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México 

1. Introduction 

Current notions on the pathogenesis of the HIV-induced disease sustain that progressive 
immunodeficiency results from a combination of the cell cytotoxicity produced by infection 
and replication of the virus in the target cells, mainly immune system cells, and of the indirect, 
harmful effects mediated by two main mechanisms: a sustained, chronic activation of the 
immune system that turns into immune dysfunction with the progressive degradation of 
lymphoid tissues, and the immunoregulatory and toxic properties of extracellular viral 
proteins on bystander cells (Choudhary et al., 2007; Moir et al., 2011). Bystander, non infected 
cells that show altered function and death, include cells with null or low expression of the CD4 
receptor, such as CD8+ T and B lymphocytes, dendritic cells, neurons and tumor cells.  
The HIV-1 Gp120 protein has properties that maintain resemblance with animal toxins. 
Active forms of free Gp120 can be found at nanomolar concentrations in the plasma of a 
considerable proportion of HIV infected individuals (Rychert et al., 2010; Gilbert et al., 1991; 
Santosuosso et al., 2009). A number of in vitro and in vivo activities have been described for 
the extracellular form of this  molecule, indicating that it may contribute to deregulation of 
immune function and damage to several tissues during HIV infection. Activation, apoptosis, 
chemotaxis and impaired cellular function are the most frequently reported effects of Gp120 
in the absence of HIV infection. Gp120 interacts with chemokine receptors (mainly CXCR4 
and CCR5) which are expressed by different cells and tissues, besides the immune system, 
thus providing a range of possible target cells for toxic effects. However, the high structural 
variability of Gp120, absorption by host’s glycan-binding compounds, and the complexity of 
the regulation processes involved in chemokine receptor function, have made difficult to 
asses the actual significance of the free form of this molecule for AIDS pathogenesis. On the 
other hand, soluble Gp120 or peptides derived of active portions of the molecule may be 
considered as potential therapeutic agents to target undesirable cells, i.e., tumor cells. 
This article provides a review of the main factors influencing the biological outcome of the 
interaction of the soluble form of Gp120 with cells and tissues, and a selection of recent 
literature illustrating the diversity of the effects induced by this molecule.  

2. Structure-function and evolutionary considerations 

The HIV Env protein is synthesized in the form of the gp160 precursor, which processing 
and folding occur through what is known as the secretory pathway: the Env precursor 
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protein (gp160) is co-translationally translocated into the endoplasmic reticulum (ER), 
where 10 disulfide bonds are formed and the molecule starts to fold. Glycosylation of most 
of the approximately 30 potential N-linked glycosylation sites, with around 25 of them 
located in the Gp120 region (Zhang et al., 2004), also occurs co-translationally in the ER. 
Disulfide bond formation and glycosylation, along with interaction with the lectin 
chaperones calnexin and calreticulin, allows the proper final folding of the gp160 precursor 
(Earl et al., 1991; Otteken et al., 1996). Then, the molecule forms trimers and is transported to 
the Golgi complex, where the cleavage into the surface (Gp120) and transmembrane (Gp41) 
subunits is carried out. Cleavage of the precursor by host proteases generates the N-terminal 
hydrophobic fusion peptide of Gp41. Gp120 and Gp41 are kept joined by non-covalent 
interactions on the surface of infected cells and virions. 
Binding to cell membranes and disruption of the lipid bilayer integrity are the basic 

functional properties of the HIV Env complex. Env mediates the fusion of biological 

membranes that allows the entry of the virus nucleocapsid into target cells, as well as the 

fusion of infected with non-infected cells. Env-mediated membrane fusion is involved in 

virus entry, cell-to-cell transmission of virus particles, and syncytia formation. Membrane 

fusion is a multi-step process which is conducted by Gp120/Gp41 heterotrimers and 

involves: a) binding of Gp120 to the CD4 receptor on the cell surface, an interaction that is 

favored by adhesion molecules (Cantin et al., 1997, Bastiani et al., 1997); b) conformational 

rearrangements allowing Gp120 to interact with a coreceptor molecule, mainly CCR5 and 

CXCR4; c) projection of a trimer formed by the extended chains of the Gp41 ectodomain; d) 

insertion of the Gp41 amino-terminal hydrophobic ends, the fusion peptides, into the target 

membrane and the subsequent packing of the Gp41 molecule into a 6-helix bundle, a 

structure which formation provides the free energy necessary for membrane fusion (Jones et 

al., 1998; Melikyan et al., 2000; Sattentau & Moore, 1991; Sullivan et al., 1998; Trkola et al., 

1996; Wu et al., 1996; Wyatt & Sodroski, 1998).  

Gp120 oligosaccharide moieties greatly influence Gp120 folding, processing, and 

intracellular transport (Stansell & Desrosiers, 2010), and the ability of the virus to escape 

from host neutralizing antibodies. N-linked glycosylation sites are main targets of 

neutralizing antibodies, which exert selective pressure on the viral surface. Thus, it has been 

postulated that the evolving glycan shield is a mechanism to avoid elimination of the 

infection by the humoral immune response (Wei et al., 2003; Canducci et al, 2009). Instead, it 

has been frequently observed that the enzymatic removal of Gp120 oligosaccharides does 

not greatly affect the interaction of Gp120 with CD4 (Bahraoui et al., 1992; Fenouillet et al., 

1989). However, glycosylation is necessary for the acquisition of the proper folding of Gp120 

in the ER required for interaction with CD4 (Li et al., 1993). On the other hand, glycans play 

an important role in the usage of CXCR4 and CCR5 (Polzer et al., 2002; Ogert et al., 2001; 

Bandres et al., 1998). 

Env share a number of structural and biological characteristics with pore-forming protein 
toxins from widely separated phyla such as bacteria, plants, cnidaria and mammals 
(Iacovache, et al., 2008): they undergo extensive post-translational modifications, are specific 
for susceptible structures (acceptor sites), have an hetero-oligomer structure, they tend to 
aggregate, show variable toxic efficiency among different cell types, act through their pore-
forming activity (in conjunction with Gp41), have neurotoxic effects, and present 
considerable and continuous genetic variation (Butzke & Luch, 2010; Suput, 2009; Kristan et 
al., 2009). Particularly, a striking similitude exists among the mechanism of pore formation 
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of the Env complex and that of the pore-forming toxins such as the actinoporins, the sea 
anemone toxins: 1) attachment of toxin to the cell surface through recognition of specific 
cellular membrane components; 2) transfer of the N-terminal segment to the lipid-water 
interface; 3) oligomerization of the toxin on the cell surface followed by the insertion of 

multiple -helices monomeres into the membrane to form an ion conductive channel 
(Kristan et al., 2009; Edwards & Hessinger 2000; Butzke & Luch, 2010). As in the case of Env, 
the N-terminal portion of the toxin is essential for the final pore formation step (Kristan 
2009). Finally, membrane-binding and pore-forming functions relay on different domains in 
both Env and animal pore-forming toxins. 
Early works reported sequence homology between a short portion of Gp120 and the 
putative actives sites of the snake neurotoxin alpha-bungarotoxin and the rabies virus 
glycoprotein (Neri et al., 1990; Bracci & Neri, 1995), which interact with the mammals’ 
nicotinic acetylcholine receptor, a member of the ligand-gated ion channel proteins. Later, it 
was found that Gp120 can bind to the acetylcholine binding site of the nicotinic receptor and 
the binding can be inhibited by an albumin-conjugated peptide encompassing the 160-170 
amino acids of Gp120 (Bracci et al., 1997), which belong to a relatively conserved region of 
the Gp120 V2 loop. Gp120 can act as competitive antagonist of the nicotinic acetycholine 
receptors. Although the overall structure of the snake neurotoxins consists of a low 
molecular weight protein with three beta-strands with finger-like loops (Pawlak et al., 2006; 
Ackermann et al., 1998), and thus it is quite different to that of Gp120 and the rabies 
glycoprotein (both belonging to the Class I fusion proteins), the homologous sequence was 
located in a loop structure in both viral proteins and the snake neurotoxin, suggesting an 
evolutionary convergence towards the appropriate acetylcholine receptor binding structure. 

3. The CXCR4 and CCR5 chemokine receptors 

In principle, the biological effects of the interaction of Gp120 with CXCR4 and CCR5 may be 
conditioned by events similar to those regulating the coreceptor activity after interaction 
with their corresponding natural ligands. This section presents a general review of the 
characteristics of these receptors and the main extracellular events regulating their function. 
Comprehensive reviews of the regulatory pathways involved in CXCR4 and CCR5 signaling 
can be found elsewhere (Busillo & Benovic 2007; Kucia et al., 2005; Oppermann, 2004; Wu & 
Yoder, 2009). 
CXCR4 and CCR5 belong to the super family of the seven-transmembrane G-protein 
coupled receptors (GPCRs). CXCR4 has SDF-1 as its sole natural ligand, whereas CCR5 can 
interact with several chemokines, mainly CCL5, CCL3, CCL4, CCL8 and CCL14 (RANTES, 
MIP-1alpha, MIP-1beta, MCP-2, and CC-1, respectively). Ligand binding triggers 
phosphorylation at various sites of the intracellular domains, which act as signals for 
migration, activation and transcription. Like for others GPCRs, ligand binding induces 
receptor desensitization and internalization to avoid prolonged activation, followed by 
degradation or recycling (Marchese et al., 2008). In addition, chemokine receptors can also 
be subjected to “heterologous desensitization”, i.e., inhibition of receptor function by 
signaling processes triggered by ligand binding to an unrelated GPCR. Thus, cross 
heterologous desensitization of T cell functions can be induced by CCR5 and CXCR4 
ligands, resulting in mutual interference with cellular signaling, adhesion and chemotaxis 
(Hecht et al., 2003). In another example, it has been shown that activation of toll-like 
receptor 2 (TLR2) negatively regulates CCR5 on human blood monocytes, inhibiting 
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monocyte migration after pathogen recognition (Fox et al., 2011). On the other hand, it is 
clear that that signaling through CD4 by the CD4 ligand interleukin-16 (IL-16) desensitizes 
the chemokine receptors CCR5, CXCR4, and CXCR3 (Rahangdale et al., 2006; Van Drenth et 
al., 2000).  
CXCR4 is expressed by many tissues and cell types, such as T leukocytes, progenitor cells in 

the bone morrow, endothelial (Murdoch et al., 1999) and epithelial cells (lung, retina, 

intestine), and tumor cells. In the brain, CXCR4 has been found in the endothelial cells 

forming the blood-brain barrier, microglia, neurons, and astrocytes (Berger et al., 1999; 

Edinger et al., 1997). CXCR4 is important for lymphocyte trafficking and recruitment of 

lymphocytes and monocytes at sites of inflammation, and plays a role in cell proliferation, 

organogenesis and vascularization. On the other hand, CCR5 is expressed on resting T-cells 

with a memory/effector phenotype, monocytes, macrophages and immature dendritic cells 

(Blanpain et al., 2002). Differentiation of monocytes to macrophages is accompanied by an 

increase of the CCR5 expression (Kaufmann et al., 2001). Increased CCR5 expression has 

been found to be induced by interferon-alpha (IFN-alpha) in thymus implants infected by 

the R5 HIV (Stoddart et al., 2010). Expression of CCR5 in T CD4+ cells is particularly high in 

mucosa-associated lymphoid tissues (MALT), where the fraction of CCR5+ CD4+ T cells is 

>50%. It is known that signaling through CCR5 is significantly involved in the induction of 

an immunological hyporesponsive state that leads to oral tolerance to high doses of antigen 

(DePaolo et al., 2004) and prevents uncontrolled postinfarction inflammation of 

myocardium in mice (Dobaczewski et al., 2010). Anti-inflammatory properties of CCR5+ 

mononuclear cells have been related to the expression of high levels of IL-10 and their 

ability to recruit CD4+/foxp3+ regulatory T cells (Tregs) (Dobaczewski et al., 2010).  

The expression of CXCR4 on the cell surface is increased by several cytokines (IL-4, IL-2, IL-

7, IL-10, IL-5, TGF-1), as well as by fibroblast and vascular growth factors, whereas it is 

reduced by others, mainly those pro-inflammatory cytokines (TNF-alpha, INF-gamma, and 

IL-1-beta). However this pattern is not absolute and it is thought that mixed signals regulate 

de expression of CXCR4 signaling in different circumstances (reviewed in Busillo & Benovic 

2007). On the other hand, sensitization of CXCR4 (priming to low concentrations of SDF) 

through its translocation to lipid rafts during inflammatory responses has also been 

described (Wysoczynski et al., 2005).  

Membrane events participating in the regulation of CXCR4 and CCR5 function include 

dimerization as well as extensive downregulation by endocytosis and/or macropinocytosis. 

In addition, proteases released by neutrophils cleavage the N-terminus extracellular portion 

of CXCR4, avoiding ligand interaction (Hezareh et al., 2004; Lévesque et al., 2003).  

In the last decade, the CXCR4-SF-1 axis has been increasingly involved in the generation, 
progression and metastasis of a variety of tumors, so that the expression of CXCR4 is 
currently considered an important biomarker for identification of the metastatic potential of 
primary tumors and a potential therapeutic target (Nimmagadda et al., 2010; Muller et al., 
2001). CXCR4 was found to be one of the few genes which elevated over expression and 
function was associated to high osteolytic bone metastatic activity of human breast cancer 
cells in immunodeficient mice (Kang et al., 2003). In addition, CXCR4 is expressed on 
normal tissue-committed stem cells, which are currently considered a potential source of 
transformed cells. There are evidences that the CXCR4-SDF-1 axis can mediate locomotion, 
chemotaxis, adhesion, and even proliferation and survival of these cells, as well as the 
secretion of matrix proteases by different cell types (Fernandis et al., 2004; Janowska-
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Wieczorek et al., 2000; Spiegel et al., 2004). Studies using RNA interference (RNAi) to reduce 
the expression of CXCR4 in animal models, have found that this treatment readily reduce 
growth and inhibits metastasis in a number of tumors, like breast and prostate cancer (Liang 
et al., 2005; Wang et al., 2011), melanoma (Kim et al., 2010), and neuroblastoma (Wang et al., 
2006). 

4. In vitro and in vivo effects of extracellular Gp120 on cell function  

Although Gp120 interaction with CD4 can induce signaling events in many cell types, a 
number of effects that were originally attributed to the Gp120-CD4 interaction have been 
recently found to be explained by binding and signaling events mediated mainly by CXCR4 
and CCR5. It should be noted, however, that although signaling intermediates recruited by 
Gp120 and the natural chemokine receptor ligands are usually the same, the ability of Gp120 
to activate those signal transduction pathways may depend on the cell activation status. In 
general, activated cells are more sensitive to the activity of Gp120 than resting cells (Kinet et 
al., 2002; Weissman et al., 1997; Schols & De Clercq, 1996).  
Gp120 signaling through CXCR4 triggers intracellular events facilitating infection by the 
HIV. Recently, it was found that Gp120 increases the dynamics of actin by activating cofilin, 
an actin-depolymerizing factor, which promotes the movement of the viral preintegration 
complex toward the centre of the cytoplasm. CXCR4-mediated actin rearrangement 
markedly facilitates viral infection of resting T cells (Yoder et al., 2008). Similarly, CXCR4 
signaling after interaction with Gp120 is involved in a variety of other activation events in T 
cells and macrophages (Table 1). Likewise, it is well known that Gp120 exerts chemotactic 
effects on T, dendritic cells (DC), and monocyte/macrophages (Table 1). Conversely, it has 
been also reported that Gp120 can inhibit migration of T (Trushin et al., 2010) and B cells 
(Badr et al., 2005). It has been suggested that reprogramming of the CD4+ T-cell migration 
behavior induced by Gp120 may provides a mechanism for lymphadenopathy during HIV 
infection (Green et al., 2009).  
A study using oligonucleotide microarrays showed that tropism of Gp120 for the CCR5 and 
CXCR4 receptors, along with the cell activation status, are related to the Gp120 biological 
activity. R5 and X4 HIV envelopes (CCR5 and CXCR4-tropic Gp120, respectively) were 
found to induce distinct gene expression profiles in primary peripheral blood mononuclear 
cells (Cicala et al., 2006a). In this study, both R5 and X4 Gp120 activated genes associated 
with cell proliferation and protein tyrosine kinases, although R5 envelopes were more 
pronounced in their capacity to activate the p38 mitogen-activated protein kinase (p38 
MAPK) cascade. In addition, R5 Gp120 exclusively activated a subset of genes in the resting 
CD4+ T cell population derived from viremic individuals. p38 is activated in macrophages, 
neutrophils, and T cells by numerous extracellular mediators of inflammation, including 
chemoattractants, cytokines, chemokines, and bacterial lipopolysaccharide. Functional 
responses involving p38 include respiratory burst activity, chemotaxis, granular exocytosis, 
adherence and apoptosis (Ono & Han, 2000). Activation of p38 kinase has also been 
associated with HIV replication (Muthumani et al., 2004) and thus, it is proposed that R5 
envelopes induce genes that may facilitate replication of virus in resting CD4+ T cells, 
contributing to the establishment and/or maintenance of viral reservoirs, and the 
productive infection at mucosal surfaces, favoring transmission (Cicala et al., 2006a). Other 
studies also shown that R5 and X4 Gp120 can activate NFATs and induce their translocation 
into the nucleus. Translocation of NFATs is an important signal for HIV transcription, given 
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that the HIV long terminal repeat (LTR) contains NFATs binding sites which are able to 
enhance transcription of viral genes (Cron et al., 2000; Cicala et al., 2006b; Kinoshita et al., 
1998; Williams & Greene, 2007).  
 

Cell Mayor finding Mechanism or concurrent events 
Receptor
involved

Reference 

CD4+ T cell lines 
Signal 

transduction 

Protein tyrosine kinase Pyk2 

phosphorylation-dependent cell 

growth, survival and 

differentiation. 

CXCR4 

CCR5 

Davis et al., 

1997 

T cell lines 

Gp120-CXCR4 co-

internalization, 

cell signaling, and 

chemotaxis 

Translocation of Gp120 and CXCR4 

into early endosomes. 

CD4-independent phosphorylation 

of Pyk2. 

CXCR4 
Misse et al., 

1999 

CD4+ T cell line Anergy 

Inhibition of T cell activation and 

signaling through the TCR by 

Gp120/anti- Gp120 complexes, 

probably by sequestering p56 (lck) to 

the cytoskeleton. 

CD4 
Goldman  

et al., 1997 

CHO cell line Ca2+ mobilization
Coreceptor and CD4-dependent 

Ca2+ fluxing. 

CXCR4 

CCR5 

Melar et al., 

2007 

CD4+ T cells, 

kidney epithelial 

cell lines and 

blood CD4+ 

lymphocytes 

Apoptosis and 

viral replication 

Caspase 8 dependent NF-kappaB 

activation and enhanced HIV 

replication. 

N.D.* Bren et al., 2009 

Intestinal cell 

line 

Functional 

alterations 

resembling HIV 

enteropathy 

Activation of GPR15/Bob, 

presumably in a GalCer-rich 

membrane subdomain involving 

PKC activation. 

Microtubule disruption, 

perturbation of the transepithelial 

electrical resistance and decrease of 

glucose absorption. 

GPR15/ 

Bob  

GalCer 

CXCR4 

Maresca et al., 

2003 

Human 

hepatocyte cell 

lines and 

primary 

hepatocytes 

Apoptosis 

Gia protein signaling, and 

independent of caspase cascade 

activation. 

CXCR4 
Vlahakis et al., 

2003 

Blood CD4+ T 

lymphocytes 
Apoptosis Activation of caspases 3 and 6 CD4 

Cicala et al., 

2000 

Blood CD4+ T 

lymphocytes 
Apoptosis 

Activation of the proapoptotic p38 

protein 
CXCR4 

Trushin et al., 

2007 

Blood CD4+ T 

lymphocytes 
Anergy 

Diminished production of IL-2 and 

IL-4 and reduction of the proliferative 

responses of stimulated cells 

Production of high amounts of IL-10, 

INFǄ and TNF-ǂ of unstimulated cells.

CD4 
Schols et al., 

1996 

Blood CD4+ T 

lymphocytes 
Anergy 

Dysregulation of the IL-2/IL-2R 

signal transduction pathway 
CD4 

Kryworuchko et 

al., 2003 
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Cell Mayor finding Mechanism or concurrent events 
Receptor
involved

Reference 

Umbilical cord 

blood CD4+ T 

lymphocytes 

HIV-1 replication 

in non-dividing 

cells 

Activation of PKCε and its upstream 

effector PI3K/Akt, involved in HIV-

1 replication. 

Enhancing of expression of the 

cellular Tat cofactors Tat-Sf1 and 

SPT5. 

CXCR4 
Missè et al., 

2005 

Blood CD4+T 

lymphocytes 
Chemotaxis Chemotaxis CCR5 

Weissman  

et al., 1997 

Blood CD4+ T 

lymphocytes 
Chemotaxis 

CD4-independent signaling through 

CXCR4 in CD4+ and CD8+ T cells. 
CXCR4 

Iyengar et al., 

1999 

Blood CD4+ T 

lymphocytes 

Chemotaxis of 

unstimulated 

CD4+ T cells. 

Activation of major G protein-

dependent pathways: calcium 

mobilization, phosphoinositide-3 

kinase, and Erk-1/2 MAPK 

activation. 

Actin cytoskeleton rearrangements 

CXCR4 
Balabanian  

et al., 2004 

Blood CD4+ T 

lymphocytes 

Inhibition of SDF-

1-induced 

chemotaxis 

Lck-dependent phosphorylation and 

inactivation of cofilin, a cellular 

depolymerizing factor. 

CD4 
Trushin et al., 

2010 

Blood CD4+ T 

lymphocytes 

NFAT nuclear 

translocation in 

resting cells 

Facilitation of viral replication in 

resting cells. 

CD4 

CCR5 

CXCR4 

Cicala et al., 

2006 

Blood CD4+ T 

lymphocytes 

Activation of 

LFA-1 

Binding of gp120 to ǂ4ǃ, an integrin 

mediating migration of lymphocytes 

to gut-associated lymphoid tissue, 

activates LFA-1, favoring formation 

of virological synapses. 

Integrin 

ǂ4ǃ7 

Arthos et al., 

2008 

Blood resting 

CD4+ T 

lymphocytes 

Induction of actin 

dynamics in 

resting CD4+ T 

cells 

Activation of the cellular actin 

depolymerizing factor cofilin, which 

promotes the movement of the viral 

preintegration complex to the 

nucleous. 

CXCR4 
Yoder et al., 

2008 

Blood CD4+ and 

CD8+ T 

lymphocytes 

Apoptosis 

Reduction of the expression of the 

proto-oncogene Bcl-2 with induction 

of apoptosis in CD4+ but not in 

CD8+ T cells. 

CD4 
Hashimoto  

et al., 1997 

Blood CD8+ T  

lymphocytes 

Apoptosis 

dependent of 

macrophage 

activation 

Activation of macrophages for 

enhanced expression of TNF and 

TNFRII. Apoptosis was mediated by 

the interaction between macrophage 

TNF-ǂ and the TNFRII on CD8+ T. 

CXCR4 
Herbein et al., 

1998 

Blood CD8+ T 

lymphocytes 
Anergy 

Synthesis of high amounts of IL-10 by 

unstimulated PBMC. 

Reduction of activation and 

proliferation of CD8+ T cells. 

CD4 
Schols et al., 

1996 

Blood CD4+ and 

CD8+ T 

lymphocytes 

Chemotaxis CD4-independent signaling. CXCR4 
Iyengar et al., 

1999 
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Cell Mayor finding Mechanism or concurrent events 
Receptor
involved

Reference 

PBMCs and 
monocyte-
derived 
macrophages 
(MDMs) 

Transcriptional 
program 
conducive to 
productive HIV 
infection. 

Modulation of ~300 genes. 
Induction of the expression of 
cytokines, chemokines, kinases, and 
transcription factors associated with 
antigen-specific T cell activation but 
not cell proliferation. 

N.D. 
Cicala et al., 
2002 

Blood 
monocytes 

Anergy Induction of IL-10 production CD4 
Schols et al., 
1996 

Blood 
monocytes and 
MDMs 

Production of ǃ 
chemokines 

Enhancement of MCP-1, MIP-1ǃ, 
and RANTES secretion by primary 
monocytes/ macrophages but not by 
THP-1 and U937 cells. 

CCR5 
CXCR4 

Fantuzzi et al., 
2001 

Blood 
monocytes and 
MDMs 

Aberrant 
activation 

Pertussis toxin-insensitive signal 
transduction, activation of Ca2+ 
channels and Pyk2 and MAPK 
pathways 
Secretion of the MIP-1ǃ and MCP-1 
chemoattractants. 

CCR5 
CXCR4 

Del Corno et al., 
2001 

MDMs 
Production of 
pro-inflammatory 
cytokines 

Release of pro-inflammatory 
cytokines. 
Activation of multiple protein 
kinases like the Src family kinase 
Lyn, PI3K and Pyk2. 

CCR5 
Cheung et al., 
2008 

Immature DCs 
derived from 
monocytes 

Migration 

Migration of dendritic cells 
mediated by a novel pathway 
involving phosphorylation of Pyk2 
and activation of the p38 MAP 
kinase. 

CCR5 
Anand et al., 
2009 

Tonsil primary 
naïve and 
memory B cells 

Apoptosis and 
inhibition of B cell 
chemotaxis. 

Gp120-induced cleavage of CD62L 
by a mechanism dependent on 
matrix metalloproteinase 1 and 3, 
CD4, CXCR4, G!i, and p38 MAPK. 
Increase of CD95-mediated 
apoptosis. 

CXCR4 
CCR5 

Badr et al., 2005 

Rat hippocampal 
neurons 

Apoptosis and 
necrosis 

Activation of NMDA receptors with 
increase of neuronal calcium 
concentration. Impairment of 
neuronal calcium homeostasis was 
prevented by TGF-ǃ1. 

NMDA 
receptors 

Meucci et al., 
1996 

Rat hippocampal 

neurons 

Increase of 

intracellular 

calcium 

concentration. 

Dramatic and persistent release of 

calcium from intracellular stores. 
N.D. 

Medina et al., 

1999 

Human 

neuroblastoma 

cells 

Neurotoxicity 

Necrosis 

Increment of intracellular calcium 

induced increased cyclooxygenase 

and 5-lipoxygenase activity. 

Membrane lipoperoxidation and 

mitochondrial uncoupling. 

CXCR4 
Maccarrone et 

al., 2002 

Rat hippocampal 

neurons 

Neurotoxicity 

and apoptosis 
Activation of JNK N.D. 

Bodner et al., 

2002 
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Cell Mayor finding Mechanism or concurrent events 
Receptor
involved

Reference 

Rat cerebellar 

granule cells 
Neurotoxicity Signaling through CXCR4. CXCR4 

Bachis et al., 

2004 

Rodent dorsal 

root ganglia and 

sensory neurons 

Neurotoxicity, 

axonal 

degeneration and 

apoptosis 

Activation of the mitochondrial 

caspase pathway. 

CXCR4 

CCR5 
Melli et al., 2006 

Rat microglia Neurotoxicity 

Enhancing of outward potassium 

currents via CXCR4 and cAMP-

dependent PKA signaling. 

CXCR4 Xu et al., 2011 

Rat and human 

neurons 

Human 

monocytes 

Neuronal death 

and monocyte 

activation 

Gp120 and Tat induction of  

phosphorylation of MLK3 

(MAP3K11). 

N.D. Ziye et al., 2006 

Rat cerebellar 

cells 
Apoptosis Caspase-3-mediated apoptosis. CXCR4 

Bachis et al., 

2006 

Human astroglia 

Glutamine 

metabolism 

dysfuntion and 

apoptosis 

Imbalanced glutamine synthetase 

activity accompanied by generation 

of free radicals. 

N.D. 
Visalli et al., 

2007 

Human 

neuroblastoma 

cell line 

differentiated 

into neurons. 

Fetal rat neurons 

Apoptosis 

Pretreatment with platelet-derived 

growth factor BB reduced gp120-

associated neurotoxicity and rescued 

neurite outgrowth. 

N.D. Peng et al., 2008 

Rat brain 

endothelial cell 

line 

Oxidative stress 

Induction of decreased levels of 

intracellular GSH (reduced 

glutathione), GPx (glutathione 

peroxidase), and GR (glutathione 

reductase) and increased levels of 

MDA (malondialdehyde) 

N.D. Price et al., 2005 

Rat lung 

metastasis of 

mammary 

adenocarcinoma 

cells. 

Tumor retention 

and enhancing of 

metastasis 

Infusion of Gp120 into the brain 

enhanced tumor metastasis. Blocked 

by antagonists of IL-1. 

N.D. 
Hodgson  

et al., 1998 

Prostate cancer 

tumor in SCID 

mice 

Apoptosis and 

inhibition of 

tumor growth 

Tumor regression associated with 

significant decreases in CD44, CD34, 

and LYVE-1 and increases in caspase 

3 and 9. 

CXCR4 
Singh et al., 

2009 

Rats pituitary 

cells 

Supression of 

growth hormone 

(GH) release 

Gp120 also supressed GHRH release 

by pituitary cells in vitro. 

Loss of body weight in chronically 

treated animals. 

GHRH 

receptor 

Mulroney  

et al., 1998 

Rat neuronal 

progenitor cells 

from 

HIV/gp120-

transgenic mice 

Inhibition of 

proliferation 

Arrests of cell cycle in G1 trough 

signaling by the p38 MAPK. 

CXCR4 

CCR5 

Okamoto  

et al., 2007 
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Cell Mayor finding Mechanism or concurrent events 
Receptor
involved

Reference 

Rat brain 

endothelial cells 
Cytotoxicity 

Reduction of the expression of 

ICAM-1- and laminin. 

Lipidperoxidation. 

N.D. 
Louboutin  

et al., 2010 

PBMCs in SCID 

mice 

Reprogramming 

of the CD4+ T-cell 

migratory 

behavior 

Enhancing of sensitivity to CCL20 

and CCL21 and inhibition of 

migration in response to 

sphingosine-1-phosphate. Increased 

accumulation of cells in lymph 

nodes with a reciprocal decrease in 

blood and spleen. 

CD4 
Green et al., 

2009 

* Not determined 

Table 1. In vitro and in vivo effects of soluble gp120 

In addition to activation for proliferation, Gp120 can exert a diversity of potent effects in 

immune system cells in vitro, being apoptosis the most frequently reported, although 

anergy, and induction of proinflammatory cytokine production are also well known effects. 

An early review of the influence of Gp120 on the immune system was carried out by 

Chirmule and Pahwa in 1996 (see reference). Table 1 shows recent studies about the effect of 

Gp120 on immune system cells, confirming early findings and adding new effects, 

particularly those related to the induction or inhibition of chemotaxis, and the role of 

Gp120/anti-Gp120 immune complexes on depletion of bystander lymphocytes. Table 1 also 

shows the receptor implicated in each case. 

Apoptosis is the event more frequently attributed to the interaction of Gp120 with CD4 and 

coreceptor molecules. The importance of Gp120-mediated apoptosis for AIDS pathogenesis 

was assessed in an early study performed on lymph-node cell suspensions prepared from 

three HIV-positive patients. Free Gp120 colabeled with both apoptotic and normal CD4+ T 

lymphocytes, although it was more often identified on apoptotic than on normal CD4+ T 

lymphocytes but not on CD8+ T lymphocytes or B cells. HIV particles were not found 

associated either with normal or apoptotic lymphocytes. This study pointed out that free 

Gp120 can bind to CD4+ T cells in lymph nodes of HIV-infected individuals and potentially 

mark them for premature death by apoptosis (Sunila et al., 1997). 

Holm and cols., demonstrated that the affinity of native, virion-associated Gp120, for the 

CD4 and CXCR4 or CCR5 receptors was important for induction of apoptosis on primary 

human CD4+ T cells with an activated phenotype. In this study, virions expressing a mutant 

Gp120 defective for CD4 binding induced apoptosis, whereas mutants defective for CXCR4 

binding did not. These observations indicated that the Gp120-CD4 interaction did not 

induce apoptosis, but seems to promote it by enhancing the exposure of the CXCR4 binding 

site on Gp120 (Holm et al., 2004). Gp120 expressed by env-transfected, non-infected cells, 

also induced CXCR4-dependent apoptosis in umbical cord CD4+ CXCR4+ cells; apoptosis 

was inhibited by SDF-1 (Roggero et al., 2001).  

As for virion-associated Gp120, studies performed with recombinant Gp120 showed that 

Gp120 induced apoptosis through Fas-dependent and Fas-independent mechanisms and 

that not all lymphocytes were equally sensitive (reviwed in Cicala et al., 2000). Induction of 

apoptosis by soluble Gp120 was characterized by Thrushin and cols., whose shown that 
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binding of soluble Gp120 to CD4 facilitate apoptosis of primary human CD4+ T cells, but 

that it was caused primordially by the Gp120-CXCR4 interaction, since apoptosis was 

prevented by the CXCR4 inhibitor AMD3100 and by the anti-CXCR4 antibody 12G5 

(Trushin et al., 2007). Similarly, soluble Gp120-induced apoptosis mediated by CXCR4 was 

demonstrated in adult human hepatocytes, which lack CD4 (Vlahakis et al., 2003). Binding 

of Gp120 to CXCR4 is also able to induce apoptosis of CD8+ T cells by upregulating the 

expression of TNF and TNF-receptor II on interacting CD8+ T cells and macrophages 

(Herbein, et al., 1998). Thus, the expression of CXCR4 or CCR5 may restrict the cell 

sensitivity to Gp120 and explain the differential response of T cells subsets. 

Recent studies have shown that the expression of CXCR4 on cancer cells makes them 

susceptible to apoptosis induced by the HIV-1 envelope. Endo et al. (2008) observed that 

apoptosis of breast cancer cell lines induced by HIV-1 particles was dependent on Gp120 

and CXCR4 but not CD4. In addition, a Gp120 mutant with low CD4 binding ability 

induced apoptosis in breast cancer cells but not in T-cells. Importantly, conformational 

heterogeneity of CXCR4 in breast cancer cells in comparison with CXCR4 in T cells was 

related to the ability of Gp120 to induce apoptosis mediated by CXCR4 (Endo et al., 2008, 

2010). Likewise, it has been shown that the Gp120-CXR4 interaction mediated apoptosis of 

prostate cancer cell lines but not of normal prostatic epithelial cells (Singh et al., 2009).  

Anergy is a state of inhibition of proliferation and/or effector functions normally induced in T 
cells after encounter with antigen; the cell stay alive and functional inactivation is reversible 
upon antigen removal. It is induced by incomplete stimulation though the TCR and co-
stimulatory molecules, and by the normal stimulation in the presence of IL-10 (Schwartz, 
2003). Studies addressing the anergic effect of Gp120 use activation with anti-CD3 or mitogen-
activation to simulate the effect of antigen stimulation. The contribution of anergy to the 
reduced immune function induced by X4 Gp120 in peripheral blood lymphocytes (PBMC) was 
early described by Schols and De Clercq (Schols & De Clercq, 1996). The addition of low 
concentrations of Gp120 was able to inhibit the proliferative response and the production of 
interleukin-2 (IL-2) and interleukin-4 (IL-4) in PBMC previously stimulated with an anti-CD3 
antibody and concanavalin-A. In contrast, Gp120 induced the production of high amounts of 
IL-10, gamma interferon (IFN-g), and tumor necrosis factor alpha (TNF-a) in unstimulated 
PBMC. The induction of IL-10 by Gp120 was found to be important for the inhibitory effect of 
Gp120 on PBMC proliferation. Thus, X4 Gp120 can reduce the function of T lymphocytes by 
directly inducing anergy or by stimulation of the production of anergy-inducer 
immunosupressive cytokines. Importantly, the activation status played an important role in 
the cytokine pattern induced by Gp120 in PBMC (Schols & De Clercq, 1996).  
Evidence of the participation of chemokine receptors in the induction of anergy by Gp120 

has been obtained in studies of the long-lasting hypo-responsiveness to antigen stimulation 

caused by Gp120 in naive T lymphocytes. Gp120 was found to induce anergy by stimulating 

the activity of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A 

(PKA), which causes the progressive accumulation of the phosphorylated form of the 

cAMP-responsive element binding, a pathway which is also activated by the ligation of 

CXCR4 by SDF-1 (Masci et al., 2003).  

It should be noted that although there is an association between circulating Gp120 and the 

induction of proinflammatory and immunoregulatory cytokines like IL-6, IL-10, and TNF-

alpha in some HIV infected individuals (Rychert et al., 2010), this effect can not be 

necessarily induced by direct cell interaction with Gp120, since cytokines could be induced 
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also by deposition of Gp120-anti-Gp120 immune complexes, which has been associated with 

disease progression (Daniel et al., 2001; Gerencer et al., 1998).  

Evidences indicate that Gp120, Tat and Nef may be largely involved in the events allowing 

the initial entry of HIV into the brain and in the injury and apoptosis of neurons. HIV gains 

entry into the brain at the asymptomatic stage of the infection trough infected circulating 

monocytes or as free virus. It is thought that entry is favored by a subclinical, early loss of 

the functional integrity of tight junctions of the brain endothelium, the brain blood barrier 

(BBB) (Strazza et al., 2011; Annunziata, 2003). Once in the brain, monocytes can repopulate 

the resident macrophage population and become a productive source of virus, extending the 

infection to microglia, astrocytes and endothelial cells, where it can establish a protected 

reservoir and give rise to the production of cytokines and chemokines (An et al., 1999). 

Inflammatory soluble factors like IL-1 and TNF-alpha, along with high amounts of viral 

proteins like Gp120, Tat and Nef, likely released by a particular kind of monocytes 

(CD14lowCD16+) (Thieblemont et al., 1995), may cause a continuous activation of the brain 

endothelium, leading to the attraction and diapedesis of more virus and activated cells. 

Increased numbers of CD14lowCD16+ monocytes in the circulation associates with HIV-

associated neurocognitive disorders (HAND) (Thieblemont et al., 1995; reviewed in Gras & 

Kaul, 2010) and are abundant in brain autopsies from patients with HIV encephalitis 

(Fisher-Smith et al, 2001). 

Perturbation of the brain blood barrier (BBB) may be induced by the HIV non-productive 

infection of brain endothelial cells by micropinocytosis or adsorptive endocytosis of the 

virus mediated by Gp120 (Banks et al., 2001). The transit of free virions by a paracellular 

route favored by TNF-alpha has been also observed (Fiala et al., 1997). Another explanation 

is the increase of BBB permeability by the activity of viral proteins. It has been found that 

soluble forms of Tat, Nef and Gp120 proteins, which circulate in the blood of HIV infected 

patients, alter the expression of cell junction proteins and thus disrupt the integrity of the 

BBB (reviewed in Toborek et al., 2005; Kanmogne et al., 2005). Gp120 is also able to increase 

monocyte migration through a brain microendothelial cells monolayer and to reduce the 

transendothelial electric resistance (Kanmogne et al., 2007). The presence of functional CD4 

and chemokine receptors on discrete regions of brain microvessels derived from children 

has been demonstrated (Stins et al., 2004). In the presence of interferon (IFN)-gamma, 

children brain microvessels, but not adult brain microvessels, suffer cytotoxicity induced by 

Gp120. The effect associated with an increase of the expression levels of CCR3 and CCR5 

induced by IFN-gamma. Several Gp120 peptides and RANTES, but not SDF-1, inhibited the 

Gp120 cytotoxic effect. Authors also showed that Gp120-mediated endothelial cell 

cytotoxicity involved the p38 MAPK pathway. Thus, a blood-brain barrier dysfunction 

induced by Gp120 in the brain of HIV-1-infected children may explain the higher incidence 

of HAND in this population (Khan et al., 2007). 

Besides its potential role in BBB damage, chemokine receptors have been involved in direct 
and indirect Gp120-induced neuronal damage. Macrophages and microglia, the resident 
immunocompetent phagocytic cells in the brain, are the main cellular reservoirs of HIV in 
the central nervous system. Activated microglia produces free radicals and proinflammatory 
cytokines and chemokines which can damage neurons. Gp120 and Tat activates human fetal 
microglia in vitro, the resident phagocytes of the brain, to induce the expression of CD40 
and MHC class II, and the secretion of inflammatory mediators, like cytokines, chemokines, 
and neurotoxins favoring the recruitment of cell from the circulation (reviwed in D’Aversa 
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et al., 2005). The progressive increase in the immune activation with increased expression of 
cytokines is suggested to cause neuropathological changes and neuronal and axonal 
damage. A recent report shows that Gp120 is able to activate rat microglia and cause 
neurotoxicity by inducing an increase in the expression of the voltage-gated K+ channels 
(KV), enhancing the cell outward K+ currents. The Gp120-associated enhancement of K+ 
current was blocked by a CXCR4 receptor antagonist or a specific protein kinase A (PKA) 
inhibitor. This data suggest that interaction of Gp120 with CXCR4 may underlay the 
microglia activation leading to neurotoxin production and neuronal apoptosis (Xu et al., 
2011). In other study, Gp120-mediated neurotoxicity was found to involve signaling trough 
the p38 MAPK in macrophages, microglia and neuronal cells. Gp120-mediated p38 MAPK 
activation and neuronal death was prevented by CCL4 (MIP-1beta), one of the CCR5 ligands 
(Medders et al., 2010). On the other hand, soluble Tat is able to cross the BBB and to induce 
the production of chemoattractive factors by astrocytes and monocytes (mainly MCP-1, 
which is considered one of the most important chemokines in HIV infection and HAND), 
and the expression of CCR5 on monocytes (Weiss et al., 1999).  

5. Relevance of extracellular Gp120 to HIV pathogenesis 

It is known that molecular diversity produce a variety of ligand-receptor interactions, which 
in turn, induce signaling events that diverge from the optimal agonist effect (Edwards & 
Evavold, 2011). Thus, an important issue to be considered in the studies of the biological 
activity of Gp120 is its extreme heterogeneity at the amino acid sequence and glycosylation 
levels. A survey of the HIV sequences contained in Los Alamos database in the year 2000 
showed that, of 566 full-length Gp120 protein sequences, protein lengths varied from 484 to 
543 amino acids because of the insertions and deletions found in hypervariable regions. 
Main factors contributing to Env variation are: base-substitution due a lack of proofreading 
during the reverse transcription of the HIV genome, large insertions and deletions, and 
recombination. These processes are accelerated by the viral high replication rate, the rapid 
viral turnover and the pressure to change imposed for the immune response of the HIV 
infected individuals (Korber et al., 2001). Many of substitutions at the hypervariable regions 
of Gp120, as well as insertions and deletions involve glycosylation sites, so that the number 
of N-linked glycosylation sites ranges from 18 to 33 (Korber et al., 2001). 
Another source of Gp120 molecular variation is the non-uniform content of carbohydrate 
units. The addition of oligosaccharides and oligomerization of the Gp160 precursor are both 
co-translational events that take place in the ER (reviewed by Land & Braakman 2001). It is 
known that incomplete or “immature” glycosylation is present in trimeric Gp120, due to 
steric limitations imposed to the glycan-modifying enzymes in the Golgi apparatus. 
Numerous Gp120 glycosylation variants can be produced even within a single cell 
population, as has been shown in the H9 lymphoblastoid cell line (Pal et al., 1993; Mizuochi 
et al., 1990). Instead, recombinant monomeric Gp120 is believed to contain fully mature 
glycans (Eggink et al., 2010; Binley et al., 2010). Thus, monomeric and native, trimeric Gp120 
derived from virus and infected cells, may differ in their pattern of glycosylation (Means & 
Desrosiers, 2000; Mizuochi 1990). A recent study of the expression of a model oligomeric 
Gp120 showed that N-glycosylation of varied depending on the cell type used for 
expression (Raska et al., 2010). Cell-dependent addition of oligosaccharides may explain the 
observation that HIV laboratory strains exposed a higher proportion of high-mannose 
glycans that HIV primary isolates (Astoul et al., 2000).  
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The actual amount of Gp120 in tissues and fluids of the HIV infected individual is another 

important consideration regarding the role of free Gp120 in AIDS pathogenesis. The Gp120 

Env subunit can shed from viral particles and infected cells in vitro to adopt a water-soluble 

form (McKeating et al., 1991; Smith-Franklin et al., 2002; Layne et al., 1992; Schneider et al., 

1986). As described in the previous section of this review, a myriad of biological activities 

has been described for soluble Gp120, and thus the potential of this molecule to account for 

a significant portion of the physiological dysfunction observed during the HIV-1 infection is 

considerable. However, few studies have estimated the extension of the presence of Gp120 

in the organism of HIV-infected subjects. Gp120 has been detected in the circulation of about 

on third of HIV-infected subjects at concentrations of 4-130 pM (Rychert et al., 2010) and 2-

20 pM (Gilbert et al., 1991) in early and chronic HIV-infected subjects, respectively. A 

different study by Oh and cols. (1992) reported a higher concentration in plasma, although 

the methodology used has been questioned (Klasse & Moore, 2004). The amount of Gp120 

bound to tissues can be relevant to the understanding of the dynamics of this molecule in 

the body. A recent study by Santosuosso and cols. (2009) showed that concentration of 

Gp120 in secondary lymphoid tissues obtained from autopsies of HIV-infected subjects can 

be high (up to 9007 pg/ml, or 75 pM), even when Gp120 is not detected in plasma. Although 

a distinction among the amount of soluble Gp120 and virus or cell-associated Gp120 was not 

clear in this study, it was shown that Gp120 can accumulate in lymphoid tissues early in the 

HIV infection, and that levels of viral protein in these tissues can exceed significantly those 

found in plasma.  

The presence of physiologically significant amounts of soluble Gp120 in vivo is still a matter 

of debate. Klasse and More (2004) have discussed several factors that may limit the effective 

concentration of Gp120 in fluids and tissues, like the capture of Gp120 by antibodies and 

serum lectins (Daniel et al., 1998), and the absorption of Gp120 by proteoglycans on cell 

surfaces (Mbemba et al., 1999;). The soluble mannose binding lectin (MBL), a innate 

immunity molecule present in the human serum, is able to capture HIV particles probably 

through the high-mannose glycosylation sites of the Gp120/Gp41 complex (Saifuddin et al., 

2000). It has been proposed that MBL can participate in the clearance of HIV, since it 

activates complement and opzonise particles for binding to phagocytic cells (Mass et al., 

1998; Pastinen et al., 1998). Soluble Gp120 could be also cleared or inactivated by MBL.  

6. Conclusion 

Gp120 is a molecule with remarkable properties, some of which are related to a probable 
evolutionary relationship with animal toxins, and others to its interaction and adaptation to 
the human immunological and physiological environment. The Gp120 primary role in viral 
entry using CD4 and chemokine receptors, allow it to induce signaling events which final 
outcome depends on the particular cell physiological status, thus leading to activation, 
altered function or death. The high mutation rate of the env gene, combined with a rapid 
replication and viral turnover rates and the pressure to change imposed for the immune 
response, allow HIV (and the secreted Gp120 molecule) to extent its range of functional 
capabilities and cellular tropism. Along with other viral proteins such as Nef and Tat, which 
also have a spectrum of biological effects as soluble proteins, Gp120 may be an important 
mediators of the bystander CD4+-T-cell death and chronic inflammation that are hallmark of 
the disease leading to AIDS.  
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In the recent years, the interaction of Gp120 with chemokine receptors, enabled by the initial 
interaction with CD4, as been identified as the origin of many of the effects of Gp120 on the 
function of immune system cells and other tissues. By reviewing the recent literature, a 
general picture emerges that indicate that properties of Gp120 strongly associate with its 
chemokine receptor specificity and the activation status of the target cells. R5 Gp120 is able 
to activate resting cells, where X4 Gp120 seems to induce mainly anergy and apoptosis. On 
the other hand, X4 Gp120 is able to enhance the activation phenotype in cells that have been 
previously stimulated. A proper understanding of the influence of cell status on the effect of 
particular forms of Gp120 on cell viability and function is necessary to get an integrated 
view of the significance of free Gp120 for the HIV disease.  
Several studies indicate that CD4 is not required for apoptosis of tumor cells induced by 
Gp120, since it can be mediated by CXCR4. In particular, the importance of CXCR4 
expression for development and metastasis of breast cancer cells has been demonstrated, as 
well as for the Gp120-mediated apoptosis of these cells. Interestingly, HIV infected 
individuals do not present an increased incidence of this type of tumor, whereas they 
develop others (Amir et al., 2000; Herida et al., 2003; Pantanowitz & Dezube, 2001). 
Although other factors may determine this effect, participation of Gp120 can not be 
discarded. The complex structure and variability of Gp120 provides a substrate for the 
search of active molecules targeting chemokine receptor-expressing tumor cells. 
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