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1. Introduction 

Human T-cell leukemia/lymphoma virus type 1 (HTLV-1), a member of the delta-retrovirus 
family, is an oncogenic retrovirus that is etiologically associated with adult T-cell leukemia 
(ATL) (Hinuma et al., 1981, Poiesz et al., 1980, Yoshida et al., 1982) and HTLV-1-associated 
myelopathy/tropical spastic paraparesis (HAM/TSP) (Gessain et al., 1985, Osame et al., 
1986). ATL is characterized by an aggressive CD4+ T-cell malignancy with resistance to anti-
cancer therapeutics. It is currently estimated that HTLV-1 infects 10-20 million people in the 
world, endemically southwestern Japan, Africa, South America and the Caribbean basin 
(Proietti et al., 2005). HTLV-1 transmission mainly occurs from mother to child through 
breast milk followed by infection to child cells in a cell-cell contact manner (Kinoshita et al., 
1987). Approximately 2-5% of HTLV-1-infected individuals develop ATL after a long latent 
period. The average Japanese ATL patients are 60 years old. Accumulation of genetic and 
epigenetic changes in provirus and host genes during the latent period is thought to be 
essential for immortalization and transformation of T-cells. However the pathogenesis of 
ATL by HTLV-1 remains incompletely understood.  
Like other retroviruses, HTLV-1 provirus genome structure genes, gag, pro, pol, and env are 
flanked by 5’ and 3’ long terminal repeat (LTR). Besides the prototype genes, the HTLV-1 
genome has the 1.6 kb pX region in the 3’ terminal region. The pX region codes for several 
non-structural molecules Tax1, Rex, p12, p13, p30, p21 and HBZ by combination of the 
reading frames and alternative splicing (Figure 1) (Nicot et al., 2005). Tax1 was initially 
identified as a trans-acting transcriptional activator of the HTLV-1 promoter in LTR, leading 
to virus replication (Fujisawa et al., 1985, Sodroski et al., 1984). Tax1 has the ability to 
modulate transcription of cellular genes through activation of at least three cellular 

transcriptional factors NF-B, CREB/ATF and AP-1 (Yoshida, 2001). Tax1-mediated 
dysregulation of gene expression is believed to be implicated in cellular immortalization 
and transformation through multistep processes. Cell immortaliztion and transformation 
generally require at least three steps: cell growth promotion, prevention of apoptosis and 
escape from senescence. Involvement of Tax1 in three steps has been studies intensively and 
extensively; Introduction of the Tax1 gene induces phenotypic transformation in fibroblast 
cell lines (Tanaka et al., 1990), neoplastic transformation of primary rat fibroblast in co-
operation with the ras oncogene, persistent interleukin (IL) 2-dependent growth of primary 
T-cells in vitro (Akagi et al., 1995, Grassmann et al., 1989), and development of tumors and 
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leukemia in mice (Grassmann et al., 1989, Nerenberg et al., 1987). Tax1 exertion may be 
important for the early stage of the development of ATL, because some ATL cells do not 
express Tax1. The disturbance of normal cellular environment by Tax1 may be an initial step 
of ATL development. This chapter focuses on recent advances in molecular basis of Tax1 
implication in leukemogenesis. 
 

 
Fig. 1. Structure of HTLV-1 proviral genome 

2. Effect of Tax1 on cell growth promotion 

2.1 Cell cycle progression 

Dysregulated cell cycle progression is potential for cellular transformation (Trimarchi and 
Lees, 2002). Cell growth is primarily controlled by the cell cycle, which in divided into five 
phases for convenience: the first gap (G1) phase, the DNA synthetic (S) phase, the second 
gap (G2) phase, the mitotic (M) phase and the resting (G0) phase. Mitogenic stimulation 
induces cell cycle progression by going through the restriction point between G1 and S 
phases (Trimarchi and Lees, 2002). Once they pass the restriction point, cells are destined to 
undergo one round of the cell cycle without further mitogenic stimulation. Most somatic 
cells usually stay at G0 or G1 phase. G1 cyclins and cyclin-dependent kinase (CDK) 
complexes (cyclin D1-CDK4, 6 and cyclin E-CDK2) control G1 to S transition (Dyson, 1998, 
Nevins, 1998, Trimarchi and Lees, 2002). Mitogenic stimulation activates cyclin-CDK 
complexes, which phosphorylates the retinoblastoma tumor suppressor protein (pRb), 
releasing active E2F that functions as a transcription factor to produce gene products 
required for G0/G1 to S transition (Figure 2). 
 Previous studies including our findings indicate that Tax1 is directly implicated in cell cycle 
control (Liang et al., 2002, Neuveut et al., 1998, Ohtani et al., 2000, Schmitt et al., 1998). Tax1 
induces cell cycle progression from G0/G1 to S phases in normal peripheral blood 
lymphocytes (PBLs) and IL-2-dependent human T-cell line Kit 225 cells (Iwanaga et al., 2001, 
Ohtani et al., 2000). The advantage of Kit 225 cells is that their growth is arrested at the G1 
phase by depletion of IL-2 without significant apoptosis, and growth promotion can be re-
induced by the addition of IL-2 (Hori et al., 1987). Tax1 is known not to have the ability to bind 
directly to DNA elements and to perturb expression of a lot of cellular genes through 

interaction with cellular transcription factors NF-B, CREB and AP-1 (Yoshida, 2001). Ectopic 
introduction of Tax1 into resting Kit 225 cells by recombinant adenoviruses revealed that a 

Tax1 mutant lacking the ability to activate NF-B fails to cell cycle progression, suggesting that 

NF-B is important for Tax1-mediated cell cycle progression (Iwanaga et al., 2001). To address 
the molecular mechanism underlying Tax1-induced cell cycle progression, effects of Tax1 on 
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expression of cell cycle regulators have been examined. Tax1 up-regulates expression of genes 
for cyclin D2, cyclin E, E2F1, CDK2, CDK4 and CDK6, while Tax1 reduced expression of genes 
for CDK inhibitors p19INK4d and p27Kip1 in resting Kit 225 cells (Iwanaga et al., 2001, Ohtani et 
al., 2000). These results indicate that Tax1-dependent deregulation of cell cycle regulators is 
directly associated with abnormal cell cycle progression. 
 

 

Fig. 2. Regulation of G1/S transition 

2.2 Activation of E2F 
E2F plays crucial roles in induction of the S phase by regulating expression of genes that 
encode a set of molecules involved in DNA replication and cell cycle progression (Figure 2) 
(Nevins et al., 1997). Thus it is important to understand how Tax1 affects E2F activity. Tax1-
dependnt phosphorylation of pRb results in activation of E2F1 (Iwanaga et al., 2001). Active 
E2F1 enhances own transcription by direct interaction to the E2F promoter in Kit 225 cells, 
whereas the E2F gene promoter is not activated by Tax1 in rat embryonic fibroblast REF52 
cells (Ohtani et al., 2000). This finding suggests that Tax1 induces a positive feedback loop of 
E2F in a cell lineage-dependent manner. Indeed Tax1 increases transcript levels of genes 
carrying the E2F binding sites in their promoters. The HsOrc1, DHFR, DNA polymerase  
and Cdc6 gene are examples, all of which are necessary for DNA replication in S phase 
(Ohtani et al., 2000). The activity of Tax1 to activate NF-B and/or NFAT is indispensable 
for E2F activation (Ohtani et al., 2000). Tax1 also trans-activated promoters with E2F sites of 
cell cycle regulatory genes such as c-myc, cyclin D2, cyclin E and cyclin A (Huang et al., 
2001, Ohtani et al., 2000, Santiago et al., 1999). These results demonstrate that Tax1 induces 
cell cycle progression, partly by releasing active E2F molecules.  

2.3 Interfere with mitosis 

Surprisingly and interestingly, primary T-cells or Kit 225 cells transduced with Tax1 show 
the cellular G1/S entry, but proliferation of such cells is not observed (Iwanaga et al., 2001, 
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Ohtani et al., 2000), perhaps suggesting blockage of mitosis by Tax1. Similarly induction of 
Tax1 in PA18G-BHK-21 cells, which are Tax1-inducible syrian hamster kidney cell line, 
revealed cell cycle transition from G1 to S phase, but further progression to mitosis was not 
seen (Liang et al., 2002). In addition, Tax1-transduced cells show nuclear abnormalities and 
cytokinesis defects, which are similar to symptoms observed in ATL patients (Jin et al., 1998, 
Majone et al., 1993, Semmes and Jeang, 1996). However the exact roles of Tax1 in entire cell 
cycle progression will be elucidated by future studies. 

3. Deregulation of cellular signaling by Tax1 

3.1 Induction of cytokines and their receptors 

Growth stimuli for T-cells are usually delivered by cytokines, in particular IL-2 acts as an 
effective growth factor for T-cells (Asao et al., 1994, Tanaka et al., 1994). Cytokines, which 
are expressed inducibly and transiently, bind to their specific receptors, transducing 
intracellular signalings important not only for cellular proliferation, but for differentiation 
and survival of lymphocytes (Rochman et al., 2009). Expression of cytokines is crucial for 

proliferation of lymphocytes. The -chain of IL-2 receptor (IL-2R) is also induced by 
immune stimulation and its gene is the first identified cellular gene that is activated by Tax1 

(Ballard et al., 1988, Ruben et al., 1988). Together with IL-2R IL-2Rand the common 

-chain form the high affinity IL-2 receptor complex that is an actual growth signal 
transducer of T-cells (Takeshita et al., 1992). Furthermore, transient transfection studies 

showed that the IL-2 promoter is activated by Tax1 in an NF-AT and NF-B pathway-
dependent manner (Good et al., 1996, Hoyos et al., 1989, McGuire et al., 1993). These led to 
the hypothesis that Tax1 makes T-cells proliferative through autocrine and/or paracrine 
action of induced IL-2 and IL-2R. However recent studies revealed that Tax1-expressing T-
cells do not produce either the IL-2 mRNA or protein (Akagi and Shimotohno, 1993, Chung 
et al., 2003). Hence, the IL-2/IL-2R autocrine loop mediated by Tax1 in transformation of T-
cells has been reconsidered. 
Tax1 trans-activates transcription of genes for other cytokines related to T-cell growth such 
as IL-9, IL-13, IL-15 and IL-21 (Azimi et al., 1998, Chen et al., 2008, Mizuguchi et al., 2009, 
Silbermann et al., 2008, Waldele et al., 2004). Notably, IL-21 is produced by activated CD4+ 
T-cells and effectively promotes proliferation of T-cells in co-operation with IL-15 (Onoda et 
al., 2007, Parrish-Novak et al., 2000). IL-21 is similar to IL-2 and IL-15 in terms of biological 
activity and receptor constitution, which is composed of itself specific receptor(s) and the 

common -chain (Asao et al., 2001, Onoda et al., 2007, Parrish-Novak et al., 2000). The 
common -chain is a target of Tax1 at transcription (Ohbo et al., 1995). These observations 
suggest that incomplete progression of the cell cycle by Tax1 may be complemented by 
action of cytokines and their receptors induced by Tax1. Coordination between IL-21 and IL-
15 induced by Tax1 may deliver more effective growth signals in T-cells. This notion does 
not exclude the possibility of implication of IL-2 in Tax1-mediated cell growth. IL-21 may 
function as a powerful inducer for T-cell growth in the presence of IL-2, which is released in 
immune responses to HTLV-1 infection. 

3.2 Intracellular signaling 

Cytokines deliver more effective growth signals in T-cells. Interaction of cytokines with 
their receptors activates Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT) and PI3 kinase growth signaling pathways (Kelly-Welch et al., 2003, 
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Marzec et al., 2008, Zeng et al., 2007). The JAK/STAT pathway is one of the major 
cytokine signaling pathways. JAK-mediated phosphorylation of receptor subunits 
increases phosphorylation and dimerization of STATs, resulting in activation of 
downstream genes essential for cell growth and immunity (Levy and Darnell, 2002). JAK 
and STAT proteins are unphosphorylated and inactive in normal quiescent lymphocytes. 
STAT3 and STAT5 in HTLV-1 infected T-cells are reported to be constitutively activated 
(Hall and Fujii, 2005, Migone et al., 1995). Persistent activation of STAT3 is shown to 
increase proliferation, survival, angiogenesis and metastasis in various human cancers 
(Yu et al., 2009). IL-21 preferentially activates STAT1 and STAT3, while IL-2 and IL-15 
primarily activate STAT5 (Asao et al., 2001, Zeng et al., 2007). Co-operation of intrinsic 
cell cycle promotion with cytokine-dependent signal transduction may be essential for cell 
proliferation induced by Tax1.  
The pathway involving phosphoinositide 3-kinase (PI3K) and its downstream kinase Akt 
provides cell survival and growth signals in T-cells (Cantley, 2002). PI3K primarily 
phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to generate the second 
messenger, phosphatidylinositol-3,4,5-trisphosphate (PIP3), which form a complex with Akt 
and phosphoinositide-dependent protein kinese 1 (PDK1) on the plasma membrane, where 
Akt is activated by phosphorylation by PDK1 and mTOR complex 2 (mTORC2) (Sarbassov 
et al., 2005). Active Akt phosphorylates several cellular proteins for cell survival and cell 
cycle entry. Tensin homolog deleted on chromosome 10 (PTEN) and Src homology 2 domain 
containing inositol polyphosphate phosphatase-1 (SHIP-1) inhibit the pathway by 
phosphorylation of PIP3 (Cantley and Neel, 1999, Rohrschneider et al., 2000). The PI3K/Akt 
pathway is constitutively active in HTLV-1 transformed cells and ATL cells (Fukuda et al., 
2005, Peloponese and Jeang, 2006). Tax1 induces the phosphorylation of Akt that is linked to 

NF-B activation and p53 inhibition (Jeong et al., 2005). Inhibition of PI3K or Akt induces 
cell cycle arrest and apoptosis with accumulation of p27Kip1 and caspase-9 activation in 
HTLV-1 transformed T-cells (Jeong et al., 2008). In addition, Tax1 down-regulates 

transcription for PTEN and SHIP-1 through NF-B-mediated inhibition of the 
transcriptional coactivator p300 (Fukuda et al., 2009). These findings indicate that the 
PI3K/Akt pathway activated by Tax1 is involved in cell cycle progression and survive. 

4. Modification of apoptosis by Tax1 

Tax1 inactivates p53 (Tabakin-Fix et al., 2006). The transcription factor p53 is critical for 

prevention of abnormal cell proliferation. When DNA is damaged by  radiation, ultraviolet 
and carcinostatic, cells express high amount of active p53, resulting in expression of genes 
essential for cell cycle arrest, DNA repair or apoptosis (Figure 2). The p53 gene is mutated in 
roughly 50% of various human cancers (Grassmann et al., 2005). Mutation of p53 is poorly 
defined in ATL cells. Tax1 neither binds p53 nor represses p53 gene expression. Two major 
findings have been reported regarding inactivation of p53 by Tax1. First, Tax1 and p53 
competes with each other for binding to the coactivator CREB binding protein (CBP)/p300 and 
p53 loses the ability to activate transcription (Ariumi et al., 2000, Van Orden et al., 1999). 

Second, Tax1-mediated p53 inactivation is dependent on NF-B activation. Tax1 facilitates the 
formation of functionally inactive complexes containing p65 (RelA) and p53, and this 
interaction requires p53 phosphorylation at serine-15, a site is preferentially phosphorylated in 
Tax1-expressing cells (Pise-Masison et al., 2000). Tax1-mediated interference with tumor 
suppressor p53 has been thought to facilitate resistance to apoptosis. Apoptosis is an 
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important mechanism with intrinsic active processes of programmed cell death, by which cells 
keep themselves from uncontrolled cell death. As p53 is one of pivotal molecules to trigger 
apoptosis, Tax1-mediated inactivation of p53 may predispose HTLV-1 infected cells to survive. 
In addition to Tax1-mediated inactivation of p53, Tax1 induces anti-apoptotic molecules such 
as Bcl-XL, XIAP and survivin (Tsukahara et al., 1999, Yoshida, 2001). In tumor cells, prevention 
of apoptosis is essential for their continuous growth. Anti-apoptotic effects of Tax1 may lead to 
cellular immortalization and contribute to accumulation of genetic mutations. 
Conversely, perevious studies reported that Tax1 expression is closely linked to the 
induction of apoptosis (Chlichlia et al., 1995, Chlichlia et al., 1997, Kao et al., 2000). Tax1-
mediated apoptosis occurs in Tax1-inducible cell line JPX-9 by activation of the Fas/FasL 
pathway (Chen et al., 1997). Tax1 has been reported to sensitize cells to apoptosis induced 
by DNA damaging agents. The results from human cDNA expression array analysis with 
HTLV-1 infected Tax1-expressing T-cells (C81) treated with  irradiation show up-regulation 
of various genes for cell cycle inducers and inhibitors, anti- and pro-apoptotic molecules (de 

la Fuente et al., 2003). Upon  irradiation, S and G2/M phase-enriched population increases 
in cell numbers with apoptosis, while little, if any, or no induction of apoptosis is associated 
with G0/G1 population (de la Fuente et al., 2003). The apparent paradox of the opposite 
effects of Tax1 on cell death remains to be elucidated. The choice between proliferation and 
cell death by Tax1 may be influenced by cell cycle state or intracellular status. 

5. Immortalization by Tax1 

Telomeres are DNA-protein complex structures located at the end of chromosomes 
(Blackburn, 1991). The structures are thought to contribute to the stabilization of linear 
chromosomes (Blackburn, 1991, Counter et al., 1992). Each cell division leads to the 
shortening of telomere length by the end-replication problem (Olovnikov, 1973, Watson, 
1972). The shortening of telomeres results in chromosome instability, which is closely 
related to cellular senescence (Allsopp et al., 1992). Thus most human somatic cells have a 
limited replicative life span due to shortening of the telomere length. To avoid telomere 
shortening, transformed cells and germline cells appear to have certain compensatory 
mechanisms (Counter et al., 1994, Kim et al., 1994). One mechanism synthesizing terminal 
telomere sequences is mediated by the reibonucleoprotein enzyme telomerase, whose 
activity is restricted by expression of its catalytic subunit human telomerase reverse 
transcriptase (hTERT) (Meyerson et al., 1997, Nakamura et al., 1997). Development and 
maintenance of ATL probably require telomerase activity and indeed ATL cells carry 
telomerase activity (Uchida et al., 1999). Therefore activation of telomerase seems to be one 
of key events in development of ATL. 
Effects of Tax1 on expression of telomerase in human T-cells remains controversial. An early 
report concerning this issue suggested that Tax1 reduced telomerase activity in human T-cell 
line Jurkat cells and Tax1 negatively regulated hTERT promoter activity (Gabet et al., 2003). In 
contrast, other group showed that Tax1 stimulated the endogenous hTERT promoter through 

NF-B activation (Sinha-Datta et al., 2004). Recent studies may provide systemic solution to the 
discrepancy. Tax1 activates hTERT gene expression only in resting T-cells, while hTERT 
expression is not significantly changed by Tax1 in growing cells (Hara et al., 2008). Thus, the 
cell cycle state may differentially influence action of Tax1 on hTERT expression in human T-
cells. The activity of Tax1 to promote cell cycle progression may be critically linked to 
regulation of expression of the hTERT gene, because kinetics of Tax1-mediated activation of 
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the hTERT promoter parallels Tax1-mediated cell cycle progression (Matsumura-Arioka et al., 
2005). In leukemia cells, Tax1 may be negatively associated with or independent of regulation 
of hTERT expression, rather epigenetic changes in the promoter in leukemia cells may 
significantly contribute to constitutive activation of the hTERT promoter. It may be important 
that strict repression of telomerase expression in normal T-cells to avoid undesirable immune 
responses and malignant transformation. An element involved in repression in the promoter is 
suggested (Gabet et al., 2003, Hara et al., 2008). 

6. HTLV-1 Tax and HTLV-2 Tax 

HTLV-2 is close to HTLV-1 in genetic and biological terms, showing ~70% sequence 
homology with each other (Feuer and Green, 2005).  HTLV-2 encodes Tax2, which shows 
~75% sequence homology to Tax1 (Feuer and Green, 2005). Tax1 and Tax2 have been 
shown to important roles in immortalization of T-cells in an IL-2 dependent manner, though 
HTLV-2 has not been linked with development of hematological malignant diseases (Feuer 
and Green, 2005). Differences in functional domains between Tax1 and Tax2 has been 
demonstrated. Tax1 possesses a leucine zipper like region (LZR) within amino acids 225-232 
and the PDZ binding motif (PBM) at C-terminus, which are responsible for Tax1-mediated 
p100 processing and p52 nuclear translocation (Higuchi et al., 2007, Shoji et al., 2009). 

The NF-B pathway is tightly controlled in normal T-cells, and transiently activated upon 

immune stimulation. On the other hand, aberrant NF-B activation is implicated in many 
types of cancer, especially hematological malignancies such as leukemia, lymphoma and 

myeloma (Karin, 2006). In HTLV-1 infected T-cells, NF-B is constitutively activated, which 
is also thought to be linked to immortalization of T-cell by HTLV-1 and HTLV-2 (Mori et al., 
1999, Robek and Ratner, 1999, Ross et al., 2000). Tax1 activates both the canonical (mainly 
consisting of the p50 and p65 subunits) and non-canonical (mainly consisting of the p52 and 

RelB subunits) NF-B pathways. These are consequences of interaction of Tax1 with IKK 
complex. In contrast, although Tax2 can activate the canonical pathway to a level 
comparable to Tax1, Tax2 rarely induces the p100 processing because of lacking the LZR 
and PBM regions (Higuchi et al., 2007, Shoji et al., 2009).  
Recent studies demonstrate that Tax2 induces expression of IL-2, but Tax1 fails to induce IL-
2 production (Figure 3) (Niinuma et al., 2005). This finding prompted us to search for 
 

 

Fig. 3. Differential cytokine expression by Tax 
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another factor(s), which is differently induced between Tax1 and Tax2. In contrast to IL-2 
induction, Tax1 induced IL-21 expression in CD4+ T-cells, but Tax2 did not (Figure 3) 
(Miuguchi et al., 2009). The IL-21 promoter NF-B binding site is activated by the p52/RelB 
complex by direct binding in a Tax1-dependent manner, probably reflecting the difference 
in NF-B activation between Tax1 and Tax2. The functional differences between Tax1 and 
Tax2 causes different profiles of cytokine production, and may be related to phathogenesis 
between HTLV-1 and HTLV-2. 

7. Conclusion  

HTLV-1 is the first human retrovirus, which causes leukemia/lymphoma. Before the 
discovery of HTLV-1, many oncogenic retroviruses have been found, which induce 
malignant tumors in animals such as avian and rodent (Maeda et al., 2008). Most animal 
oncogenic retroviruses carry oncogenes, but they are totally different from the HTLV-1 
oncogene for Tax1. Oncogenes, called v-onc, in animal retroviruses are usually derived from 
host cells, while Tax1 has no identity in host cells in terms of the origin of oncogene. Action 
of oncogenes are also different, unlikely to animal oncogenes, whose products are directly 
integrated cellular signaling pathways with dysregulated activities, Tax1 acts as 
transcriptional modulator that indirectly affects transcription of cellular genes related to 
immortalization and transformation. Therefore literature studies concerning animal 
retrovirus oncogenes was not much helpful in analyzes of mode of action of Tax1 in 
leukemogenesis.  
Tax1 is a molecule of HTLV-1 products that shows strong immunogenicity (Kannagi et al., 
1991). Human CD8+ T-cells target Tax1-expressing cells. It is probably expected that most 
Tax1-expressing cells are killed by this mechanism. Thus Tax1 functions as a molecule both 
advantageous and disadvantageous to virus survive in vivo. Only cells escaped from 
immune attack further require genetic and epigenetic changes to become full transformants. 
These are may be reasons why ATL occurs after the long latent period at low frequency. In 
summary, Tax1 provides cells abilities of cell growth promotion, apoptosis prevention and 
senescence avoidance, but Tax1 alone may be insufficient for ATL development. 
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