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1. Introduction

Autonomous exploration is one of the main challenges of robotic researchers. Exploration
requires navigation capabilities in unknown environments and hence, the robots should
be endowed not only with safe moving algorithms but also with the ability to recognise
visited places. Frequently, the aim of indoor exploration is to obtain the map of the robot’s
environment, i.e. the mapping process. Not having an automatic mapping mechanism
represents a big burden for the designer of the map because the perception of robots and
humans differs significantly from each other. In addition, the loop-closing problem must be
addressed, i.e. correspondences among already visited places must be identified during the
mapping process.
In this chapter, a recent method for topological map acquisition is presented. The nodes
within the obtained topological map do not represent single locations but contain information
about areas of the environment. Each time sensor measurements identify a set of landmarks
that characterise a location, the method must decide whether or not it is the first time the
robot visits that location. From a statistical point of view, the problem we are concerned
with is the typicality problem, i.e. the identification of new classes in a general classification
context. We addressed the problem using the so-called INCA statistic which allows one to
perform a typicality test (Irigoien & Arenas, 2008). In this approach, the analysis is based on
the distances between each pair of units. This approach can be complementary to the more
traditional approach units × measurements – or features – and offers some advantages over
it. For instance, an important advantage is that once an appropriate distance metric between
units is defined, the distance- based method can be applied regardless of the type of data or
the underlying probability distribution.
We describe the theoretical basis of the proposed approach and present extensive experimental
results performed in both a simulated and a real robot-environment system. Behaviour Based
philosophy is used to construct the whole control architecture. The developed system allows
the robot not only to construct the map but also comes in useful for localisation purposes.
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2. Literature review

Loop-closing has long been identified as a critical issue when building maps from local
observations. Topological mapping methods isolate the problem of how loops are closed from
the problem of how to determine the metrical layout of places in the map and how to deal with
noisy sensors.
The loop-closing problem cannot be solved neither relying only on extereoceptive information
(due to sensor aliasing) nor on propioceptive information (cumulative error). Both
environmental properties and odometric information must be used to disambiguate locations
and to correct robot position. Fraundorfer et al. (2007) present a highly scalable vision based
localisation and mapping method that uses image collections, whereas Se et al. (2005) use
vision mainly to detect the so called loop-closing –the place has already been visited by the
robot– in robot localisation; Tardós et al. (2002) introduce a perceptual grouping process
that permits the robust identification and localisation of environmental features from the
sparse and noisy sonar data. On the other hand, the probabilistic Bayesian inference, along
with a symbolic topological map is used by Chen & Wang (2006) to relocalise a mobile
robot. More recently, Olson (2009) presents a new loop-closing approach based on data
association, where places are recognised by performing a number of pose-to-pose matchings;
a review of loop-closing approaches related to MONOSLAM can be found in (Williams et al.,
2009). Within the field of probabilistic robotics (Thrun et al., 2005), Kalman filters, Bayesian
Networks and particle filters are used to maintain probability distributions over the state
space while solving mapping, localisation and planning.
But the mapping problem can also be stated from a classification perspective. In most
classification problems, there is a training data available for all classes of instances that can
occur at prediction time. In this case, the learning algorithm can use the training data to
determine decision boundaries that discriminate among the classes. However, there are some
problems that exhibit only a single class of instances at training time but are amenable to
machine learning. At prediction time, new instances with unknown class labels can either
belong to the target class or to a new class that was not available during training. In this
scenario, two different predictions are possible: target, an instance that belongs to the class
learnt during training, and unknown, where the instance does not seem to belong to the
previously learnt class. Within the machine learning community, this kind of problems are
known as one-class problems and as typicality problems within the statistics research.
To give some examples, in (Hempstalk et al., 2008) the probability distributions of the class
variable known values are used to determine if a new case belongs to the known class values
or if it should be considered as a different class member. One-class classification categorizers
have a wide range of applications; in (Manevitz & Yousef, 2007) one-class classification is
used to document categorisation in order to decide whether a reference is relevant in a
database searching query. The same authors combine this approach with the Support Vector
Machine (SVM) paradigm for document classification purposes (Manevitz & Yousef, 2002);
and in (Sánchez-Yáñez et al., 2003) the same idea is applied to texture recognition in images.
A thorough review of one-class classification can be found in (Tax, 2001).
Regarding the mobile robotics area, one-class classification approaches can be applied to robot
mapping, i.e. to learn the structure of its environment in an automatic manner. In this way,
Brooks & K. Iagnemma (2009) present a use of this approach to deal with terrain recognition,
and Wang & Lopes (2005) use it to identify user actions in human-robot-interaction. However,
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direct uses of this approach, with this particular name, have not been found in the robotics
literature.
There are different approaches found in the literature to deal with the typicality problem
(Bar-Hen, 2001; Cuadras & Fortiana, 2000; Irigoien & Arenas, 2008; McDonald et al., 1976;
Rao, 1962). Some of them are only suitable for normal multivariate data, others are
appropriate for any kind of data but are limited to k = 2, being k the number of classes.
The latter case offers the most general framework to be applied. However, and in spite of the
high diversity of the used methods, to the best of the author’s knowledge, neither typicality
nor one-class approaches appear in the mapping literature.
The approach proposed in this chapter combines the INCA statistic (Irigoien & Arenas, 2008)
with the topological properties of the environmental locations considered and thus represents
a new approach to tackling the robot mapping problem as a typicality case.

3. Typicality test by means of the INCA statistic

In this section the INCA statistic is introduced and the INCA test is proposed as a solution to
the typicality problem.

3.1 Preliminaries

The data we consider are random vectors and we assume that distinct classes exist. Let C1,
C2, ..., Ck be k classes represented as k independent S-valued random vectors Y1, Y2, ..., Yk,
with probability density functions f1, f2, ..., fk with respect to a suitable common measure λ.
Let δ(y, y′) be a distance (Gower, 1985) function on S. We say that δ is a Euclidean distance
function if the metric space (S, δ) can be embedded in a Euclidean space, Ψ : S −→ R

p, such
that:

δ2(y, y′) = ‖Ψ(y)− Ψ(y′)‖2, (1)

and we may understand E(Ψ(Yi)) as the δ-mean of Yi, i = 1, ..., k.
In this general framework the following concepts are considered. The geometric variability of
Ci, i = 1, ..., k with respect to δ is defined (Cuadras & Fortiana, 1995) as

Vδ(Ci) =
1

2

∫

S×S
δ2(yi1, yi2) f (yi1) f (yi2)λ(dyi1)λ(dyi2).

This quantity is a variant of Rao’s diversity coefficient (Rao, 1982). When δ is the Euclidean
distance and Σi = COV(Yi), then Vδ(Ci) = tr(Σi). For other dissimilarities Vδ(Ci) is a general
measure of dispersion of Yi. In the context of discriminant analysis (Cuadras et al., 1997) the
squared distance between Ci and Cj is defined by

∆2(Ci, Cj) =
∫

S×S
δ2(yi, yj) f (yi)g(yj)λ(dyi)λ(dyj)− Vδ(Ci)− Vδ(Cj) (2)

This quantity is the Jensen difference (Rao, 1982) between the distributions of Ci and Cj. If the
metric space (S, δ) can be embedded (see (1)) in a Euclidean space R

p and if E(‖Ψ(Yi)‖)
and E(‖Ψ(Yi)‖

2) are finite, then Vδ(Ci) = E(‖Ψ(Yi)‖
2) − ‖E(Ψ(Yi))‖

2, i = 1, ..., k, and
∆2(Ci, Cj) = ‖E(Ψ(Yi)) − E(Ψ(Yj)‖

2. If there is only one element Ci = {y0}, (3) gives the
proximity function of y0 to Cj,

φ2(y0, Yj) =
∫

S
δ2(y0, yj) f (yj)λ(dyj)− Vδ(Cj). (3)
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In applied problems the distance function is typically a datum, but the probability distribution
for each population is unknown. Natural estimators given samples y1

1, ..., y1
n1, ..., yk

1, ..., yk
nk, of

sizes n1, ..., nk coming from C1, ..., Ck are the following:

• The geometric variability of Cj,

V̂δ(Cqj) =
1

2n2
j

∑
l,m

δ2(y
j
l , y

j
m).

• The proximity function of a new object y0 to Cj,

φ̂2(y0, Cj) = φ̂2
j (y0) =

1

nj
∑

l

δ2(y0, y
j
l)− V̂δ(Cj).

• The squared distance between Ci and Cj,

∆̂2(Ci, Cj) = ∆̂2
ij =

1

ninj
∑
l,m

δ2(yi
l , y

j
m)− V̂δ(Ci)− V̂δ(Cj). (4)

See (Arenas & Cuadras, 2002) and references therein for a review of these concepts, their
application, different properties and proofs.

3.2 INCA statistic

Consider that n units are simply divided into k classes C1, ..., Ck, of sizes n1, ..., nk. Consider
a fixed unit y0, which may be an element of a Cj, j = 1, ..., k or may belong to an unknown
class, i.e. it may be an atypical unit. Consider a new class with δ-mean the linear combination

∑
k
i=1 αiE(Ψ(Yi)), where Yi is the random vector representing the class Ci, i = 1, ..., k. The

INCA statistic is defined as follows:

W(y0) = min
αi

{L(y0)} ,
k

∑
i=1

αi = 1, (5)

L(y0) =
k

∑
i=1

αiφ
2
i (y0)− ∑

1≤i<j≤k

αiαj∆
2
ij.

φ2
i (y0) is the proximity function of y0 to Ci and ∆2

ij is the squared distance between Ci and

Cj. The INCA statistic W(y0) = minαi
L(y0) trades off between minimising the weighted sum

of proximities of y0 to classes (which takes into consideration the within-group variability)
and maximising the weighted sum of the squared distances between classes (between-groups
variability) - a common behaviour of a classing criterion. The values of α′ = (α1, . . . , αk−1)

together with αk = 1 − ∑
k−1
i=1 αi, verifying (5) are ff′ = M−1N, where M is the (k − 1)× (k − 1)

matrix
M =

(

∆2
ik + ∆2

jk − ∆2
ij

)

i,j=1,...,k−1

and N is the (k − 1)× 1 vector

N =
(

∆2
ik + φ2

k (y0)− φ2
i (y0)

)

i=1,...,k−1
.
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The statistic W(y0) has a very nice geometric interpretation. It can be interpreted (see Figure
1) as the (squared) orthogonal distance or height h of y0 on the hyperplane generated by
the δ-mean of Ci (i = 1, ..., k), denoted in Figure 1 by ai, i = 1, ..., k. Then, points which lie
significantly far from this hyperplane are held to be outliers. This intuitive idea is used to
detect outliers among existing classes.

( C
1
)

 a
1

( C
2
)  a

2

( C
3
)

 a
3

 y
0

 h

 r
1

 r
2

 r
3

Fig. 1. For k = 3, new observation {y0}, centres of classes {a1, a2, a3} and (squared)
projection ri of the edges {y0, ai} on the plane {a1, a2, a3}. The (squared) height h is W(y0)

Suppose now that the data are classified in k classes. Let y0 be a new observation and consider
the test to decide whether y0 belongs to one of the fixed classes Cj, j = 1, ..., k or, on the
contrary, it is an outlier or an atypical observation which belongs to a different and unknown
class. Consider the INCA test,

H0 : y0 comes from the class with

δ-mean ∑
i

αiE(Ψ(Yi)),
k

∑
i=1

αi = 1, i = 1, ..., k,

H1 : y0 comes from another unknown class,

and compute statistic (5). If W(y0) is significant it means that y0 comes from a different and
unknown class. Otherwise we allocate y0 to Ci using the rule:

Allocate y0 to Ci if Ui(y0) = min
j=1,...,k

{Uj(y0)}, (6)

where Uj(y0) = φ2
j (y0)− W(y0), j = 1, ..., k.

It can be observed (Irigoien & Arenas, 2008) that Uj(y0) represents the (squared) projection
of {y0, E(Ψ(Yi))} on the hyper plane {E(Ψ(Y1)), . . . , E(Ψ(Yk))}. See Figure 1, where for
simplicity the (squared) projection Uj(y0) is denoted by rj, j = 1, ..., k. Hence, criterion 6
follows the next geometric and intuitive allocation rule: Allocate y0 to Ci if the projection
Ui(y0) is the smallest.
We obtained sampling distributions of W(y0) and Uj(y0) (j = 1, ..., k) by re-sampling
methods, in particular drawing bootstrap samples as follows. Draw N units y with
replacement from the union of C1, . . . , Ck and calculate the corresponding W(y) and
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Uj(y) (j = 1, ..., k) values. As usual, this process is repeated 10P times with P ≥ 1 selected by
the user. In this way, the bootstrap distributions under H0 are obtained.

4. Behavior-Based navigation

Behavior-Based (BB) systems appeared in 1986, when R.A. Brooks proposed a bottom-up
approach for robot control that imposed a new outlook for developing intelligent embodied
agents capable of navigating in real environments performing complex tasks. He introduced
the Subsumption Architecture (Brooks, 1986; Brooks & Connell, 1986) and developed multiple
robotic creatures capable of showing different behaviours not seen before in real robots
(Brooks, 1989; Connell, 1990; Matarić, 1990). Behavior-based systems are originally inspired
on biological systems. Even the most simple animals show navigation capabilities with
high degree of performance. For those systems, navigation consist of determining and
maintaining a trajectory to the goal (Mallot & Franz, 2000). The main question to be answered
for navigation is not Where am I? but How do I reach the goal? and the answer does not always
require knowing the initial position. Therefore, the main abilities the agent needs in order to
navigate are to move around and to identify goals.
The behavior-based approach to robot navigation relies on the idea that the control problem
is better assessed by bottom-up design and incremental addition of light-weight processes,
called behaviors, where each one is responsible for reading its own inputs and sensors,
and deciding the adequate motor actions. There is no centralized world model and data
from multiple sensors do not need to be merged to match the current system state in the
stored model. The motor responses of the several behavioural modules must be somehow
coordinated in order to obtain valid intelligent behavior. Way-finding methods rely on local
navigation strategies. How these local strategies are coordinated is a matter of study known as
motor fusion in BB robotics, opposed to the well known data fusion process needed to model
data information. The aim is to match subsets of available data with motor decisions; outputs
of all the active decisions somehow merge to obtain the final actions. In this case there is no
semantic interpretation of the data but behavior emergence.

5. Topological places

Generally speaking, there are two typical strategies for deriving topological maps: one is to
learn the topological map directly; the other is to first learn a geometric map, then to derive
a topological model from it through some process of analysis (Thrun, 1999; Thrun & Bücken,
1996a;b).
As mentioned before, BB systems advocates for a functional bottom-up decomposition of
the control problem in independent processes called behaviours. From this point of view,
the topological “map” should be composed of tightly coupled behaviours, specific to the
meaningful locations.
A topological map is formally defined as a set of nodes where each node consists of:

1. A set of inputs (from landmark identification subsystems) and outputs. These outputs
should serve to reduce the distance between the current state and the goal.

2. A signature that identifies the node: signaturei. Each location has a signature that reflects
the state of a set of specific landmarks and that is used by the robot for localisation
purposes.
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3. A function αi to be executed when the node i is active and that will output the action to
be performed at the node specific current state. The behaviour of the robot as well as the
associated function of the nodes can be different depending on the location.

4. The location identifier that contains initial and final position of the node:

(xi0, yi0), (xi f , yi f )

The overall “map” is then composed of sets of behaviours, each launched on a different thread.
The environment is only partially unknown to the robot since it is provided with behaviour
modules to properly identify certain features such as corridors, crossings or junctions and
halls, each of them identifiable using distance sensors like a laser scanner. Each landmark
identifier outputs a confidence level (cl) as a measure of the confidence of the identification
process. These values are filtered through node signatures, giving at each time step the node
activation level according to the sensor readings.

• Corridors: the robot is considered to be in a corridor if the place is between 1.6 and 2.4 m
wide. To that aim, left and right side shortest readings are summed and stored in a FIFO
buffer. The mean of the buffer is used in a Gaussian function that gives the confidence
level of being in a corridor.

• Halls: as opposed to corridors, halls are wide areas. Therefore, the confidence level of
being in a hall is defined as 1 minus the probability of being in a corridor.

• Crossings or junctions: these locations are areas where two or more alternative ways are
possible. It is mandatory for the robot to identify junctions in order to choose the right
way when looking for goals. Depending on the destination, the robot must select one
way or another. Crossing areas usually come at the end of a corridor or hall and lead to
a new area. Hence, left and right minimum distances are looked for and these minimum
values are used as reference for searching continuous interval of readings that exceed the
minimum values. The orientations of the possible alternative ways at the junctions are
registered according to the robot heading provided by the compass sensor and the indexes
of the laser scan that define the different intervals, the orientation of the possible alternative
ways at the junctions are registered.

The goal of the mapping process is to fill in the nodes with the information that they must
contain. More precisely, the contents of the signature and the location identifier. For this
aim, during the learning process and depending on the state of the landmark identification
subsystems, i.e. the confidence level of the corridor/hall/junction (clcorr, clhall and clcross), the
following information is given to the INCA test:

• Initial and mean heading values: θ0, θmean.

• Initial and final pose obtained by the odometric subsystem. These poses correspond
to the position values of the robot when the node signature activates/deactivates:
(x0, y0), (x f , y f ).

• Length (previously named as duration) of the area calculated using the initial and final pose
information: d.

• Number of alternative ways and their associated orientation: num_ways and
θw1 , · · · , θwnum_ways.

325Robotic Exploration: Place Recognition as a Tipicality Problem
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These measurements will constitute the observations of the random vectors Y considered in
the INCA statistic, as represented in Equation 7.

Corridors, Halls:
Y = (sin(θ0), cos(θ0), sin(θmean), cos(θmean), (x0, y0), (x f , y f ), d)

Junctions:
Y = (sin(θ0), cos(θ0), sin(θmean), cos(θmean), θw1 , · · · , θwnum_ways, (x0, y0))

(7)

Note that there are two types of measurements: variables type coordinates in meters and
variables type orientation in degrees.
The corridors/halls/crosses can differ in their orientation (mean compass value that the robot
maintains when going through them in its canonical path). This is why each physical place
will correspond to two or more different nodes in the topological map.

6. Proposed approach

The locations the robot must identify are not only single points but areas surrounding these
points. Therefore, we propose firstly, a data generation approach to characterise the areas; and
secondly, the application of the INCA test.
Let us assume that the robot has recorded the geometric information (see section 5) of k
different places C1, . . . , Ck, all of them of the same type. There is only one yi measurement
for each place Ci (i = 1, . . . , k). However, the place we want to identify topologically is not
just a spot but an area or neighbourhood of the recorded measurement yi. In order to do so
we generate ni − 1 new observations for each place i which will make up the observations
corresponding to the place Ci. These new observations are generated as yl

i = yi + U(−u, u),
l = 2, . . . , n1, where U(−u, u) stands for the uniform distribution with parameters −u and u
(u > 0). Taking into account that the robot records two kinds of variables, metres and degrees,
we consider two kinds of values for the parameter of the uniform distribution, let us call them,
uM and uDEG, respectively.
Once the data corresponding to the k classes –places– are generated, and given y0, the
information the robot has recorded when he arrives at a new place, the INCA test can be
applied and consequently it is possible to decide whether or not y0 corresponds to a new
place. In case it is decided y0 is not a new place, the conclusion is that y0 is one of the places
C1, . . . , Ck according to rule (6).
Pearson distance has been used for the calculus of the interdistances δ(y, y′) between y and
y′. The parameter values used during the experimental phase were ni = 10, uM = 2 and
uDEG = 30. These values were chosen experimentaly as explained in (Jauregi et al., 2011).

7. Exploration behaviour

As stated earlier, the mapping process requires an exploration strategy to guide the robot
for the terrain inspection. The strategy used in this proposal, the exploration behaviour
is a coordination of the local navigation strategies and landmark identification subsystems
the robot is endowed with. The proper combination of these behaviours, allow the safe
exploration of the environment.
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• Two local navigation strategies that are combined in a cooperative manner (weighted sum):
balance the free space at both sides of the robot and follow a desired compass orientation
(θd).

• Landmark identification subsystems that allow the robot to recognise corridors, left/right
walls, halls, junctions and dead-ends. These landmarks are used to change robot’s desired
orientation. To show an example, Figure 2 shows the coordination of the modules for the
case where a dead-end is recognised.

θd

θd

OBSTACLE_AVOID

COMPASS_FOLLOW

DEAD_END
Laser

Compass_orientation

Laser

Σ ν,ω

Fig. 2. Diagram of behaviours modules (v: translational velocity, w: angular velocity)

Although the robot can be positioned at any starting location, initially and until the robot
reaches a dead-end the map remains empty. Hence, the map construction starts after a
dead-end has been identified. This gives the correct measurement of the length of the locations
(nodes). Afterwards, the first corridor, the first crossing and the first hall are always identified
as new nodes since there is not any instance of the same type already stored in the map.
Once the map building process starts, each time the robot identifies a location – a corridor,
a hall or a crossing – the geometric information of the identified location is recorded (the
Y vector, Equation 7), and then the INCA test is applied to evaluate if they are locations
already visited or new ones. When the location corresponds to a crossing, i.e. a junction,
the orientations of the alternative ways the robot can choose are recorded. If the location has
been visited before, one of the non-explored paths is randomly selected. In this way, the robot
has the chance to cover all the environment. The robot finishes the exploration process when
all the alternatives of the crossing nodes have been tried.

8. Simulated experiments

Experiments were carried out in the third floor of the Faculty of Computer Science. This
environment is a semi-structured office-like common environment, with regular geometry as
can be seen in Figure 3.
The parameter selection obtained in the previous experimental phase was applied to the more
general problem of identifying the whole set of environmental locations during an exploration
phase performed in simulation. To this purpose the Stage simulation tool was used together
with the Player robot server.
In order to have a wider view of the mapping process, we let the robot move in the
environment for a long time (more than 6500 seconds). On the left of the Figure 4 shows the
robot’s path starting from the dead-end at the bottom left corner and on the right the complete
path followed during the exploration of the environment.

327Robotic Exploration: Place Recognition as a Tipicality Problem
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Corridor

Hall

Crossing

Fig. 3. Third floor of the Faculty of Computer Science. Approx. 60 × 22 meters

Fig. 4. The simulation path resulting from the exploration process

Related to the number of nodes, the map converged to 38 nodes: 17 corridors, 8 halls and 13
crosses (Figure 5). Table 1 shows the number of nodes that have been traversed in the path
followed by the robot.
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Fig. 5. Evolving number of nodes

As it can be seen, all the nodes are correctly classified:
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Corr Hall Cross

New
Expected 17 8 13

Found 100% 100% 100%

Known
Traversed 47 23 38

Classified 100% 100% 100%

Table 1. Experimental results

• Each of the 17 existing corridors were properly labelled as new places the first time the
robot went along them; the same happened with the new traversed halls and crossing
nodes.

• The nodes visited more than once by the robot in this long journey were also properly
classified with their corresponding label; a total number of 47 corridors, 23 halls and 38
crossing nodes were visited in the robot path.

Figure 6 shows the distribution of the locations (plotted according to their central poses) and
the evolution of the number of nodes over time.

−10

−5

 0

 5

 10

 15

−20 −15 −10 −5  0  5  10  15  20

Fig. 6. Location distribution over the map. Corridors: +; Halls: x; Crossings: *

In spite of the degree of symmetry of the environment, the spatial configuration of the
obtained locations does not show the same degree of symmetry. This is due to the fact that
robot’s and humans’ perception differ from each other, and since the robot navigates according
to a desired compass heading, depending on its orientation it makes the same physical place
correspond to several nodes in the topological representation.

9. Experiments in the real robot/environment system

The simulation experiments showed that the proposed approach can solve the stated
problem. To test the robustness of the approach experiments were extended to the real
robot-environment system. The robot Tartalo–a PeopleBot robot form MobileRobots equipped
with a Canon VCC5 monocular PTZ vision system, a Sicl LMS laser, a TCM2 compass and
several sonars and bumpers– has been used for the empirical evaluation of the mapping
system developed. But instead of relying on raw odometry information, two odometry
correction methods were tested to smooth the positioning error:
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• Laser stabilised odometry (by means of the LODO driver provided by Player). Laser data is
used to correct the raw odometry estimate that once corrected exhibits a drift rate that is
an order of magnitude less than the rate observed using pure odometry (Howard, 2005).

• Compass based odometry (CODO), where compass heading is used to correct raw
odometric poses.

Experiments were performed in the third floor of the Faculty of Computer Sciences. On the
left of Figure 7 shows the path completed by the robot (according to compass based odometry)
and on the right shows the evolution of the number of nodes over time (s) for the different
positioning methods. Clearly, the compass odometry obtained with the proposed approach
offers the most precise position information.
On the other hand, Figure 8 shows the distribution of locations of the different nodes obtained
from the run performed by the robot using CODO (Figure 7). As mentioned in the previous
section, the difference in perception explains the fact that the number of nodes acquired by
robot and humans differ from each other.
And, as expected, the number of nodes is higher when the mapping is performed by the robot
because of its perception of the environment and its positioning error. However, although
the number of junction nodes identified is higher in the real run, this is mainly due to the
people and furniture the robot comes across, which produce nodes that lead to any number of
alternative paths. However, after an exploration of about an hour and a half (more than 500
meters), the robot was able to close the loop and to recognise several times the final location
as the starting one, thus confirming the suitability of the proposed approach.
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Fig. 7. Left: Robot’s path (CODO). Right: Evolving number of nodes

As mentioned earlier, the experiments performed in simulation cannot be directly compared
with the experiments with the real robot; the simulated sensor readings produce nodes
with different characteristics specially when junction nodes are identified. Hence, the path
produced by the exploration strategy in simulation differs from the path executed by the
real robot. However, it is interesting to compare the evolution of the learning process using
exact odometry with the evolving number of nodes when the odometry is corrected using the
compass sensor. The map obtained simulating ideal odometry converged to 38 nodes and the
map obtained by the robot after 4500 seconds contained 48 nodes (see Figure 9).
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10. INCA for localisation

During the previous experiments the learning process was not stopped once the loop was
closed. This methodological criterion was chosen to asses the appropriateness of the approach,
and as a result, there was a slow increase in the number of nodes over time mainly due to
odometry error. However, in practical terms the map learning process can be stopped and
then use the learnt map for localisation purposes.
The experiments described in this section were carried out to measure the usefulness of the
acquired map for localisation. In this occasion, instead of a non-stop learning process, a
criterion was set so that the generation of the map would stop once a certain number of nodes
was included. Once the procedure reaches this value, no more nodes are allowed to be created
and hence, classification rule 6 (Section 3.2) gives the closest node according to the available
data. In this manner, after the map is completed the robot continues moving according to its
exploration strategy while the mentioned rule gives its localisation. It is worth to mention
that classification rule 6 is equivalent to the distance based classifier introduced in (Cuadras,
1992).
Experiments were conducted both in simulation and in the real robot/environment system.
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10.1 Simulated experiments

Once more the Stage simulator was used to simulate the robot and its environment. The
criterion to stop the learning process was established in 38 nodes, which was the number
of nodes the map converged to when simulating the mapping process with ideal odometry.
Two experiments were carried out in the simulator:

• Ideal odometry (GPS). Figure 10 shows the journey together with the spatial node
configuration learnt whereas Figure 11 shows the results of the mapping and localisation
process, and thus the identified set of nodes over time. The mapping process lasted about
1100 seconds and the fact that no error occurred during the localisation phase (seconds
1100-12000) confirmed that INCA is a valid approach also for localisation. Once the map
has been generated, the trajectory of the robot is randomly decided at run-time. The
resulting unpredictability means that instead of following a static route, the robot will
randomly select the orientation at each junction. As a consequence, the robot does not
produce repeatable sequences of nodes in the path, but the probability that it will revisit
the whole set of nodes increases.

• Laser corrected odometry (LODO). A new experiment was conducted applying the default
odometry error value defined in Player/Stage and applying the LODO driver to correct the
odometry. Figure 12 shows the journey together with the spatial node configuration learnt
whereas Figure 13 shows the results of the mapping and localisation process, and thus the
identified set of nodes over time.

Table 2 shows the path patterns extracted from plot in Figure 13(a). Again, their associated
node sequence, the time interval and the label used in the plot to represent each pattern is
included.

The identified patterns concentrate in the first part of the plot (seconds 2000 to 12000).
As times goes by the extracted paths are shorter due to localisation failures and the task
becomes extremely difficult from second 12000 and there on. Although an odometry
correction method is applied, the accumulating error severely affects the localisation of
the robot. The type of error remaining after the LODO correction procedure produces a
rotation on the robot’s trajectory (see for instance Figure 12(a)) and thus, a misclassification
of nodes with different orientations assigned. This effect was detected in the sequences
labelled as c0 − c1 in Table 2. Chain P17, B34, P38 should have been P31, B34, P38. Node
P31 with assigned orientation SN was misclassified as node P17 with assigned orientation
WE.

Note that both procedures produced the same configuration of nodes, 17 corridors, 13 crosses
and 8 halls, although their positional information differed due to odometry values.

10.2 Experiments in the real robot/environment system

A second set of experiments were carried out with the real robot. This time the node threshold
was established in 44 nodes.
Figure 14 shows the robot’s path and the obtained node distribution using laser corrected
odometry values (LODO).
Figure 15 shows the robot’s path and the obtained node distribution using compass corrected
odometry values (CODO). And Figure 16 shows the mapping process, and the localisation
over time for both, LODO and CODO.
The results were disappointing but confirmed what the simulated experiments showed for
the LODO case. Although the robot localises properly for about 2000 seconds, afterwards the
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Fig. 10. Stage (GPS): robot’s path and the obtained map

localisation starts to degrade. It is not possible to extract valid path patterns from the plots in
Figure 16. Both the LODO and CODO methods are insufficient for long term localisation.
Looking at the robot’s paths drawn in Figures 14(a) and 15(a), it can be stated that:

• When using the LODO correction method, the error accumulates more slowly but the error
occurs in x, y and θ coordinates. According to LODO odometry, the path rotates over
time. While the error is maintained within a certain range the rotation angle is small and
the localisation process works correctly. Afterwards, and due to the high dependency the
approach has in nominal orientations the system starts to fail and no correspondences are
found.

• When using the CODO correction method, only x and y values are affected. θ value
is obtained from an absolute reference value and hence, the error is not accumulative.
This produces a diagonal shift on the drawn path over time. This shift led to the
misclassification of the lower corridors as if they were the upper ones. Oddly, the upper
corridors were always well identified.
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Robot’s path node sequence time stamp label

P1, B2, H3, P4, H5, B6,
P7, B8, P28, P29, B30,
H9, P10, H11, B12

2128-2391,
2955-3227

g0-g1

P1, B2, H3, P4, H5,
B6, P7, B8, P28, P29,
B30, H11, P10, H11, B12,
P17*, B34, P38

5767-6217,
6301-6916,
6981-7606

c0-c1

P35, P36, B37, H22, P23,
H24, B25, P26, B27

3565-3781,
9130-9413,
11322-11627

m0-m1

P13, P14, B15, H16, P17,
H18, B19, P20, B21, H22,
P23, H24, B25, P26, B27

3821-4169 b0-b1

Table 2. LODO: extracted path patterns (*: localisation error)

334 Mobile Robots – Current Trends

www.intechopen.com



Robotic Exploration: Place Recognition

as a Tipicality Problem 17

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

-5  0  5  10  15  20  25  30  35  40  45  50

Y

X

(a) Path corresponding to LODO

-5

 0

 5

 10

 15

 20

 5  10  15  20  25  30  35  40  45

Y

X

Node configuration (LODO)

P: corridors

P1

P7

P13P26

P28

P36

P10

P23

P14

P20
P29

P31

P35

P38

P4

P17

P33

H: halls

H9

H11

H22

H24
H3

H5

H16

H18

B: junctions

B12B2

B6

B8

B15

B19

B21

B25

B27

B30

B32

B34

B37

(b) Obtained map

Fig. 12. Stage (LODO): robot’s path and the obtained map

An intuitive way of coping with this problem is to modify the positional values of the nodes
each time they are revisited. Instead of keeping the acquired node information unaltered,
during the localisation phase the contents of the nodes can be updated when a positive match
occurs.
A last experiment was performed with the robot using CODO to correct the odometry to
measure the effect of updating the contents of the node. This choice was made because of
the lack of accumulated error in orientation values. Figure 17 shows the acquired map after
reaching the maximum number of nodes (established in 39 nodes). The different scales of
these two maps reflect the magnitude of the accumulated error in the x and y coordinates
over time. Figure 18 shows the evolution of the localisation system over time.
Table 3 shows the path patterns extracted from plot in Figure 18. Again, their associated node
sequence, the time interval and the label used in the plot to represent each pattern is included.
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Fig. 13. Stage (LODO): node identification over time

The localisation process last until the robot run out of batteries and only one location was
misclassified. As mentioned in Section 6, some parameters need to be adjusted for INCA
to function properly. The value uM deeply influences the acceptable deviations from nodes’
(x, y) locations. A small uM value produces failures on loop-closings because of the odometry
error. On the contrary, setting uM to a high value produces that close areas with the same
signatures remain indistinguishable. This effect was detected once during the last localisation
experiment carried out. Node H30 was wrongly identified as node H32 and thus, the sequence
H32, P31, H32 of time stamp 1700 should have been H30, P31, H32. Notice that nodes H30
and H32 are separated by a short corridor labelled as P31. Summarising, upgrading node
information made the developed system valuable for localisation in spite of odometry error.
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Fig. 14. Tartalo (LODO): robot’s path and the obtained map
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Fig. 15. Tartalo (CODO): robot’s path and the obtained map
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Fig. 16. Tartalo(LODO and CODO): node identification over time. Labels are set to show
extracted path patterns
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Fig. 17. Tartalo (CODO with adaptive node location): robot’s path and the obtained map
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Fig. 18. Tartalo (CODO with adaptive node location): node identification over time

Robot’s path node sequence time stamp label

H23, P10, H11, B12, P24,
B25, P26, B25, H3, P4,
H5, B6, P27, P28, B29

643-1048,
3092-3428

g0-g1

P34, P1, B2, H3, P4, H5,
B6, P7

2195-2430,
2804-3034

b0-b1

P7, B8, P20, P21, B22,
H23, P10, H11, B12, P24,
B25, P26, B25

2430-2737,
4150-4459

m0-m1

Table 3. CODO: extracted path patterns
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11. Conclusions

In this chapter a new approach for incremental topological map construction was presented.
A statistical test called INCA was used to this end, combined with a data sampling approach
which decided if a topological node found by the robot had already been visited by it.
The method was integrated in a behaviour-based control architecture and tested also for
localisation purposes.
To measure the adequateness of the approach the map acquisition was performed non-stop
until the robot run out of batteries. Afterwards, the experiments were repeated but once the
number of nodes in the map reached a given threshold, the learning step was finished and the
acquired map was used for localisation purposes.
However, INCA also suffers from odometry error. Of the two error correction methods used
in the present work, LODO and CODO, compass corrected odometry was better suited for
the developed navigation approach. A last experiment was carried out using CODO and
modifying the contents of the acquired nodes each time a location was revisited. The type
of error remaining after CODO facilitated the upgrade of the nodes’ locations and improved
drastically the localisation process.
The experiments conducted confirmed INCA based mapping and localisation as a valid
approach and that BB systems can be provided with automatic map acquisition mechanisms.
To improve the efficiency of the automatic map acquisition system, when looking for
correspondences the use of their associated probability value should be studied.
The criteria for stopping the learning process, i.e. the maximum number of nodes should be
revised. Given that it is not possible to know a priori the number of nodes, the map should be
closed when no more alternative ways remain unvisited in the junction nodes.
Some aspects of the implementation of INCA should be improved and more experiments
should be conducted in a systematic manner in order to better identify the advantages and
drawbacks of the test.
New local navigation strategies and several landmark identification modules need to be
incorporated to increase the granularity of the environment in order to reach more interesting
goals than halls and corridors, such as offices and laboratories. Adding more topological
nodes would allow the generalisation of the experiments to different environments, and the
comparison with other approaches. The first step should be to integrate the door identification
and door crossing modules already developed, and to enrich the behaviour associated to
several nodes with door crossing abilities, and a wall following behaviour. These two modules
would help to cover the perimeter of small rooms and improve the exploration strategy.
Nothing has been said about planning. Up to now, the proposed modifications were tested
using an exploration strategy. The overall map should be used for commanding the robot to
fulfil a concrete goal and thus, to reach concrete locations.
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