to delivery a specific target 

therapy in this devastating disease. 
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