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1. Introduction 

Systemic lupus erythematosus (SLE), formerly named ‘disseminated lupus erythematosus’, 

is an organ-non-specific autoimmune disease that has a largely unknown aetiology. 

Multiple susceptibility genes as well as environmental factors are found to be involved in 

the lupus pathogenesis (multi-factorial) [1, 2]. Also known as the prototype of autoimmune 

diseases, lupus is very intriguing both clinically and immunologically for its systemic nature 

and complexity in pathogenesis. The disease is characterized by multi-organ involvement 

and presence of autoantibodies to a variety of self antigens, particularly of the nuclear 

components [3]. Deposition of the immune complexes may trigger complement activation 

causing tissue damages. The broad auto-reactivities and hyperactivity of B cells are known 

to be predominately T cell-dependent [4], but the cellular and molecular mechanisms 

underlying such a systemic loss of B and T cell tolerance are yet to be fully understood. In 

contrast to B cell hyperactivity [5], reduced Interleukin 2 (IL-2) production and aberrant 

responsiveness of T cells are characteristic of SLE [6, 7]. Moreover, impaired cellular 

immunity, complement deficiency, defects in the clearance of dying cells by macrophages 

[8-10], roles of DC and the disrupted mechanisms of tolerance induction [11-14] are among 

many immunological characteristics of, or potential mechanisms proposed for, the disease.  

2. Regulatory T cells 

Regulatory T cells (Treg) belong to a specialized group or subsets of CD4+ T cells with 

immunoregulatory capacity, which have been shown to play many important roles in 

maintaining peripheral tolerance [15, 16]. Treg can actively suppress self–reactive 

lymphocytes that escape central tolerance. The so-called naturally occurring Treg cells 

(nTreg), which constitutively express high levels of surface IL-2 receptor  chain (IL-2R, 

CD25) [17, 18], are originated from the thymus. Mice deficient in the CD4+CD25hi Treg cells 

developed a multi-systemic autoimmune disease, including gastritis, oophoritis, arthritis, 

and thyroiditis. Co-transfer of Treg cells with self-reactive cells could prevent the 
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development of experimentally-induced autoimmune diseases [17, 19]. Another relatively 

more specific marker of Treg cells is the intracellular molecule Foxp3 (forkhead box P3). The 

Foxp3 gene is crucial in the development and function of Treg cells in both humans [20, 21] 

and mice [22-24], and defective Foxp3 expression generates strong activation of the immune 

system resulting in multi-organ autoimmune diseases [25, 26]. Foxp3 transduction has been 

shown to convert naive CD4+CD25- T cells into CD25+ regulatory cells with suppressive 

activity [22]. Expression of Foxp3 can also be induced in CD4+CD25–  T cells upon activation 

[27] or in the presence of TGF-ß [28, 29]. These findings suggest that the microenvironment 

could influence the expression of Foxp3 during an immune response, inducing and 

promoting the expansion of peripheral Treg, also known as the inducible or adaptive Treg 

cells [27].  

Treg may exert their immunosuppressive effects through cell-cell contacts and by the release 

of immunosuppressive cytokines such as IL-10 and TGF-[30]. More recently, IL-35 has 
been identified to be the very cytokine not only directly associated with Treg functions but 
also their peripheral expansion [31, 32] [33, 34], including the induction of a unique human 
Treg subset (iTR35) which could exert its immunosuppressive functions in an IL-35-

dependent, but IL-10, TGF- and Foxp3-independent, mechanism. Thus, although the 
induction and activation of Treg may be individually and cumulatively antigen-driven [35], 
these cells can suppress T effector cell (Teff) activation in an antigen non-specific manner 
[36, 37], e.g. by the release of immunosuppressive cytokines and via their inhibitory effects 
on antigen presenting cells (APC), DC in particular [38]. Indeed, the lack of Treg has been 
associated with many organ-specific autoimmune diseases [15, 17, 39] and, more recently, 
systemic autoimmune disorders including SLE [40-90]. 

3. Aberrant Treg frequencies and functions associated with lupus disorders 

In recent years, Treg aberrations have been widely demonstrated in both SLE patients [40, 
41, 43-48, 51-67, 71-80, 82-86, 88] and lupus mouse models [42, 49, 50, 68-70, 81, 87, 89-98]. 
These studies provided thus a plausible explanation for the systemic nature of the disease. A 
lack of Treg-mediated immune regulation in lupus is now a general consensus, although 
there have been differences in the findings as to whether a reduced Treg frequency [40-46, 
49-53, 58-61, 68, 71-75, 82-84, 88, 90], defective Treg functions [44, 48, 53, 57, 59, 60, 66, 70, 76, 
80, 89, 90] or both, or alternatively an insensitivity of the Treg target cells [66, 67, 70, 89, 99], 
are truly accountable.  
By using CD25 as the marker, an early study by Crispin and colleagues first showed that, in 
lupus patients with active disease, the frequencies of Treg (CD4+CD25+/bright) were 
significantly decreased, while T cells with an activated T helper (Th) effector phenotype 
(CD4+CD69+) increased [40]. An imbalance of Treg versus Teff was therefore proposed as a 
potential mechanism of disease development, and similar findings from many subsequent 
clinical studies mentioned above also confirmed this notion. Since IL-2 receptor (IL-2R) can 
be up-regulated on activated effector T and B lymphocytes too, the use of CD25 (alpha chain 
of IL-2R) as a Treg marker has understandably its limitation. Nevertheless, the identification 
of Foxp3, a relatively more specific if not exclusive marker of Treg, later allowed further 
verifications for the proposed link between Treg aberrations and systemic autoimmunity 
[49-51, 53, 57, 61, 68, 71, 73, 74, 76, 83, 88, 100].  
However, there have also been controversial findings from other studies showing that the 
frequency of Treg cells, either defined as CD4+CD25bright or CD4+Foxp3+, could be normal 
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[48, 66, 67, 70, 85, 86] or even increased [47, 54-56, 58, 62-65, 69, 74, 76-79, 81] in lupus 
disease. Instead, some of these studies suggested that Treg were functionally defective and 
less capable of suppressing those potentially auto-reactive lymphocytes in lupus patients 
[44, 48, 53, 57, 59, 60, 66, 76, 80], and the mouse models [70, 89, 90]. Again, alternative 
findings demonstrating lupus Treg being functionally normal [49, 50, 62, 67, 85], or at least 
normal in majority of patients tested [48, 64], or even enhanced in some way [68, 80, 87] 
added further confusion as well as interest to the matter.  
Upon a closer examination, these seemingly discrepant findings can in fact be logically 
explained. Two most critical issues to be addressed are about the true causal relationship 
between the Treg changes and disease kinetics, and the complex underlying immunological 
mechanisms involved as discussed below.  

4. Treg deficiency in systemic autoimmunity – the mutually causative 
relationship  

In terms of disease kinetics, for example, low Treg frequencies are often found to be 
associated with SLE patients having active, but less so inactive, disease [40, 45, 83], or in 
patients on certain anti-inflammatory drugs undergoing clinical remission [47, 55, 56, 86]. 
Considering the multi-factorial nature, variability in disease onset and genetic heterogeneity 
of human lupus, however, it is also not surprising to note that such clinical association has 
not been always an obvious case [43, 48, 54, 62, 64].  
Nevertheless, findings from studies using animal models especially inbred strains of mice 
which develop spontaneously a lupus like disease have offered some useful insights in this 
regard. The MRL/MpJ-lpr/lpr (MRL/lpr) mice develop spontaneously an age-dependent 
lupus-like disease and have been widely used as an animal model of human lupus. We have 
previously shown how the characteristic age-dependent biphasic changes of Treg frequency 
in the mice could reflect vividly a desperate, though eventually failed, attempt of the 
immune system trying to control auto-aggression [68]. After an early increase, Treg 
frequency (ratio) within the total CD4 T cell population in the peripheral lymphoid organs 
rapidly declined with age (Fig. 1A-1B), followed immediately by the onset and exacerbation 
of clinical disease [68], yet the total Treg number were in general higher compared to those 
in the control MRL/+ mouse strain (Fig. 1C). 
Interestingly, in a similar study, it was demonstrated that peripheral Treg frequency in the 
NZB/W F1 strain of mice, another spontaneous lupus mouse model, was rather reduced at 
young age. In contrast, in the aged and diseased mice, a higher Treg frequency was detected 
in the renal draining lymph nodes, though also decreased in the spleen, as compared to 
normal BALB/c mice [50]. This may again reflect the differences in severity and kinetics of 
disease progression, in relation to the age-dependent Treg cell changes, between the 
MRL/lpr and NZB/W F1 strains. As shown in Fig. 1C, the total Treg numbers were 
constantly higher in the MRL/lpr strain too. This suggests that it is the Treg:Teff balance, 
rather than absolute Treg number, which is more relevant and critical to the disease kinetics. 
Such balance appears to have been maintained in the young MRL/lpr mice at least until 2-3 
months of age, a stage prior to the development of overt clinical disease [2]. Compared to 
the MRL/lpr strain, NZB/W F1 mice develop a relatively milder clinical disease and at a 
much later stage [2]. The increased Treg frequency in the NZB/W F1 diseased mice could 
also reflect similarly the ongoing feedback regulatory mechanism yet relatively more 
sustainable in this mouse strain.  
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(Data from EJI 2008. 38:1664-76 with permission) 

Fig. 1. Age-dependent bi-phasic changes of splenic Treg frequency in MRL/lpr mice. 

Freshly isolated splenocytes were stained for CD4, CD25, CD45RB and Foxp3 in different 
combinations, and analyzed by multicolor flow cytometry. Treg cells were identified by 
means of (A) CD4+CD25hiCD45RBlow/Int and (B, and C) CD4+Foxp3+, and shown as the 
percentage of total CD4+ cell population (A, and B) and absolute Treg number per spleen 
(C) for each mouse. Data shown are Treg frequencies calculated from individual mice of 
different age (female), of the MRL/+ (open circles, n=58) and MRL/lpr (filled triangles, 
n=60) strains respectively, where each symbol represents one individual animal.  
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In other words, although the original defect(s) leading to the initiation of lupus may differ in 
SLE patients and these different lupus mouse models, changes in Treg versus Teff can be a 
true reflection of the capacity, or limitation, of the immune system trying to control the 
pathogenic autoimmune responses. 

5. Defective Treg-mediated suppression in systemic autoimmunity –  
the underlying immunological mechanisms 

The next important question concerns the complex immunological mechanisms underlying 
Treg deficiency in lupus disorders. Defects in the Teff cells and DC in particular have been 
found to contribute either directly or indirectly to the aberrant Treg-mediated suppression. 
These include abnormal Teff and DC functional status, and their expression of, or 
responsiveness to, certain cytokines critically involved in Treg and/or Teff functions.  

5.1 Teff resistance 

It was demonstrated that Teff cells isolated from lupus patients were less susceptible to 
Treg-mediated suppression [66, 67], and the level of resistance inversely correlated with 
patients’ clinical disease activities [67]. Similar findings have also been shown in several 
lupus-prone mouse strains [70, 89, 99]. Based on their findings, the authors concluded that it 
was the enhanced resistance of responder cells (i.e. Teff), rather than defects in Treg 
themselves, that was to be blamed for the defective Treg-mediated suppression. A lack of 
Fas-mediated Teff activation induced cell death (AICD) and low surface expression of T cell 
inhibitory molecules (e.g. CTLA-4), or their ligands (CD80, CD86) on APC, are among the 
possible mechanisms proposed.  
Moreover, it was also shown that the aberrant resistance of Teff could be associated with the 
activation state or lineage-commitment of Teff cells. While Treg isolated from the 
autoimmune BALB/c-lpr/lpr and gld/gld Fas/FasL-deficient mice could block naïve T cell 
activation and differentiation into the Th1 phenotype, they were unable to suppress those 

pre-existing lineage-committed IFN--producing effector Th1 cells [99]. 

5.2 Lack of Teff-derived soluble factors essential for Treg functions & expansion 

However, soluble factors produced by Teff cells are also known to be crucial for normal Treg 

functions. IL-2 produced by activated Teff, for example, is an essential growth factor for Treg 

cell differentiation and proliferation, and a potent inducer of Treg IL-10 expression [101]. We 

have previously demonstrated that, in two unrelated lupus mouse models, IL-2 deficiency is 

responsible for an early and progressive defect in T cell proliferation, which could be restored 

by exogenous IL-2 [7]. The cytokine was indeed later found to be able to restore Treg 

expansion and functions, both in vitro and in vivo, in the lupus mice [68, 87]. In other words, 

under normal physiological conditions, the Treg-mediated suppressive action has to be 

‘endorsed’ by their ‘target cells’ too. When such a ‘mutual agreement’ is no longer in order, i.e. 

the lack of ‘informed consent’ from their target cells, Treg cells are left functionally powerless 

allowing subsequently the rapid expansion of autoreactive T and B cells. 

5.3 Imbalanced peripheral Treg versus Teff expansion 

The imbalance between Treg and Teff, including Th1 [99], expansion has provided a good 
basis and some mechanistic explanations for the systemic nature of lupus disorders [14, 68]. 
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Th17 is another subset of specialized T helper cells, which produce the signature cytokine 
IL-17, or IL-17A. IL-17 mediates various inflammatory responses such as recruitment of 
monocytes and neutrophils [102], T cell infiltration and activation [103], induction of further 
proinflammatory cytokine expression [104] and, Th17 as a new pathogenic cell type, has 
been implicated in many autoimmune inflammatory diseases (reviewed in [105]). IL-17 
producing Th17 cells also contribute to the pathogenesis and development of SLE. Several 
groups have shown that the numbers of Th17 cells and notably the ratio between Th17 and 
Treg were altered in SLE patients [75, 82, 106-108]. The number of Th17 cells in the blood of 
SLE patients was elevated [82] and accordingly serum IL-17 levels were increased [82, 109, 
110]. However, the changes in the number of Th17 cells itself did not seem to correlate with 
lupus disease development, whereas the ratio between Treg and Th17 cells had a very clear 
inverse correlation with disease activity, especially in those patients with acute nephritis 
[107]. Moreover, the low Treg:Th17 ratios were also found to be restorable following clinical 
treatment that controlled disease activity [108]. 

5.4 Cytokines differentially involved in driving Treg & Teff differentiation 

Naive CD4+ T helper cells can be induced to differentiate into Th1, Th2, Th17 and Treg 
phenotypes depending to the local cytokine milieu. The presence of IL-12 signalling through 
STAT-4 (signal transduction and activator of transcription-4) drives towards Th1, whereas 
IL-4 (signalling through STAT-6) skews towards Th2 [111]. Interestingly, the differentiation 
of pro-inflammatory Th17 and anti-inflammatory Treg cells, two seemingly mutually 
exclusive cell types, follows a very similar pattern. Differentiation into both of these T cell 

subsets requires TGF-, a cytokine capable of inducing expression of Foxp3 and RORt, 
which are essential transcription factors for the development of Treg and Th17 cells, 

respectively [28, 112]. Under homeostatic non-inflammatory conditions, TGF- induces only 
Treg, as Treg expressed Foxp3 itself is capable of suppressing Th17 development by binding 

to RORt and thereby inhibiting its activity as a transcriptional activator [113]. Only in the 
presence of certain potent pro-inflammatory cytokines including IL-6, IL-21 and IL-23, the 

Foxp3 mediated inhibition of RORt can be abrogated and differentiation into Th17 cells 
initiated [113, 114]. 

5.5 Roles of DC 

Aberrant DC functions play evidently crucial roles in lupus disease induction, e.g. by 
driving the pathogenic Th1 type of responses [14] or skewing Teff versus Treg expansion 
[68]. Fig. 2A shows clearly that the DC generated from MRL/lpr mice are functionally 
defective in driving Treg, but not Teff, cell expansion. The importance of Treg:Th17 ratio for 
lupus disease activity has also been highlighted by work performed by Kang et al on the 
role of tolerogenic DC. The authors showed that injection of lupus-prone mice with a 

nucleosomal histone peptide epitope (H471-94) induced TGF- producing Treg while 
suppressing inflammatory Th17 cells, with a general increase in survival. This was 

attributed to the induction of tolerogenic DC which produced enhanced levels of TGF-, but 
decreased IL-6 expression [115]. Another study by Wan et al also pointed to the role of IL-6 
produced by DC in blocking Treg function, and its genetic linkage (sle1) in mice originated 
from the NZM2410 lupus mouse strain [90]. In addition, aberrant expression of Type 1 

interferon (IFN-) by APC has also been shown to block Treg functions contributing to the 
Treg versus Teff imbalance in lupus disease [65, 81, 116].  
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(Data from EJI 2008. 38:1664-76 with permission) 

Fig. 2. Defects in DCs and Treg cells of MRL/lpr mice.  A. MRL/lpr DCs are defective in 
promoting Treg but not Teff cell proliferation. Treg and Teff cells were purified from spleens of 
MRL/+ mice (3-month, female), and DCs were generated from bone marrow precursor cells 
of age-sex-matched MRL/+ or MRL/lpr mice (3-month, female). After labeling with CFSE, 
the Treg or Teff cells were stimulated with anti-CD3 mAb for 5 days, in the presence or 
absence of live MRL/lpr or MRL/+ DCs (as indicated in the graphs). B. Restoration of Treg 
promoting capacity of MRL/lpr DCs by exogenous IL-2 and IL-15. The CSFE-labeled splenic Treg 
cells purified from MRL/+ mice (as described in A) were stimulated with anti-CD3 mAb for 
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5 days, in the presence or absence of live MRL/lpr or MRL/+ DCs, and with or without 
addition of recombinant mouse IL-2 (10 ng/ml) or IL-15 (40 ng/ml), as indicated in the 
respective graphs. C. Restoration of a defect in MRL/lpr Treg proliferation by IL-2, but not IL-15. 
CSFE-labeled splenic Treg cells purified from MRL/lpr mice were stimulated with anti-CD3 
mAb for 5 days, in the presence or absence of live MRL/lpr or MRL/+ DCs, and with or 
without addition of recombinant mouse IL-2 (10 ng/ml) or IL-15 (40 ng/ml). Cell division 
(CFSE dilution) was determined by flow cytometry. Controls were cells stimulated in the 
same way but in the absence of DCs. CM: culture medium control. Data shown were 
representative FACS profiles of more than 3 repeated experiments.  

5.6 Possible Treg intrinsic defects 

Furthermore, certain intrinsic defects associated with Treg themselves might also be 
involved [68]. IL-15 is a pleiotropic cytokine akin to IL-2 [117, 118], which is produced by 
monocytic cells including DC [119, 120] rather than T cells. IL-15 mediates its functions 

through the - and -chains of the IL-2 receptor together with an unique IL-15 -chain, and 
is known to be involved in the regulation of normal differentiation and expansion of T cells 
including Treg [121]. While the defect of MRL/lpr DC in driving expansion of the wild type 
(MRL/+) control Treg mentioned above (Fig. 2A) could be restored by adding exogenous 
IL-2 or IL-15 (Fig. 2B), the MRL/lpr Treg though also restorable by IL-2 failed completely to 
respond to IL-15 (Fig. 2C). These findings suggest that the MRL/lpr Treg possibly have an 
intrinsic defect as well in their responsiveness to the IL-2-like non-T cell-derived cytokine. It 
would also be very interesting to know how these cells may respond to other factors, such as 
IL-35 known to be closely associated with Treg functions [32]. 

6. Therapeutic implications of Treg in systemic autoimmune disorders 

As discussed above, though also a result of overt autoimmune response itself, the lack of 
Treg mediated immune regulation contributes evidently to the early onset and kinetics of 
lupus disease development. Normalization of Treg frequencies and functions by restoring 
the Treg:Teff balance, may therefore prove to be clinically beneficial, hence a reasonable 
treatment strategy for the human disease. This concept has recently been tested in animal 
models by direct adoptive transfer of ex vivo derived, or in vitro expanded, Treg with 
encouraging results [68, 96, 122]. The treated mice had significantly delayed clinical disease 
as evident by delayed onset of glomerulonephritis, reduced proteinuria and skin lesions, 
and prolonged mouse survival [68, 96, 122]. 
Besides reconstitution of the Treg population by adoptive transfer, potential treatment 
methods to achieve an in vivo expansion of endogenous Treg and a normalization of the 
ratio between Treg and Teff, might be as diverse as the initial reasons for the deficiency in 
the Treg population. Accordingly, it has been shown that administration of rIL-2 promotes 
the proliferation of endogenous Treg and delays the progression of established disease, most 
likely by re-establishing the homeostatic balance of Treg and effector T cells [87].  
Supporting evidence from earlier studies also indicates that tolerance induction by injecting 
various tolerogenic peptides [91, 115, 123], anti-thymocyte globulin agents [95], or oral 
administration of anti-CD3 antibodies [97], are all associated with in vivo Treg expansion. 
It needs to be clearly pointed out that, while transfer of Treg may be beneficial against 
autoimmune syndromes [68], severe side effects such as infections following excessive (high 
dose) Treg treatment especially in non-adult mice can also occur (Yang et al, unpublished 
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observations). Therefore, similar to the use of any immunosuppressive drug, caution should 
be taken about potential side effects of the treatment, for patients of young ages in 
particular.   

7. Concluding remarks 

In summary, immune regulation by Treg is an important mechanism against systemic 
autoimmunity, and a general lack of Treg-mediated suppression is evident in lupus 
disorder. Different findings from studies of lupus patients and various animal disease 
models about the aberrant changes in Treg frequency and functionality reflect vividly the 
disease kinetics, severity, and often the on-going desperate attempts of the immune system 
to control auto-aggression. Clarification of their true causal relationship is undoubtedly very 
important not only for our understanding of the complex disease mechanisms, but also for 
rational design of therapeutic strategies for our patients. 
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