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Optimization of the Effective  
Thermal Conductivity of a Composite 

Hubert Jopek and Tomasz Strek 
Poznan University of Technology, Institute Of Applied Mechanics 

Poland 

1. Introduction 

Composite materials by definition are a combination of two or more materials. Although the 
idea of combining two or more components to produce materials with controlled properties 
has been known and used from time immemorial, modern composites were developed only 
several decades ago and have found by now intensive application in different fields of 
engineering (Vasiliev&Morozov, 2001). 
These materials are used in various design to improve the characteristic of various 
construction and reduce their weight. The properties of these materials and the problems of 
obtaining structural elements based upon them have been studied by researchers and 
engineers all over the world. The fields of composite applications are diversified (Freger et 
al., 2004). They include structural elements of flying vehicles, their casinos, wings, fuselages, 
tails and nose cones, jet engine stators, panels form various purposes, main rotors of 
helicopters, heat – proofing components, construction elements such as panels, racks, 
shields, banking elements, etc.  
Any property of a composite which is made of two (or more) materials has the value which 
is the resultant of a few factors. Obviously, the most important are the values of a certain 
property of each constituent material. However, one of the factor that also influences the 
resultant value of a property of a composite as a whole is its geometrical structure. Such 
resultant properties are commonly called effective properties of a composite. Temperature is 
the most important of all environmental factors affecting the behaviour of composite 
materials, mainly because composites are rather sensitive to temperature and have relatively 
low effective thermal conductivity. For instance, advanced composites for engineering 
applications are characterized with low density providing high specific strength and 
stiffness, low thermal conductivity resulting in high heat insulation, and negative thermal 
expansion coefficient allowing us to construct hybrid composite elements that do not change 
their dimensions under heating (Vasiliev & Morozov, 2001). 
Because experimental evaluation of effective properties (e.g. thermal conductivity) of 
composites is expensive and time consuming, computational methods have been found to 
provide efficient alternatives for predicting the best parameters of composites, especially 
those having complex geometries. To achieve a reliable prediction, one needs to work on 
two aspects: a good description of the structural details of fibrous materials, and an efficient 
numerical method for the solution of energy equations through the fibrous structures (Wang 
et al. 2009). The need to determine the thermal conductivity of fibres for design purposes 
has been the motivation of work (Al-Sulaiman et al., 2006). Authors developed four 
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empirical formulas to predict the thermal conductivities of fibre reinforced composite 
laminates and their constituents. In the paper (Boguszewski et al., 2008) the analysis of 
structure and features of phases composite was considered in order to study heat transfer 
phenomena. Models of three phases composite matrix, filler and interface with discontinuities 
were analyzed. Distance between particles was also considered. The paper (Kidalov & 
Shakhov, 2009) presents results in studying the possibility of developing composites in 
diamond-containing systems with a view of obtaining materials with a high thermal 
conductivity. The main objectives of project (Weber, 2001) were to develop a model to predict 
thermal conductivity of the carbon filled polymer composites and to determine if synergism 
between the fillers exists. Thermally conductive polymer composites can replace metals in 
many applications. The article (Zhou&Li, 2008) presents a numerical procedure to design 
two-phase periodic microstructural composites with tailored thermal conductivities, which 
is generalized as a topology optimization problem. The objective function is formulated in a 
least-square of the difference between the target and effective conductivities. Various 
microstructures both in 2- and 3-dimensions are presented to demonstrate such a systematic 
procedure of conductive material design. The effective thermal conductivity enhancement of 
carbon fibre composites was investigated in contribution (Wang et al., 2009) using a three-
dimensional numerical method. The authors of the paper (Wang&Pan, 2008) have 
developed a random generation-growth method to reproduce the microstructures of open-
cell foam materials via computer modelling, and then solve the energy transport equations 
through the complex structure by using a high-efficiency lattice Boltzmann method. The 
effective thermal conductivities of open-cell foam materials are thus numerically calculated 
and the predictions are compared with the existing experimental data. In the paper (Karkri, 
2010) thermal properties of composites are investigated numerically and experimentally. In 
the numerical study, finite elements method is used for modelling heat transfer and to 
calculate the effective thermal conductivity of the composite for three elementary cells, such 
as simple cubic, body centered cubic and face centered cubic. The effect of the filler 
concentrations, the ratio of thermal conductivities of filler to matrix material and the Kapitza 
resistance of the contact inclusion/matrix on the effective conductivity was investigated. In 
the paper (Brucker&Majdalani, 2005), several analytical expressions are derived for an 
effective thermal conductivity. These explicit solutions embody many possible heat 
pathways and base plate geometries that arise in microelectronic packages. From a physical 
stand point, the effective thermal conductivity represents a figure-of-merit that assumes an 
intermediate value greater than that of the coolant, and smaller than that of the metal. 
The objective of this contribution is to investigate the effective hybrid numerical method to 
predict effective thermal conductivity of composite material with fibres distributed in 
matrix phase. This method is combination of finite element method and genetic algorithm 
(FEM-GA). FEM-GA was used to find distribution of fibre in composite domain giving 
maximum, minimum or required value of effective thermal conductivity. The Algorithm is 
implemented in Comsol Multiphysics environment using Comsol Script language (Comsol, 
2007). Comsol solver uses finite element method which today has been widely employed in 
solving field problems arising in modern industrial practices (Zienkiewicz & Taylor, 2000).  
It is assumed that both the matrix and fibres of the considered composite are homogenous, 
isotropic and their thermal conductivities are constant. The fibres are cylindrical, arranged 
parallel, continuous with circular cross-section. The fibre diameter is relatively small in 
comparison to their length, thus fibres can be treated as infinitely long. Fibres can be 
different in size and thermal properties (thermal conductivity).  
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2. Fibrous composite material 

In the present paper, a composite material consisting of two materials is analysed. It is a 
fibrous material with unidirectional fibres. The material of the matrix is homogenous and its 
thermal conductivity is constant. Fibres are also homogenous, however, they may differ 
from each other when it comes to radius or thermal conductivity.  

2.1 Effective thermal conductivity 
Composite materials typically consist of stiff and strong material phase, often as fibres, held 
together by a binder of matrix material, often an organic polymer. Matrix is soft and weak, 
and its direct load bearing is negligible. In order to achieve particular properties in preferred 
directions, continuous fibres are usually employed in structures having essentially two 
dimensional characteristics. 
Applying the fundamental definition of thermal conductivity to a unit cell of unidirectional 
fibre reinforced composite with air voids, one can deduce simple empirical formula to 
predict the thermal conductivity of the composite material with estimated air void volume 
percent (Al-Sulaiman et al., 2006). The ability to accurately predict the thermal conductivity 
of composite has several practical applications. The most basic thermal-conductivity models 
(McCullough, 1985) start with the standard mixture rule 

௘௙௙ߣ  ൌ ∑ ௜ߣ ௜ܸ௡௜ୀଵ  (1) 

and inverse mixture rule 

௘௙௙ߣ  ൌ ቀ∑ ௏೔ఒ೔௡௜ୀଵ ቁିଵ, (2) 

where λeff is the effective thermal conductivity, λi, Vi - thermal conductivity and volume 
fraction of i-th composite constituents (e.g. resin, fibre, void).   
The composite thermal conductivity in the filler direction is estimated by the rule of 
mixtures. The rule of mixtures is the weighted average of filler and matrix thermal 
conductivities. This model is typically used to predict the thermal conductivity of a 
unidirectional composite with continuous fibres. In the direction perpendicular to the fillers 
(through plane direction), the series model (inverse mixing rule) is used to estimate 
composite thermal conductivity of a unidirectional continuous fibre composite. 
Another model similar to the two standard-mixing rule models is the geometric model (Ott, 
1981) 

௘௙௙ߣ  ൌ ∑ ௜௏೔௡௜ୀଵߣ  (3) 

Numerous existing relationships are obtained as special cases of above equations. Filler 
shapes ranging from platelet, particulate, and short-fibre, to continuous fibre are 
consolidated within the relationship given by McCullough (McCullough, 1985). 
The effective thermal conductivity for a composite solid depends, however, on the geometry 
assumed for the problem. In general, to calculate the effective thermal conductivity of 
fibrous materials, we have to solve the energy transport equations for the temperature and 
heat flux fields. For a steady pure thermal conduction with no phase change, no convection 
and no contact thermal resistance, the equations to be solved are a series of Poisson 
equations subject to temperature and heat flux continuity constraints at the phase interfaces. 
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After the temperature field is solved, the effective thermal conductivity, λeff, can be 
determined 

௘௙௙ߣ   ൌ ௅ ׬ ௤ௗ஺୼் ׬ ௗ஺,  (4) 

 
where q is the steady heat flux through the cross-section area dA between the temperature 
difference ΔT on a distance L. Heat flow through the unit area of the surface with normal n 
is linked with the temperature gradient in the n-direction by Fourier's law as 

ݍ  ൌ െߣ డ்డ௡ (5) 

2.2 Composite structure 
The elementary cell of the considered composite is a cross-sectional square and it is 
perpendicular to fibres direction. Perfect contact between the matrix and the cell is assumed, 
heat transfer does not depend on time, and only conductive transfer is considered. Also, 
none of materials’ properties depends on temperature, so the problem is linear and can be 
described by Laplace equation in each domain. 
 

 

Fig. 1. Composite elementary cell structure 

Governing equation of the problem both in the matrix domain and in each fibre domain 
takes the following form: 

ଶTߘ   ൌ Ͳ. (6) 

Boundary condition applied to the cell are defined as follows: 

  
பTMப୶ ൌ Ͳ   ݂ݎ݋ x ൌ Ͳ ܽ݊݀ x ൌ ͳ,  (7) 
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  TC ൌ ʹ9ͲK   ݂ݎ݋   y ൌ Ͳ, (8) 

  TH ൌ ͵ͲͲK     ݂ݎ݋   y ൌ ͳ, (9) 

  T୑ ൌ TF   ݂ݎ݋  ∂F, (10) 

  λ୑ பTMப୬ ൌ λF பTFப୬  F.  (11)∂ ݎ݋݂   

Symbols used at the Fig 1. denote as follows: TC- cooling temperature at the top of the cell, 
TH- heating temperature at the bottom of the cell, λ – thermal conductivity, indices M and F 
refer to the matrix and fibres. 
Hence, one can see that the composite is heated from the bottom and cooled from the above. 
Symmetry condition is applied on the sides of the cell, which means that the heat flux on 
these boundaries equals zero. Thermal continuity and heat flux continuity conditions are 
applied on the boundary of each fibre. 

2.3 Relation between geometry and conductivity 
As we have already mentioned, the geometrical structure of the composite material may 
have a great impact on the resultant effective conductivity of the composite. Commonly, 
researchers assume that fibres are arranged in various geometrical arrays (triangular, 
rectangular, hexagonal etc.) or they are distributed randomly in the cross-section. In both 
cases the composite can be assumed as isotropic in the cross-sectional plane. However, 
anisotropic materials are also very common. What is more, one may intentionally create 
composite because of desired resultant properties of such materials. The influence of 
topological configuration of fibres in unidirectional composite is shown at Figs 2A-2C. The 
plot (Fig 2C) shows the relation between the effective thermal conductivity and the angle β 
by which fibres are rotated from horizontal to vertical alignment 
The minimal value of effective thermal conductivity is shown at Fig 2B, maximal value at 
Fig 2B1.  

3. Numerical procedures 

 Numerical calculations were performed by hybrid method which consisted of two 
procedures: finite element method used for solving differential equation and genetic 
algorithm for optimization. Both procedures were implemented in COMSOL Script. 

3.1 Finite element method (FEM) 
A case in which heat transfer can be considered to be adequately described by a two-
dimensional formulation is shown in Fig 3. Two dimensional steady heat transfer in 
considered domain is governed by following heat transfer equation: 

 
డడ௫ ቀߣ డ்డ௫ቁ ൅ డడ௬ ቀߣ డ்డ௬ቁ ൅ ሶܳ ൌ Ͳ, (12) 

in the domain Ω. 

                                                                 
1 All figures in this paper presenting the elementary composite cell use the same sizes and the same 
temperature scale as figures Fig 2A and Fig 2B, so the scales are omitted on the next figures. Isolines are 
presented in reversed grayscale. 
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(a) 

 

(b) 

 

(c) 

Fig. 2. (a) Horizontal alignment, λeff=1,37 (b)Vertical alignment λeff=1,68 (c) Relation between 
effective thermal conductivity λeff and the angle β of rotation of four fibres aligned. The 
conductivity of matrix λM=2, fibres conductivity λF=0.1. Fibres radius R=0.1 

 

 

Fig. 3. Geometry of domain with boundary conditions 
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In the considered problem one can take under consideration three types of heat transfer 

boundary conditions: 
 

 ܶሺݔ, ሻݕ ൌ ଵܶ (13) 
 

on boundary Г1, 

 ቀߣ డ்డ௫ ݊௫ቁ ൅ ቀߣ డ்డ௬ ݊௬ቁ ൌ ሶܳଶ (14) 

on boundary Г2 and 

 ቀߣ డ்డ௫ ݊௫ቁ ൅ ቀߣ డ்డ௬ ݊௬ቁ ൌ ሺߙ ௠ܶ െ ܶሻ (15) 

on boundary Г3. In above equations ௠ܶ denotes external temperature, ܳଶሶ  is a heat source, ߙ – 

heat transfer coefficient, ߣ – thermal conductivity coefficient, nx and ny – components of 

normal vector to boundary.  

In developing a finite element approach to two-dimensional conduction we assume a two-

dimensional element having M nodes such that the temperature distribution in the element 

is described by 

 ܶ௘ሺݔ, ሻݕ ൌ ∑ ௝ܶ௘ ·ெ௝ୀଵ ௝ܰ௘ሺݔ, ሻݕ ൌ ሾܰሿሼܶሽ (16) 

where ௝ܰ௘ሺݔ,  ሻ is the interpolation function associated with nodal temperature ௝ܶ௘ , [N] is theݕ

row matrix of interpolation functions, and {T} is the column matrix (vector) of nodal 

temperatures. 

Applying Galerkin’s finite element method (Zienkiewicz&Taylor, 2000), the residual 

equations corresponding to steady heat transfer equation are 

׬  ቀ డడ௫ ቀߣ డ்೐డ௫ ቁ ൅ డడ௬ ቀߣ డ்೐డ௬ ቁ ൅ ሶܳ ቁ ௜ܰ௘ሺݔ, ݕ݀ݔሻ݀ݕ ൌ Ͳ.Ω೐  (17) 

Using Green’s theorem in the plane we obtain 

න ൭ ݔ߲߲ ቆߣ ߲ܶ௘߲ݔ ௜ܰ௘ቇ ൅ ݕ߲߲ ቆߣ ߲ܶ௘߲ݕ ௜ܰ௘ቇ൱ ݕ݀ݔ݀ ൌ න ቆߣ ߲ܶ௘߲ݔ ݕ݀ െ ߣ ߲ܶ௘߲ݕ ቇݔ݀ ௜ܰ௘௰೐ఆ೐  (18)

and by transforming left-hand side we obtain: 

න ൭ ݔ߲߲ ቆߣ ߲ܶ௘߲ݔ ቇ ൅ ݕ߲߲ ቆߣ ߲ܶ௘߲ݕ ቇ൱ ௜ܰ௘݀ݕ݀ݔ ൌఆ೐  

ൌ െ න ቆߣ ߲ܶ௘߲ݔ ߲ ௜ܰ௘߲ݔ ൅ ߣ ߲ܶ௘߲ݕ ߲ ௜ܰ௘߲ݕ ቇ ݕ݀ݔ݀ ൅  න ቆߣ ߲ܶ௘߲ݔ ݕ݀ െ ߣ ߲ܶ௘߲ݕ ቇݔ݀ ௜ܰ௘୻౛Ω೐ . (19)

Using 

 ሶܳ ൌ  ቀߣ డ்డ௫ ݊௫ቁ ൅ ቀߣ డ்డ௬ ݊௬ቁ (20) 
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in the Galerkin residual equation we obtain 

׬  ቆቀߣ డ்೐డ௫ డே೔೐డ௫ ቁ ൅ ቀߣ డ்೐డ௬ డே೔೐డ௬ ቁቇ ݕ݀ݔ݀ ൌ ׬ ሶܳ ௜ܰ௘݀ݕ݀ݔΩ೐ ൅ ׬ ቀߣ డ்೐డ௫ ݕ݀ െ ߣ డ்೐డ௬ ቁݔ݀ ௜ܰ௘ .୻౛       Ω೐  (21) 

Taking under consideration boundary condition 

න ൭ቆߣ ߲ܶ௘߲ݔ ߲ ௜ܰ௘߲ݔ ቇ ൅ ቆߣ ߲ܶ௘߲ݕ ߲ ௜ܰ௘߲ݕ ቇ൱ ݕ݀ݔ݀ ൌఆ೐  

ൌ ׬ ሶܳ ௜ܰ௘݀ݕ݀ݔఆ೐ ൅ ׬ ሶܳଶ ௜ܰ௘݀ݏ௰మ೐ ൅ ׬ ሺߙ ௠ܶ െ ଵܶሻ ௜ܰ௘݀ݏ௰య೐ , 

(22)

Where 

 ሶܳ ݏ݀ ൌ  ቀߣ డ்డ௫ ݊௫݀ݏቁ ൅ ቀߣ డ்డ௬ ݊௬݀ݏቁ (23) 

Using (16) in equation (22) we obtain 

න ൮ቌߣ ߲ ௜ܰ௘߲ݔ ෍ ቆ ௝ܶ௘ ߲ ௝ܰ௘߲ݔ ቇெ
௝ୀଵ ቍ ൅ ቌߣ ߲ ௜ܰ௘߲ݕ ෍ ቆ ௝ܶ௘ ߲ ௝ܰ௘߲ݕ ቇெ

௝ୀଵ ቍ൲ ݕ݀ݔ݀ ൌఆ೐  

ൌ න ሶܳ ௜ܰ௘݀ݕ݀ݔఆ೐ ൅ න ሶܳଶ ௜ܰ௘݀ݏ௰మ೐
െ න ߙ ෍൫ ௝ܶ௘ ௝ܰ௘൯ெ

௝ୀଵ ௜ܰ௘݀ݏ ൅ න ߙ ௠ܶ ௜ܰ௘݀ݏ.௰య೐௰య೐
 

(24)

The equation (24) we can rewrite for the whole considered domain which gives us the 

following matrix equation 
 

ࢇࡷ  ൌ  (25) ࢌ

where K is the conductance matrix, a is the solution for nodes of elements, and f is the 

forcing functions described in column vector. 

The conductance matrix 
 

ࡷ  ൌ ௖௘ࡷ ൅ ୻య௘ࡷ  (26) 

and the forcing functions 
 

ࢌ  ൌ ௤௘ࢌ ൅ ୻మ௘ࢌ  ൅ ୻య௘ࢌ  (27) 
 

are described by following integrals 
 

௖,௜௝௘ܭ  ൌ ׬ ቆ൬ߣ డே೔೐డ௫ డேೕ೐డ௫ ൰ ൅ ൬ߣ డே೔೐డ௬ డேೕ೐డ௬ ൰ቇ Ω೐,ݕ݀ݔ݀  (28) 

୻య,௜௝௘ܭ  ൌ ׬ ߙ ௜ܰ௘ ௝ܰ௘݀ݏ,୻య೐  (29) 

 ௤݂,௜௘ ൌ ׬ ሶܳ ௜ܰ௘݀ݕ݀ݔ,Ω೐  (30) 
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 ୻݂మ,௜௘ ൌ ׬ ሶܳଶ ௜ܰ௘݀ݏ୻మ೐ , (31) 

 ୻݂య,௜௘ ൌ ׬ ߙ ௠ܶ ௜ܰ௘݀ݏ୻య೐  (32) 

Equations 25-32 represent the general formulation of a finite element for two-dimensional 
heat conduction problem. In particular these equations are valid for an arbitrary element 
having M nodes and, therefore, any order of interpolation functions. Moreover, this 
formulation is valid for each composite constituent. 

3.2 Genetic algorithm (GA) 
Genetic algorithm is one of the most popular optimization techniques (Koza, 1992). It is 
based on an analogy to biological mechanism of evolution and for that reason the 
terminology is a mixture of terms used in optimization and biology. Optimization in a 
simple case would be a process of finding maximum (or minimum) value of an objective 
function: 
In GA each potential solution is called an individual whereas the space of all the feasible 
values of solutions is a search space. Each individual is represented in its encoded form, 
called a chromosome. The objective function which is the measure of quality of each 
chromosome in a population is called a fitness function. The optimization problem can be 
expressed in the following form: 

 fሺxොሻ ൒ fሺxሻ, x א D, (33) 

where: xො denotes the best solution, f is an objective function, x represents any feasible 
solution and D is a search space. Chromosomes ranked with higher fitness value are more 
likely to survive and create offspring and the one with the highest value is taken as the best 
solution to the problem when the algorithm finishes its last step. The concept of GA is 
presented at fig 4. 
Algorithm starts with initial population that is chosen randomly or prescribed by a user. As 
GA is an iterative procedure, subsequent steps are repeated until termination condition is 
satisfied. The iterative process in which new generations of chromosomes are created 
involves such procedures as selection, mutation and cross-over. Selection is the procedure 
used in order to choose the best chromosomes from each population to create the new 
generation. Mutation and cross-over are used to modify the chromosomes, and so to find 
new solutions. GA is usually used in complex problems i.e. high dimensional, multi-
objective with multi connected search space etc. Hence, it is common practice that users 
search for one or several alternative suboptimal solutions that satisfy their requirements, 
rather than exact solution to the problem. In this paper GA optimizes geometrical 
arrangement of fibres in a composite materials as it influences effective thermal conductance 
of this composite. It has been developed many improvements to the original concept of GA 
introduced by Holland (Holland, 1975) such as floating point chromosomes, multiple point 
crossover and mutation, etc. However, binary encoding is still the most common method of 
encoding chromosomes and thus this method is used in our calculations.  

3.2.1 Encoding 
We consider an elementary cell of a composite that is 2-D domain and there are N fibres 
inside the cell, the position of each fibre is defined by its coordinates, which means we need  
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Fig. 4. Genetic algorithm scheme 

to optimize 2N variables ݔ௜. Furthermore, it is assumed that each coordinate is determined 
with finite precision ݌௜ and limited to a certain range ܦ௜ ൌ ሾܽ௜ , ܾ௜ሿ - a, b denoting the lower 
and upper limit of the range respectively. It means that each domain ܦ௜ needs to be divided 
into ሺܾ௜ െ ܽ௜ሻͳͲ௣೔  sub-domains. Hence we can calculate ݄௜  – number of bits required to 
encode variables: 

 ሺb୧ െ a୧ሻͳͲ୮౟ ൑ ʹ୦౟ െ ͳ. (34) 

Consequently, we can calculate the number of bits ܪ required to encode a chromosome: 

 ( ൌ ∑ h୧ଶ୒୧ୀଵ  (35) 

In our calculation we assume three significant digits precision which means we need ʹଵ଴ bits 
to encode each variable.  

3.2.2 Fitness and selection 
Selection is a procedure in which parents for the new generation are chosen using the fitness 
function. There are many procedures possible to select chromosomes which will create 
another population. The most common are: roulette wheel selection, tournament selection, 
rank selection, elitists selection. 
In our case, modified fitness proportionate selection also called roulette wheel selection is 
used. Based on values assigned to each solution by fitness function ݂ሺݔ௜ሻ, the probability ܲሺݔ௜ሻ of being selected is calculated for every individual chromosome. Consequently, the 
candidate solution whose fitness is low will be less likely selected as a parent whereas it is 
more probable for candidates with higher fitness to become a parent. The probability of 
selection is determined as follows: 

 Pሺx୧ሻ ൌ ୤ሺ୶౟ሻ∑ ୤ሺ୶ౡሻSౡసభ  (36) 

where S is the number of chromosomes in population. 
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Modification of the roulette wheel selection that we introduced is caused by the fact that we 
needed to perform constrained optimization. The constrains are the result of the fact that 
fibres cannot overlap with each other. There are some possible options to handle this 
problem, one of which would to use penalty function. During calculations, however, it 
turned out that this approach is less effective than the other one based on elitist selection. 
We decided that in case of chromosome representing arrangement of overlapping fibres 
such chromosome should be replaced with the best one. 

3.2.3 Genetic operators 
Cross-over operation requires two chromosomes (parents) which are cut in one, randomly 
chosen point (locus) and since this point the binary code is swapped between the 
chromosomes creating two, new chromosomes, as it is shown at Fig. 5. 
Mutation procedure in case of binary representation of solution is an operation of  
bit inversion at randomly chosen position Fig6. The following purpose of this procedure is 
to introduce some diversity into population and so to avoid premature convergence to 
local maximum. 
 

 

Fig. 5. Crossover procedure scheme 

 

 

Fig. 6. Mutation procedure scheme 

4. Numerical results 

All optimization problems considered in this chapter are governed by Eq. 6 for each 
constituent of the composite with appropriate boundary conditions (7-11). In our 
calculations we assumed the same sizes of the unit cell i.e. 1x1cm ( Fig1.). Temperatures on 
the lower and upper boundaries were: TC=290K (upper), TH=300K (lower) respectively. We 
analysed several cases in which the number of fibres Nf and fibres radii R were changed, 
also thermal conductivity of the matrix λM and fibres λF were also changed. Finite element 
calculation were made using second order triangular Lagrange elements. The stationary 
problem of heat transfer was solved using direct UMFPACK linear system solver. The mesh 
structure depends on the number and positions of fibres and so the number of mesh 
elements was not larger than 5000. 
We performed three types of optimization in terms of effective thermal conductivity: 
minimization, maximization and determination of arrangement which gives desired value 
of effective thermal conductivity. In the latter case we defined the objective function as the 
minimization of the deviation from the expected value. The results of optimization are 
presented at Figs 7-9. 
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Fig. 7. Resultant arrangement for three and four fibres 
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Fig. 8. Resultant arrangement for five and six fibres 

www.intechopen.com



 
Convection and Conduction Heat Transfer 

 

210 

4.1 Optimization of three and four fibres arrangement 
In the beginning we assumed the same sizes of the fibres, as well as the same value of 

thermal conductivity for each fibre. Numerical values of parameters used in calculations, 

and the resultant effective thermal conductivity was shown in Table 1. The ‘Opt.’ column 

refers to optimization criteria i.e. minimum, maximum or expected value of λeff The column 

entitled λeff contains obtained results. Not surprisingly did minimization and maximization 

results agree with results presented in section 2.3. Figures 7A and 7E present the 

arrangement obtained during minimization. All fibres are aligned horizontally 

perpendicularly to heat flux direction, next to each other. In case of maximization (Figs 7B, 

7F) fibres are aligned vertically – along with heat flux direction. 

 However, there are many possible ways of arrangement of intermediate values of effective 

thermal conductivity – fibres do not have to be aligned anymore as it was assumed at Fig 

2C. We also presented one of possible arrangements that result in a composite with effective 

thermal conductivity equal to the one expected for each number of fibres: (Figs 7C, 7D). If 

one would like to achieve certain value of effective thermal conductivity with respect to 

some geometrical assumptions (for instance minimum/maximum distance between fibres) 

it is also possible to perform such optimization, however penalty function should be 

implemented or objective function modified to include such conditions. 

 

Figure’s number NF R λF λM Opt. λeff 

Fig 7A 3 0.15 2.0 0.1 Min 0.13 

Fig 7B 3 0.15 2.0 0.1 Max 0.23 

Fig 7C 3 0.15 2.0 0.1 0.15 0.15 

Fig 7D 4 0.12 0.1 2.0 1.35 1.35 

Fig 7E 4 0.12 0.1 2.0 Min 1.1 

Fig 7F 4 0.12 0.1 2.0 Max 1.56 

Table 1. The values assigned for calculations and the resultant λeff for three and four fibres 

4.2 Optimization of five and six fibres arrangement 
Calculation performed for five and six fibres were similar to those presented above for three 

and four fibres. However, the more fibres the more complex problem. As it was mentioned 

in section 3.2.1 each fibre is described by two variables changing within the range [0,1] with 

the 10-3 precision which means 210 bits. Consequently, by adding one fibre we enlarge the 

search space by 220 elements. So, the search space dimension for three fibres arrangement 

optimization equals 260, while for six fibres it equals 2120. The size of search space has a 

direct impact on calculation time and so it takes far more time to find optimal solution. 

The terminating condition of GA was set to 2000 iterations for three and four fibres. It 

resulted in almost perfect arrangement in case of three fibres whereas the arrangement for 

four fibres was not equally well. While increasing the number of fibres to five and six fibres, 

we also increased the number of iteration to 10000.  

Another important aspect of the considered problem was that in case of five and six fibres of 

assumed radii (Table 2) it was not possible to align them in one row so the relation 

presented in section 2.3 could not be applied anymore.  

The minimization results for five and six fibres were presented at Figs 8A and 8E, the 
maximization results at Figs 8B and 8F and the arrangement for expected value of effective 
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thermal conductivity at Figs. 8C, 8D. One can notice that the arrangement of fibres is also 
close to horizontal in case of minimization and close to vertical in case of maximization, 
although fibres are not localised next to each other and initialization of the second row in 
case of six fibres can be observed. In general, however, we may not assume that fibres are 
always aligned in rows in case of minimum and maximum values of effective thermal 
conductivity. The situation changes when the thermal conductivity of fibres is not the same 
in each fibre. The result for such situation was presented in the next section. 
 

 NF R λF λM Opt. λeff 

Fig 8A 5 0.1 0.1 2.0 Min 1,0 

Fig 8B 5 0.1 0.1 2.0 Max 1,61 

Fig 8C 5 0.1 0.1 2.0 1.5 1.5 

Fig 8D 6 0.1 2.0 0.1 0.15 0.15 

Fig 8E 6 0.1 2.0 0.1 Min 0.13 

Fig 8F 6 0.1 2.0 0.1 Max 0.19 

Table 2. The values assigned for calculations and the resultant λeff for five and six fibres 

4.3 Optimization of four and five fibres arrangement with different radii and thermal 
conductivity of fibres 
Apart from the simplest case in which the composite consisted of identical fibres we also 
analysed the case in which fibres differ from each other. We used two sizes of fibres with 
different values of thermal conductivities. All parameters used in calculations were presented 
in Table 3. The symbol NR denotes the number of fibres having the same dimension and 
properties. 
 

 NF NR R λF λM Opt. λeff 

Fig 9A 4 
2 0.12 0.1 

2.0 Min 1.68 
2 0.15 10 

Fig 9B 4 
2 0.12 0.1 

2.0 Max 2.39 
2 0.15 10 

Fig 9C 4 
2 0.12 0.1 

2.0 2.0 2,0 
2 0.15 10 

Fig 9D 5 
4 0.075 0.1 

0.1 1.85 1.85 
1 0.15 10 

Fig 9E 5 
4 0.075 0.1 

0.1 Min 1.65 
1 0.15 10 

Fig 9F 5 
4 0.075 20.1 

0.1 Max 2.08 
1 0.15 10 

Table 3. The values assigned for calculations and the resultant λeff for four and five fibres of 
different radii and thermal conductivities 

We performed the optimization of the arrangement of four and five fibres in a composite 
cell. The minimization results were presented at Figs 9A, 9E while maximization at Figs 9B, 
9F. The arrangements obtained for the assumed values of effective thermal conductivity for 
four and five fibres were presented at Figs 9C,9D respectively. It is remarkable, that in these 
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Fig. 9. Resultant arrangements for fibres of different sizes and thermal conductivities 
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cases the optimal arrangement of fibres is no longer that predictable. Fibres are not aligned 
in a row, although there was enough space. However, fibres still tend to be close to each 
other but spatial configuration is changed. 

5. Conclusion 

This study has examined the effect of multi fibres filler in composite on thermal 
conductivity. Three types of optimization were performed in terms of effective thermal 
conductivity: minimization, maximization and determination of arrangement which gives 
expected value of effective thermal conductivity. Hybrid method combining optimization 
with genetic algorithm and differential equation solver by finite element method were used 
to find optimal arrangement of fibres position in composite matrix was used in this work. 
Proposed algorithm was implemented in Comsol Multiphysics environment. 
It was proved that the geometrical structure of the composite (matrix and filler 
arrangement) may have a great impact on the resultant effective conductivity of the 
composite. In many research works it is assumed that fibres are arranged in various 
geometrical arrays or they are distributed randomly in the cross-section. 
Through this study, some areas were found that need to be investigated further. Composite 
constituents can be anisotropic, and with temperature dependent thermal conductivity of 
constituents (e.g. resin, fibre, void). 
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