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1. Introduction 

Transcription factors of the interferon regulatory factor (IRF) family have a critical role in 

the activation of interferon (IFN) genes. All cellular IRFs share a region of homology in the 

amino terminus encompassing a highly conserved DNA binding motif characterized by five 

tryptophan repeats, but show variability in the carboxy (C-) terminal part of the IRF 

polypeptides. While some of these IRFs like IRF-3 and IRF-7 have a critical role in the 

antiviral response, the others like IRF-1, IRF-4 and IRF-8 have basic roles in the development 

and function of lymphoid cells. Recently, the importance of IRF-5 in the antiviral and 

inflammatory response in vivo has been clearly established, but it was also shown that this 

IRF has a basic function in apoptosis and B cells and macrophage differentiation. More 

interestingly, the role of IRF-5 pathogenicity in autoimmune diseases has been also 

established, as IRF-5 has been identified as one of the primary risk factors associated with 

Systemic Lupus Erythematosus (SLE) and other autoimmune diseases. This chapter will 

review the current knowledge of the mechanisms of IRF-5 activation by the TLR7 pathway 

and the genetic modifications of IRF-5 that may contribute to the dysregulation of the innate 

and adaptive immune response associated with the autoimmune disease. Furthermore we 

will summarize the contribution of the SLE mouse models to our understanding of the role 

of IRF-5 and TLR7 in the induction of the autoimmune diseases. 

2. Type I IFN and SLE 

Autoimmune diseases are characterized by a dysregulated expression of Type I IFN, hyper-

reactivity of B cells and the production of auto-antibodies. Leukocytes from patients with 

different autoimmune disorders such as SLE, psoriasis, dermatomyositis and rheumatic 

arthritis all show overexpression of interferon-induced genes. Furthermore, clinical use of 

IFNǂ leads to development of autoimmune syndromes like type I diabetes, psoriasis and 

inflammatory arthritis (Gota and Calabrese 2003). Till date, it has not been determined 

whether the uncontrolled production of Type I IFN is a consequence of dysregulated 

function of the immune system or due to genetic variations of the factors involved in IFN 

induction or IFN signalling pathway. Type I IFNs are produced by all leucocytes in response 

to TLR7 or TLR9 activation and the plasmacytoid dendritic cells (pDC) are the most active 

producer of IFNǂ. pDCs represent only about 1% of the PBMCs, but they can secrete up to 

109 IFNǂ molecules per cell within 12 hours (Fitzgerald-Bocarsly et al., 2008). 
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SLE is a classical systemic autoimmune disease. The link between SLE and Type I IFN is 
indisputable, reviewed in (Crow 2009). The elevation of type I IFNs is the hallmark of 
autoimmune diseases. In SLE, there is a correlation between IFN levels and the presence of 
anti-ds (double-stranded) DNA antibodies and disease progression. Interferon-stimulated 
genes (ISG) signature is a marker for severity of the disease (Baechler et al., 2003). Also the 
high levels of IFNǂ are a heritable risk for SLE (Niewold et al., 2007). 
Clinical findings show that elevated pDC populations along with higher IFN mRNA levels 
present in dermal lesions of SLE patients contribute to elevated IFN levels. (Blomberg et al., 
2001). pDCs also accumulate in active lupus nephritis and migrate to the glomeruli 
(Silvestris et al., 2003). Immune complexes containing nucleic acid found in the serum from 
lupus patients are known to trigger a type I IFN response in pDCs (Bengtsson et al., 2000). 
The IgG RNA/DNA complexes are internalized via receptors [fragment crystallizable 
gamma receptor IIa (FcǄRIIa)] expressed on pDCs, and stimulate endosomic TLR7 or TLR9 
followed by activation of IRF-5 and IRF-7 and IFNǂ production. Both TLR7 and TLR9 are 
expressed in pDCs. RNA-containing immune complexes signalling through TLR7 are 
especially efficient in inducing IFNǂ and there is a direct correlation between serum levels 
of IFNǂ and the presence of autoantibodies to RNA-protein complexes (Vollmer et al., 2005). 
Autoantibodies reactive against RNA-containing autoantigens are detected in the 
cerebrospinal fluid of patients with cerebral lupus (Santer et al., 2009). An indirect evidence 
for the role of IFNǂ in autoimmune disease is the observation showing that patients 
receiving anti-IFN therapy for other diseases (such as HCV-related hepatitis treated with 
IFNǂ) develop autoantibodies and SLE-like syndrome (Ho et al., 2008). Another indirect 
observation is the induction of anti-dsDNA antibodies and full-blown SLE during a clinical 
anti-TNFǂ therapy in patients with rheumatoid arthritis (RA) (De Rycke et al., 2005). In vitro, 
TNFǂ suppresses IFNǂ expression and thus suppression of TNFǂ in patients with arthritis, 
with the antibody treatment, may result in enhancement of IFNǂ production.  

3. Induction of innate antiviral response 

Almost all nucleated cells respond to viral infections by producing Type I IFNs. Type I IFNs 
(IFNǂ and IFNǃ) are an essential part of the antiviral response; however, their unregulated 
production is associated with pathology. Virus mediated Type I IFN induction is a classical 
example of transcriptional regulation. Virus infection induces activation of two families of 
transcriptional factors, NFκB and IRF family. The IRF proteins possess a common DNA 
binding domain at the N terminus characterized by a helix-turn-helix motif. The motif is 
rich in tryptophan residues and binds the GAAA and AANNGAAA domains in the virus 
responsive element (VRE) of Type I IFN promoters. The C-terminal regions of IRFs are 
distinct and contain IRF-associated domains (IADs) which are required for protein-protein 
interactions: either with other IRFs or other transcriptional factors. Two members of the IRF 
family, IRF-3 and IRF-7 are the major players in the induction of Type I IFN (Au et al., 1998; 
Au et al., 1995; Marie et al., 1998; Ronco et al., 1998). In the uninfected cell, they are localized 
to the cytoplasm, but in response to a viral infection, they are phosphorylated and 
translocate to the nucleus where they associate with the co-activator CREB-binding protein 
and stimulate transcription of IfnA and IfnB genes. While IRF-3 alone is sufficient for 
induction of IfnB gene, IRF-7 expression is essential for expression of the entire battery of 
IfnA genes, reviewed in (Pitha and Kunzi 2007). Both IRFs can be activated by a signalling 
pathway that initiates upon binding of viral dsRNA to membrane Toll-like Receptors, TLR3 
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and TL4, or cytoplasmic receptors, Retinoic acid-Inducible Gene (RIG)-I or Melanoma 
Differentiation-Associated gene (MDA)-5. Recent data, however, shows that IRF-3 can be 
also activated by binding of the viral DNA to the cytoplasmic receptor, Absent In Melanoma 
(AIM)-2 (Ishikawa and Barber 2011).  

4. Role of IRF-5 in the induction of an antiviral response 

Another IRF, IRF-5 also stimulates Type I IFN production in infected cells. IRF-5 differs 
from IRF-3 and IRF-7 in activation and function. While IRF-3 and IRF-7 are induced by 
TLR3, TLR4 or RIG-I/MDA5 pathways, IRF-5 is activated only by TLR7 and TLR9 in a 
Myeloid Differentiation factor 88 (MyD88)-dependent pathway and consequently, only 
certain viral infections (Newcastle disease virus, NDV; VSV; and HSV) can activate IRF-5 
(Barnes et al., 2001). The activation of IRF-5 results in the transcription of nine differently 
alternatively spliced IRF-5 mRNAs, these isoforms are cell-type specific and have distinct 
functions (Mancl et al., 2005). 
Ectopic expression of IRF-5 induces several IFNǂ subtypes; however, the subtypes induced 
by IRF-5 and IRF-7 are distinct, e.g. IRF-7 induces mostly IfnA1 while the major subtype 
induced by IRF-5 is IfnA8 (Barnes et al., 2001).  

5. Downstream effectors of IFNs 

The Type I IFN system is well characterized and well-studied. Type I IFNs mediate their 
action by engaging the ubiquitously expressed IFNǂ receptor (IFNAR) complex which has 
two units, IFNAR1 and IFNAR2, reviewed in (Uze et al., 2007). On binding to their 
respective receptors, IFNs exert their multiple effects through receptor-mediated signalling 
pathways, resulting in the induction of IFN-stimulated genes (ISGs). The major signalling 
pathway is the JAK-STAT pathway; beginning from the Janus kinases (JAK1 and Tyk2) and 
followed by tyrosine phosphorylation of pre-existing signal transducer and activator of 
transcription (STAT). On phosphorylation, STAT1 and STAT2 assemble together, associate 
with interferon regulatory factor 9 (IRF-9) and form a multimeric complex (ISGF3) that 
translocates to the nucleus, where it interacts with interferon-responsive elements (ISRE) 
present in the 5’ flanking region of ISG (Improta et al., 1994; Levy and Darnell 2002). While 
ISGF3 seems to be the main transcription factor regulating transcription of ISGs, Type I IFN 
also stimulates formation of STAT1 homodimers that bind to a slightly different DNA 
domain, the IFNǄ activated site (GAS), present in the promoters of ISG that can be induced 
both by Type I IFN and IFNǄ. The signalling by Type I IFN is not limited to the JAK–STAT 
pathway as this receptor can also activate both the Mitogen-Activated Protein kinase 
(MAPK) and Phosphoinositide 3-kinase (PI3K) pathways (Platanias 2005). Activation of 
IFNs through the IFNARs followed by amplification of the signal via downstream pathways 
results in activation of more than 300 ISGs. The function of the majority of ISGs has yet to be 
determined; however, the antiviral function of several of the ISG have been recently 
characterized, and the proteins described (Samuel 2001; Schoggins et al., 2011). 
Among these, ISG15 is one of the very early induced ISGs that influence a panoply of 
cellular functions; ISG15 is a ubiquitin homologue which is covalently attached to lysine 
residues (ISGylation) of the targeted proteins. Recent evidence indicates the existence of 
cross-talk between ubiquitinylation and ISGylation. Since ubiquitinylation is a component of 
many cellular and stress induced signalling pathway, ISGylation can effectively interfere 
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with these pathways. Activation of ISGylation proceeds by similar enzymatic pathways as 
used for ubiquitinylation, and interestingly, all enzymes required for ISGylation are induced 
by IFN. Similar to ubiquitinylation, the ISGylation process is reversible and de-ISGYlating 
enzymes provide an additional level of control over the entire process. More than a hundred 
ISG15 targets have been identified, and some of these genes such as RIG-I, JAK1, Protein 
Kinase R (PKR) and STAT-1 are part of the IFN response system while others have different 
cellular functions. However, unlike the degradation-driven ubiquitinylation, ISGylation in 
many cases inhibits ubiquitinylation, reviewed in (Skaug and Chen 2010).  
Another IFN induced gene with multiple functions is a constitutively expressed dsRNA 
dependent PKR whose expression is enhanced by Type I IFN. The inactive monomers of 
PKR are activated by viral RNA, PKR is phosphorylated and forms active dimers. Activated 
PKR catalyzes phosphorylation of several substrates including the ǂ subunit of the initiation 
factor eIF-2 (eIF-2ǂ) (Samuel 1993), as well as the transcription factor inhibitor IκB (Kumar et 
al., 1994). Thus PKR affects both viral replication and many cellular functions, reviewed in 
(Pindel and Sadler 2011). 
Other ISGs such as cytidine deaminases of the APOBEC family and adenosine deaminase 
ADAR1 have been recently characterized but their cellular functions are yet to be 
determined (Chiu and Greene 2008; George et al., 2011; Schoggins et al., 2011). Also 
interesting is a recent finding from the Rice group (Schoggins et al., 2011) which shows that 
IRF-1, induced by both IFNǄ and Type I IFN has antiviral activity against a large group of 
distinct viruses and that this antiviral activity is not IFN-mediated. This group also 
identified large number of novel antiviral ISGs and showed that a number of these proteins 
function at the translational level. 
In addition, there are reports of host-produced antiviral micro-RNAs (miRNAs) in response 
to IFNs (Hansen et al., 2010; Lagos et al., 2010; O'Connell et al., 2007; Pedersen et al., 2007). 
Even though first identified in fishes and invertebrates, it was assumed that miRNAs were 
not elicited as a first line of defence in mammals. However, microarray analysis of general 
IFNǂ/ǃ response identified a few candidate miRNAs which are increased or attenuated in 
response to IFNǂ/ǃ. Some of these target IFNB mRNA and thus serve as negative regulators 
of the IFN system, while others are induced during the innate antiviral response. Therefore 
it seems that IFN-induced cellular miRNAs may represent fine-tuning of the IFN system. 

6. Role of IRF-5 in the innate immune response 

The transcription factor IRF-5 plays a key role in the innate antiviral and inflammatory 
response. In vitro studies had initially indicated that IRF-5 may be involved in the antiviral 
response (Barnes et al., 2001), and when genetically modified Irf-5-/- mice became available, 
the importance of IRF-5 in the antiviral and inflammatory response in vivo was also 
demonstrated (Paun et al., 2008; Takaoka et al., 2005). Irf-5-/- mice exhibit high susceptibility 
to viral infection and show reductions in serum levels of Type I IFN as well as inflammatory 
cytokines such as IL-6 and TNFǂ. IRF-5 shows a cell type specific expression in B cells, DC, 
monocytes and macrophages. In contrast to IRF-3 and IRF-7, IRF-5 is activated only by TLR7 
and TLR9 MyD88 dependent pathway and unlike IRF-3 and IRF-7, not by TLR3 or RIG I 
pathways (Schoenemeyer et al., 2005). The MyD88 mediated activation of IRF-5 involves the 
formation of a tertiary complex consisting of MyD88 and tetramers of IRAK1, IRAK4, 
TRAF6 and IRF-5 and IRF-7. It was shown that both K63 ubiquitinylation by TRAF6 and 
phosphorylation are necessary for activation and translocation of IRF-5 to the nucleus, but 
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the kinase that activates IRF-5 has not yet been identified (Balkhi et al., 2008). Activated IRF-
5 forms homodimers and heterodimers with IRF-3 and IRF-7, but while the IRF-5 synergizes 
with IRF-3 activation, it inhibits the transcriptional activity of IRF-7 (Barnes et al., 2004). In 
addition to its role in the early inflammatory response, IRF-5 also has pro-apoptotic 
functions. 
The observations discussed above show an important role for IRF-5 in the regulation of 
early inflammatory cytokines and chemokines’ expression, as well as Type I IFN genes. The 
function of IRF-5 was also examined in vivo using the genetically modified Irf-5-/- mouse 
model. These mice exhibit an increased susceptibility to viral infection and reductions in 
serum levels of type I IFNs as well as inflammatory cytokines such as interleukin-6 and 
tumor necrosis factor alpha (TNFǂ) (Paun et al., 2008; Takaoka et al., 2005). Examination of 
the cells type in which expression of inflammatory cytokines and IFN depends on IRF-5 
show that IRF-5 is required for the TLR9 mediated induction of IFN ǃ in DC, but not in 
peritoneal macrophages, while the stimulation of inflammatory cytokines expression was 
dependent on IRF-5 in both cell types. These data indicate that the function of IRF-5 may be 
cell type specific. 
Unexpectedly, approximately 80% of Irf-5-/- mice, (94% C57BL/6) developed an age-related 
splenomegaly, associated with a dramatic accumulation of CD19+B220− B cells (Lien et al., 
2010). The age-related splenomegaly was dependent on genotype, and developed in mice 
with the mixture of 129 and C57BL/6 genotype, but did not occur in mice that were 98% of 
C57BL/6 background (unpublished data). Interestingly, the Irf-5-/- C57BL6 mice have 
attenuated responses to T-cell dependent (TD) and T-cell independent (TI) antigens 
(unpublished data), with a marked down-regulation of serum levels of antigen specific 
IgG2a and IgG2c. The Taniguchi group (Savitsky et al., 2010) has shown that the down-
regulation of IgG2a production occurred also in in vitro cultured IRF-5 knockout DC cells 
stimulated with CpG oligodeoxynucleotides. The synthesis of IL-6 and TNFǂ was also 
down-regulated in IRF-5 knockout B cell stimulated with TLR 9 ligand, indicating that the 
function of these cells is impaired (Lien et al., 2010). 

7. Role of IRF-5 in autoimmune diseases 

The demonstration that IRF-5 is important not only for the induction of Type I IFN genes, 
but also for the inflammatory cytokines gave new insights into the regulation of the innate 
inflammatory response. However, there is also accumulating evidence that IRF-5 may play 
an important role in the dysregulation of the immune system leading to autoimmune 
diseases. Several distinctly spliced human IRF-5 isoforms (designated variants 1-10), which 
show cell type-specific expression and distinct cellular localization, were identified (Mancl et 
al., 2005). The most common variations are insertions or deletions in exon 6. The majority of 
IRF-5 isotypes do not differ in their DNA binding sites, but differ in the interaction domain. 
The transcription of IRF-5 is started at one of the three different promoters. Transcript 
initiated at exon 1A and 1B are expressed constitutively in B cells and pDC, while transcript 
1c is induced by IFN. It should be however noted that spliced variants of IRF-5 were 
identified only in human cells, while in inbred strains of mice, IRF-5 encodes for a dominant 
unspliced transcript. 
It has been known for a long time that the autoimmune disease SLE exhibits genetic 
predisposition, which was later mapped to a specific region on human chromosome 6. 
When the sequence of the human genome became available, it was found that the genomic 
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region associated with predisposition to SLE showed the presence of several genes 
associated with the Type I IFN induction and signalling pathway. One of these genes is IRF-
5 and a common SNP haplotype in IRF-5 (rs 2004640T) was identified in Scandinavian 
cohorts as a risk factor for SLE. Interestingly, the same SNP haplotype of IRF-5 has been 
shown later to be associated with numerous other autoimmune disorders, such as 
rheumatoid arthritis (RA) (Sigurdsson et al., 2007) and others (Kozyrev and Alarcon-
Riquelme 2007). Three specific functional alleles of IRF-5 were identified that define risk 
factors for SLE (Graham et al., 2006). The rs 2004640 G allele expresses isotypes initiated 
from exon 1A and 1C, while the rs 2004640T allele expresses transcripts from exon 1B, which 
provides a stronger promoter and increases the expression of IRF-5. The second SNP is the 
in-frame insertion- of 30 bp in exon 6 that alters the proline, glutamic acid and serine rich 
regions and encodes a protein that is similar to unspliced isotype IRF-5v5. The third SNP 
introduces a variation in the poly A termination site that makes the 3’UTR shorter which 
leads to an increased stability of IRF-5 mRNA (Graham et al., 2006). All together, these 
modifications in the IRF-5 gene result in elevated levels of IRF-5 protein which is larger than 
the proteins encoded by the spliced IRF- transcripts. Many additional SNPs in IRF-5 have 
been later identified and are reviewed in (Kozyrev and Alarcon-Riquelme 2007). The high 
levels of lupus associated IRF-5 expression have been detected in PBMCs of Lupus patients 
(Feng et al., 2010). Dysregulated expression of Type I IFN is associated with SLE 
pathogenesis (Niewold et al., 2007) and gene array analysis of PMBCs from SLE patients has 
revealed elevated expression of IFN-stimulated genes (Crow et al., 2003). Thus, the 
connection between expression of specific IRF-5 haplotypes and dysregulated production of 
Type I IFN has been emerging. Interestingly neither IRF-3 or IRF-7 or other members of IRF 
family were found to be associated with predisposition to autoimmune disease. Thus IRF-5 
is possibly the most important factor in the predisposition to the inflammatory diseases. 

8. IRF-5 functions in uninfected cells 

Another unique feature of IRF-5 is that it is also induced upon DNA damage by p53 (Mori et 
al., 2002). This establishes the connection between IRF-5 and p53-apoptotic pathways and 
identifies its possible role in tumor suppression. However, IRF-5 induces apoptosis in p53 
independent manner (Barnes et al., 2003). Irf-5-/- Mouse Embyronic Fibroblasts (MEFs) 
expressing c-Ras do not undergo apoptosis even under DNA damage and can efficiently 
form tumors in mice. These MEFs are also resistant to viral induced apoptosis even though 
their IFN and cytokine profiles are normal (Yanai et al., 2007). However, there are several 
indications that IRF-5 and p53 pro-apoptotic function are independent. Several p53 targets 
are activated in Irf-5-/- cells and overexpression of IRF-5 can stop the growth of B cell tumor 
lymphoma in the absence of p53 (Barnes et al., 2003). Ectopic expression of IRF-5 induces 
DNA damage-induced apoptosis in p53-deficient colon cancer cells (Hu et al., 2005). IRF-5 is 
also involved in Fas/CD95-induced apoptosis, a p53 independent phenomenon (Couzinet et 
al., 2008). IRF-5 stimulates the cyclin-dependent kinase inhibitor p21, but it also stimulates 
the expression of the pro-apoptotic genes Bak1, Bax, caspase 8, and DAP kinase 2, thus 
indicating its ability to promote cell cycle arrest and apoptosis independently of p53 (Barnes 
et al., 2003). 
Udalova and colleagues have also identified IRF-5 as a lineage-defining factor for 
macrophages (Krausgruber et al., 2011). Their work shows, for the first time, that IRF-5 can 
be both a transcription activator and repressor. Macrophages differentiate into two 
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functionally opposite types depending on the differentiation stimulus. When bone marrow 
macrophages are grown with granulocyte–macrophage colony stimulating factor (GM-CSF), 
they differentiate into M1 type, classical pro-inflammatory macrophages which secrete 
cytokines like IL-12. However, when they are differentiated with M-CSF, they differentiate 
to the M2 type, which secretes anti-inflammatory cytokines like IL-10. The authors show 
that differentiation to M1 macrophages is accompanied by an increase in IRF-5 levels. 
Overexpression of IRF-5 in M2 macrophages forces them to express a pro-inflammatory 
profile of cytokines and lowers IL-10 levels, basically making the M2 macrophages 
functionally similar to M1. Conversely, knockdown of IRF-5 levels in M1 macrophages 
converts M1 macrophages to the M2 expression profile, producing high levels of IL-10 and 
low levels of proinflammatory cytokines. Thus IRF-5 is a determinant of macrophage 
plasticity. The authors also demonstrate that in macrophages, IRF-5 functions as a negative 
regulator of IL-10. These results open the field to many other questions such as possible cell 
type specificity of the suppression of IL-10 transcription, or how many other genes are 
negatively regulated by IRF-5. The analysis of the IRF-5 signature profile in human B cell 
line BJAB identifies large number of both up-regulated and down regulated genes (Barnes et 
al., 2004). 

9. Activation of IRF-5 by the TLR7 pathway 

TLR7 and TLR9 recognize viral ss (single stranded)-RNA or a B form of dsDNA 
respectively. The recognition is dependent on endosomal internalization and acidification. 
The TLR7/9 signalling pathway is mediated by an adaptor molecule MyD88 (Kawai et al., 
1999; Muzio et al., 1997). MyD88 has two domains: a C-terminal Toll/IL-1 Receptor (TIR) 
domain that is required for the interaction with the TLRs and an amino terminal death 
domain (DD) that interacts with members of the IL-1 receptor associated kinase (IRAK) 
family (Martin and Wesche 2002). This association between IRAK1 and MyD88 results in 
self-phosphorylation of IRAK-1, as well as phosphorylation by the related kinase, IRAK-4 
(Cao et al., 1996; Li et al., 2002). After phosphorylation, IRAK1 dissociates from MyD88 and 
now binds to TRAF6 (TNF receptor-associated factor 6) (Burns et al., 2000). TRAF6-mediated 
K63-linked ubiquitinylation is required for IRF-5 nuclear translocation in TLR7/9-MyD88-
dependent signalling (Balkhi et al., 2008). IRF-5 homo-dimerizes upon phosphorylation of 
serine/ threonine residues at the C-terminal end by a still undefined kinase and translocates 
to the nucleus (Chen et al., 2008). Thus, both ubiquitinylation and phosphorylation of IRF-5 
are required for nuclear translocation. IRF-5 also associates with Ikkǂ kinase, but that results 
in degradation of IRF-5-rather than activation (Balkhi et al., 2010). It should be noted that 
TLR 7 and TL9 are the only know pathways that lead to the activation of IRF-5. Unlike IRF-3 
or IRF-7, IRF-5 is not activated by TLR3 or TLR 4 via TIR-domain-containing adapter-
inducing IFNǃ (Trif) pathways or by the RIG-I/MAV IPS-1 pathways. 
Several ligands can activate TLR7. TLR7 recognizes viral ssRNA , but IFN production can be 
also induced  in response to imiquimod and resiquimod (Hemmi et al., 2002). In addition, 
several other guanine nucleoside analogs are recognized exclusively via TLR7 (Lee and Kim 
2007). Of physiological ligands, guanosine and uridine-rich ssRNA oligonucleotides derived 
from HIV-1, stimulate DCs and macrophages to secrete IFNǂ and other pro-inflammatory 
cytokines via murine TLR7 (Heil et al., 2004). TLR7 also responds to ssRNA (polyU) or 
ssRNA derived from wild-type influenza virus (Diebold et al., 2004). Since these sequences 
can originate from viral as well as endogenous RNA, TLR7 may be unable to discriminate 
between self and non-self RNA and see the self RNA as sensors of endogenous danger 
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signals. Accordingly, small nuclear ribonucleoproteins (snRNPs), a major component of the 
immune complexes associated with SLE can activate human pDCs by TLR7 induced 
signaling pathway and stimulate production of Type I IFNs and other proinflammatory 
cytokines. Interestingly, the TLR7 pathway can also be activated by nuclear 
ribonucleoprotein complexes (Savarese et al., 2006). 

10. Mouse models of SLE 

The mouse model of SLE provides additional information on the mechanism of SLE 
pathogenicity. NZB mice develop spontaneous lupus, produce autoantibodies and develop 
glomerulonephritis. Duplication of TLR7 and transposition of the TLR7 gene as seen in the 
Yaa mutation promotes the SLE like symptoms. The B cells of murine lupus model also 
show an accelerated class switching, which is controlled by the genotype (Vyse et al., 1996). 
Our results showed that in addition to a decreased production of Type I IFN and 
inflammatory cytokines, Irf-5-/- mice exhibit an alteration of the B cells phenotype, associated 
with age related expansion of CD19+B220- group of B cells, decrease in plasma cells and 
splenomegaly (Lien et al., 2010). However, the mechanism by which IRF-5 controls B cells 
differentiation to plasma cells is not known. Irf-5-/- mice have also decreased levels of natural 
antibodies and T cells dependent antigenic stimulation leads to profound decrease in serum 
IgG2a (Savitsky et al., 2010). Finally the requirement of IRF-5 for the development of lupus 
like disease was demonstrated in FcγRIIB-/- mice, where IRF-5 deficiency profoundly 
decreased the manifestation of the disease (Richez et al., 2010). Two other IRFs, IRF-4 and 
IRF-8 have critical functions in the B cell differentiation program. B cells development is 
blocked at the pre-B cells stage in IRF-4 and IRF-8 compound null mice (Lu et al., 2003). IRF-
4 also functions in late B cells development regulating IgG class switching and plasma cell 
development (Sciammas et al., 2006). IRF-8 has a role in germinal centre transcription 
program (Lee et al., 2006). Altogether, these data indicate that several members of the IRF 
family can affect B-cell development, however the strong genetic association between IRF-5 
and autoimmune disease point out to a unique functions of IRF-5 in the immune system. 

11. Induction of autoimmunity by IFNs 

How the IFNs contribute to SLE and its progress remains to be fully explained. The presence 
of immunogenic complexes leads to dendritic cell activation and thus there is a greater 
antigen presentation and more IFNs are secreted. IFNǂ increases the expression of 
autoantigens such as Ro52 and also induces apoptosis via translocation of Ro52 to the 
nucleus (Baechler et al., 2004; Bennett et al., 2003). Type I IFNs also induce the maturation 
and activation of dendritic cells, along with upregulation of MHC Class I and II molecules 
(Baccala et al., 2007). This promotes the development of helper T cells (Th1). In addition, 
Type I IFNs also enhance antibody production and class switching, decrease the selectivity 
of B cells for CpG-rich DNA, and permit stimulation by even non-CpG DNA and thereby 
promote an autoimmune response (Jego et al., 2003; Le Bon et al., 2006). How does IRF-5 
contribute to this picture? 

12. Genetic association studies and SLE 

Genetic and population association studies provide a more comprehensive picture of the 
role of IFNs in SLE, reviewed in (Delgado-Vega et al., 2010). Of the entire battery of genes 
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identified by genome wide association studies, most of the genes are involved in innate 
and adaptive immune responses. These can be divided into the following groups: (1) 
genes implicated in processing and presentation of immune complexes, (2) genes involved 
in the IFN-inducing pathways, and (3) genes involved in the Type I IFN signalling 
pathway. Of the first group, the MHC region shows up as a prime candidate in correlation 
studies, but is challenging to study since the region has hundreds of potential candidate 
genes (Deng and Tsao 2010; Sestak et al., 2011). In the IFN-inducing pathways, 
transcription factor IRF-5 was the first identified gene directly to be associated with 
increased risk of lupus (Graham et al., 2006; Sigurdsson et al., 2005). IRF-5 allele variants 
with the highest probability of being causal were identified and shown to affect IRF-5 
expression. Patients with a risk haplotype of IRF-5 show higher serum IFN activity, when 
compared to patients lacking this risk genotype. Finally, in the IFN signalling pathway, 
STAT4, a downstream interacting protein of IFNAR, is also strongly associated with lupus 
(Kariuki et al., 2009). STAT4 is associated with increased sensitivity to IFNǂ and the 
presence of anti-dsDNA autoantibodies. In addition, polymorphisms in the Janus kinase 
tyrosine kinase 2 (TYK2), which binds to IFNAR, and is part of the initiation of the JAK-
STAT pathway, was also found to be associated with lupus and strengthen the link 
between IFNǂ expression and SLE. Several other gene products that are part of the IFN 
signalling pathway, such as TNFAIP3, TYK2, and TREX1, have been also associated with 
susceptibility to SLE (Adrianto et al., 2011; Fan et al., 2011; Hellquist et al., 2009). Recently 
identified SNPs in IRF7 also seem to be associated with SLE. (Fu et al., 2011). It is unlikely 
that the alteration of the function of a single master gene will be responsible for the 
pathogenesis of SLE; rather it may be combination of malfunction of several genes. 
Without doubt there is still the potential of finding new genes that contribute to the 
development of SLE. 

13. IRF-5 polymorphisms and association with SLE 

IRF-5 was identified as a risk factor for SLE in two very important association studies. 
Sigurdsson et al. looked at sets of lupus patients from Sweden, Finland and Iceland and 
analyzed 4 SNPs of IRF-5 (Sigurdsson et al., 2005). Graham et al. (Graham et al., 2007) 
describe two functional SNPs within the IRF-5 gene which are a risk haplotype for SLE. One 
SNP, rs2004640, creates a donor splice site in intron 1 of IRF-5 and the isoform expresses an 
alternative of untranslated exon 1B. A second SNP is located about 5 kb downstream of IRF-
5 and could not be tied to functional importance but is used as a haplotype tag (Graham et 
al., 2007). Later, several groups identified a second polymorphism that has more easily 
identifiable functional roles. rs10954213 alters the polyadenylation site of IRF-5 and the 
resultant mRNA cal be correlated to higher levels of IRF-5 seen in SLE (Sigurdsson et al., 
2008). The A allele of this SNP leads to a shorter and more stable mRNA. Finally, an 
insertion- deletion is found in the 6th exon of IRF-5 that can potentially change the protein 
isoforms expressed IRF-5 by 10 amino acids (Kozyrev et al., 2007). The deletion results in 
expression of the isoforms V1 and V4, while the insertion give rise to isoforms V5 and V6. 
The lupus risk haplotype, TCA, includes the insertion TCA and thus individuals with lupus 
are expected to express the corresponding isoforms (V5 and V6). The sequence added by the 
insertion/deletion gives rise to a proline-rich region which can be potentially recruited for 
additional protein –protein interactions and/or protein stability by altering the degradation 
rate of the resulting protein. 

www.intechopen.com



 
Autoimmune Disorders – Pathogenetic Aspects 

 

44

Even though the genetic association of lupus and IRF-5 has been consistent, the initial 
studies dealt with an overwhelmingly European population and there are some suggestions 
that the association factors might be population specific. Studies in Asian populations have 
identified new susceptibility genes for lupus, while some of the previously known ones 
have been discounted (Kawasaki et al., 2008; Li et al., 2011; Shimane et al., 2009; Shin et al., 
2008; Siu et al., 2008), reviewed in (Kim et al., 2009). Given that the majority of lupus patients 
are women, genetic imprinting remains yet an unexplored topic. However very interesting 
is a recent finding showing that IRF-5 is expressed at higher levels in female than in male 
mice and that the IRF-5 promoter is under hormonal regulation (Shen et al., 2010).  

14. Conclusions and future perspectives 

Identification of the IRF-5 gene as a genetic risk factor for SLE helps to dissect its role in the 

IFNǂ pathway in pathogenesis of SLE. The SNP, rs10954213, that affects the levels of IRF-5 

expression through increasing the stability of its mRNA, has a great impact on function and 

expression of protein, but has not found to be strongly associated as a risk haplotype. Thus 

many questions remain. Higher levels of IRF-5 might result not only in continued 

production of type I IFN but also of the proinflammatory cytokines. Are these cytokines 

responsible for the activation of the immune cells such as B cells? Hyper activation of B cells 

is one of the markers of SLE and the results in mice indicate that IRF-5 has an important role 

in cell differentiation and induction of IgG2a subtype, which is an important subtype for the 

induction of autoimmunity. In humans, the IgG2a isotype corresponds to IgG1, which is the 

dominant subclass of serum autoantibodies in SLE (Manolova et al., 2002). The biological 

role of IRF-5 isoforms remains to be determined. Presently we do not know whether TCA 

haplotype IRF-5 has a distinct function from the other IRF-5 variants or whether it induces 

different group of the inflammatory genes or IFN A variants. It would be of great interest to 

learn about the roles of the IRF-5 induced genes and their variation in SLE patients. Now 

 

 

Fig. 1. Various roles of IRF-5 in immunity and autoimmune diseases. 
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that IRF-5 has been identified as an important factor in induction of type IFN in lupus, it 
will be important to determine which of the other IRF-5 regulated genes contribute to the 
pathogenicity of the disease. A recent observation that EBV might also be implicated in the 
activation of Type I IFN in SLE patients (Yadav et al., 2011) might be an important link in 
dissecting the cross-talk between genetic predisposition or risk factors and environmental 
stimuli. Is there any cross talk between IRF-5 and some of the other gene products that were 
also identified to be associated with Lupus disease? Many of these questions remain yet to 
be explored to understand the impact of IRF-5 in SLE biology (Figure 1). 
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