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Gait Transition from Quadrupedal to Bipedal 
Locomotion of an Oscillator-driven Biped Robot 

Shinya Aoi and Kazuo Tsuchiya 
Dept. of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University 

Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan 

1. Introduction 

Studies on biped robots have attracted interest due to such problems as inherent poor 
stability and the cooperation of a large degree of freedom. Furthermore, recent advanced 
technology, including hardware and software, allows these problems to be tackled, 
accelerating the interest. Actually, many sophisticated biped robots have already been 
developed that have successfully achieved such various motions as straight walking, 
turning, climbing slopes, rising motion, and running (Aoi & Tsuchiya, 2005; Aoi et al., 2004; 
Hirai et al., 1998; Kuniyoshi et al., 2004; Kuroki et al. 2003; Löffler et al., 2003; Nagasaki et al., 
2004).
Steady gait for a biped robot implies a stable limit cycle in its state space. Therefore, 
different steady gait patterns have different limit cycles, and gait transition indicates that the 
state of the robot moves from one limit cycle to another. Even if the robot obtains steady gait 
patterns, their transition is not necessarily confirmed as completed. Thus, smooth transition 
between gait patterns remains difficult. To overcome such difficulty, many studies have 
concentrated on model-based approaches using inverse kinematics and kinetics. These 
approaches basically generate robot motions based on such criteria as zero moment point 
(Vukobratovi  et al., 1990) and manipulate robot joints using motors. However, they require 
accurate modeling of both the robot and the environment as well as complicated 
computations. The difficulty of achieving adaptability to various environments in the real 
world is often pointed out, which means that in these approaches the robot is too rigid to 
react appropriately to environmental changes. Therefore, the key issue in the control is to 
establish a soft robot by adequately changing the structure and response based on 
environmental changes. 
In contrast to robots, millions of animal species adapt themselves to various environments 
by cooperatively manipulating their complicated and redundant musculoskeletal systems. 
Many studies have elucidated the mechanisms in their motion generation and control. In 
particular, neurophysiological studies have revealed that muscle tone control plays 
important roles in generating adaptive motions (Mori, 1987; Rossignol, 1996; Takakusaki et 
al., 2003), suggesting the importance of compliance in walking. Actually, many studies on 
robotics have demonstrated the essential roles of compliance. Specifically, by appropriately 
employing the mechanical compliance of robots, simple control systems have attained 
highly adaptive and robust motions, especially in hexapod (Altendorfer et al., 2001; Cham et 
al., 2004; Quinn et al., 2003; Saranli et al., 2001), quadruped (Fukuoka et al., 2003; Poulakakis 
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et al., 2005), and biped robots (Takuma & Hosoda, 2006; Wisse et al., 2005). However, note 
that control systems using motors continue to have difficulty adequately manipulating 
compliance in robot joints. 
On the other hand, neurophysiological studies have also clarified that animal walking is 
generated by central pattern generators (CPGs) that generate rhythmic signals to activate 
their limbs (Grillner, 1981, 1985; Orlovsky et al., 1999). CPGs modulate signal generation in 
response to sensory signals, resulting in adaptive motions. CPGs are widely modeled using 
nonlinear oscillators (Taga et al., 1991; Taga, 1995a,b), and based on such CPG models many 
walking robots and their control systems have been developed, in particular, for quadruped 
robots (Fukuoka et al., 2003; Lewis & Bekey, 2002; Tsujita et al., 2001), multi-legged robots 
(Akimoto et al., 1999; Inagaki et al., 2003), snake-like robots (Ijspeert et al., 2005; Inoue et al., 
2004), and biped robots (Aoi & Tsuchiya, 2005; Aoi et al., 2004; Lewis et al., 2003; Nakanishi 
et al., 2004). 

This paper deals with the transition from quadrupedal to bipedal locomotion of a biped 

robot while walking. These gait patterns originally have poor stability, and the transition 

requires drastic changes in robot posture, which aggravates the difficulty of establishing the 

transition without falling over. Our previous work developed a simple control system using 

nonlinear oscillators by focusing on CPG characteristics that are used for both quadruped 

and biped robots, revealing that they achieved steady and robust walking verified by 

numerical simulations and hardware experiments (Aoi & Tsuchiya, 2005; Aoi et al., 2004; 

Tsujita et al., 2001). In this paper, we use the same developed control system for both 

quadrupedal and bipedal locomotion of a biped robot and attempt to establish smooth gait 

transition. Specifically, we achieve stable limit cycles of these gait patterns and their 

transitions by moving the robot state from one limit cycle to another by cooperatively 

manipulating their physical kinematics through numerical simulations. This paper is 

organized as follows. Section 2 introduces the biped robot model considered in this paper. 

Section 3 explains the developed locomotion control system, and Section 4 addresses the 

approach of gait transition and numerical results. Section 5 describes the discussion and 

conclusion. 

2. Biped robot model 

Figure 1(a) shows the biped robot model considered in this paper. It consists of a trunk, a 
pair of arms composed of four links, and a pair of legs composed of six links. Each link is 
connected to the others through a single degree of freedom rotational joint. A motor is 
installed at each joint. Four touch sensors are attached to the sole of each foot, and one touch 
sensor is attached to the tip of the hand of each arm. The left and right legs are numbered 
Legs 1 and 2, respectively. The joints of the legs are also numbered Joints 1…6 from the side 
of the trunk, where Joints 1, 2, and 3 are yaw, roll, and pitch hip joints, respectively. Joint 4 is 
a pitch knee joint, and Joints 5 and 6 are pitch and roll ankle joints. The arms are also 
numbered in a similar manner. Joints 1 and 4 are pitch joints, Joint 2 is a roll joint, and Joint 
3 is a yaw joint. To describe the configuration of the robot, we introduce angles i

jA
and i

kL

(i=1,2, j=1,…,4, k=1,…,6), which are rotation angles of Joint j of Arm i and Joint k of Leg i,
respectively. The robot walks quadrupedally and bipedally, as shown in Figs. 1(b) and (c). 
Its physical parameters are shown in Table 1. The ground is modeled as a spring with a 
damper in numerical simulations. 
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Fig. 1. Schematic model of a biped robot [mm]. 

Link Mass [kg] Length [m]

Trunk 2.34 0.20

Leg 1.32 0.28

Arm 0.43 0.25

Total 5.84 0.48

Table 1. Physical parameters of robot. 

3. Locomotion control system 

3.1 Concept of the control system 

As described above, the crucial issue in controlling a biped robot is establishing a 
mechanism in which the robot adapts itself by changing its internal structure based on 
interactions between the robot's mechanical system and the environment. 
Neurophysiological studies have revealed that animal walking is generated by CPGs 
comprised of a set of neural oscillators present in the spinal cord. CPGs characteristically 
have the following properties: 

1. CPGs generate inherent rhythmic signals that activate their limbs to generate 
rhythmic motions; 

2. CPGs are sensitive to sensory signals from peripheral nerves and modulate signal 
generation in response to them. 

Animals can immediately adapt to environmental changes and disturbances by virtue of 
these features and achieve robust walking. 
We have designed a locomotion control system that has an internal structure that adapts to 
environmental changes, referring to CPG characteristics. In particular, we employed 
nonlinear oscillators as internal states that generate inherent rhythmic signals and 
adequately respond to sensory signals. Since the motor control of a biped robot generally 
uses local high-gain feedback control to manipulate the robot joints, we generated nominal 
joint motions using rhythmic signals from the oscillators. One of the most important factors 
in the dynamics of walking is the interaction between the robot and the external world, that 
is, dynamical interaction between the robot feet and the ground. The leg motion consists of 
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swing and stance phases, and a harmonious balance must be achieved between these 
kinematical motions and dynamical interaction, which means that it is essential to 
adequately switch from one phase to another. Therefore, our developed control system 
focused on this point. Specifically, it modulated the signal generation of the oscillators and 
appropriately changed the leg motions from the swing to the stance phase based on touch 
sensors. Although we concisely describe the developed control system below, see our 
previous work (Aoi & Tsuchiya, 2005) for further details. 

3.2 Developed locomotion control system 

The locomotion control system consists of a motion generator and controller (see Fig. 2(a)). 
The former is composed of rhythm and trajectory generators. The rhythm generator has two 
types of oscillators: Motion and Inter (see Fig. 2(b)). As Motion oscillators, there are Leg 1, 
Leg 2, Arm 1, Arm 2, and Trunk oscillators. The oscillators follow phase dynamics in which 
they have interactions between themselves and receive sensory signals from touch sensors. 
The trajectory generator creates nominal trajectories of robot joints by phases of Motion 
oscillators, which means that it generates physical kinematics of the robot based on 
rhythmic signals from the oscillators. It receives outer commands and changes the physical 
kinematics to reflect the outer commands. The nominal trajectories are sent to the motion 
controller in which motor controllers manipulate the joint motions using the nominal 
trajectories as command signals. Note that physical kinematics is different between 
quadrupedal and bipedal locomotion, and except for the kinematics, throughout this paper 
we use the same control system regardless of gait patterns. 

Fig. 2. Locomotion control system. 

3.2.1 Trajectory generator

As mentioned above, the trajectory generator creates nominal trajectories of all joints based 

on the phases of the Motion oscillators. First, let i
L

, i
A

,
T

, and 
I
 (i=1,2) be the phases of 

Leg i, Arm i, Trunk, and Inter oscillators, respectively. 
The nominal trajectories of the leg joints are determined by designing the nominal trajectory 
of the foot, specifically Joint 5, relative to the trunk in the pitch plane. The nominal foot 
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trajectory consists of swing and stance phases (see Fig. 3). The former is composed of a 
simple closed curve that includes anterior extreme position (AEP) and posterior extreme 
position (PEP). This trajectory starts from point PEP and continues until the leg touches the 
ground. On the other hand, the latter consists of a straight line from the foot landing 
position (LP) to point PEP. Therefore, this trajectory depends on the timing of foot contact 
with the ground in each step cycle. Both in the swing and stance phases, nominal foot 
movement is designed to be parallel to the line that involves points AEP and PEP. The 
height and forward bias from the center of points AEP and PEP to Joint 3 of the leg are 
defined as parameters 

L∆  and 
LH , respectively. These two nominal foot trajectories provide 

nominal trajectories i
jL

ˆ  (i=1,2, j=3,4,5) of Joint j (hip, knee, and ankle pitch joints) of Leg i by 

the functions of phase i
L

 of Leg i oscillator written by )(ˆ
LL
ii

j
, where we use 0=i

L
 at 

point PEP and 
AEPL

ˆi =  at point AEP. Note that nominal stride Ŝ  is given by the distance 

between points AEP and PEP, and duty factor ˆ  is given by the ratio between the nominal 

stance phase and step cycle durations. 

Fig. 3. Nominal foot trajectory. 

The nominal trajectories of the arm joints are generated in a similar way to the leg joints 
described above except for the bend direction between Joint 4 of the arm and Joint 4 of the 
leg (see Fig. 4 below). Similar to the foot trajectory, the nominal trajectory of the hand, 
specifically the touch sensor at the tip of the arm, is designed relative to the trunk in the 
pitch plane, which consists of the swing and stance phases. Then, also from inverse 

kinematics, nominal trajectories i
jA

ˆ  (i=1,2, j=1,…,4) of Joint j of Arm i are given by the 

functions of phase i
A

 of Arm i oscillator. The nominal trajectories of the arm joints also 

have parameters 
A∆  and 

AH , similar to those of the leg joints, that use the same nominal 

stride Ŝ  and duty ratio ˆ  as leg motions. 

3.2.2 Rhythm generator and sensory signals 

In the rhythm generator, Motion and Inter oscillators generate rhythmic behavior based on 
the following phase dynamics: 



22 Humanoid Robots, New Developments 

)(

,ˆ

,ˆ

ˆ

ˆ

L2L1L

A2A1A

TT

II

1

21

21

1

1

=++=

=++=

+=

+=

igg

igg

g

g

iii

iii

where 
I1g ,

T1g , ig A1
, and ig L1

 (i=1,2) are functions regarding the nominal phase 

relationship shown below, ig A2
 and ig L2

 (i=1,2) are functions arising from sensory 

signals given below, and ˆ  is the nominal angular velocity of each oscillator obtained 

by
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where
swT̂  is the nominal swing phase duration. 

To establish stable walking, the essential problem is the coordination of joint motions. 
Interlimb coordination is the key. For example, both legs must move out of phase to 
prevent the robot from falling over during bipedal locomotion. Since the nominal 
joint trajectories for the limbs are designed by oscillator phases, interlimb 
coordination is given by the phase relation, that is, the phase differences between 
oscillators. Functions 

I1g ,
T1g , ig A1

, and ig L1
 in Eq. (1), which deal with interlimb 

coordination, are given by the phase differences between oscillators based on Inter 
oscillator, written by 
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where nominal phase relations are given so that both the arms and legs move out of phase 
and one arm and the contralateral leg move in phase and 

LK ,
AK , and 

TK  are gain 

constants. 
In addition to physical kinematics and interlimb coordination, the modulation of walking 
rhythm is another important factor to generate walking. Functions ig A2

 and ig L2
 modulate 

walking rhythm through the modulation of the phases of oscillators based on sensory 
signals. Specifically, when the hand of Arm i (the foot of Leg i) lands on the ground, Arm i
oscillator (Leg i oscillator) receives a sensory signal from the touch sensor (i=1,2). Instantly, 

phase i
A

 of Arm i oscillator (phase i
L

 of Leg i oscillator) is reset to nominal value 
AEP

ˆ

from value i

land
 at the landing. Therefore, functions ig A2

 and ig L2
 are written by 

)(
,)()ˆ(

,)()ˆ(

landlandAEPL

landlandAEPA
4

21

21

2

2

=−−=

=−−=

ittg

ittg
iii

iii

where )ˆ(ˆ
AEP −= 12 , it land

 is the time when the hand of Arm i (the foot of Leg i) lands on 

the ground (i=1,2) and )(⋅  denotes Dirac's delta function. Note that touch sensor signals not 
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only modulate the walking rhythm but also switch the leg motions from the swing to stance 
phase, as described in Sec. 3.2.1. 

4. Gait transition 

This paper aims to achieve gait transition from quadrupedal to bipedal locomotion of a 

biped robot. As mentioned above, even if the robot establishes steady quadrupedal and 

bipedal locomotion, that is, each locomotion has a stable limit cycle in the state space of the 

robot, there is no guarantee that the robot can accomplish a transition from one limit cycle of 

quadrupedal locomotion to another of bipedal locomotion without falling over. 

Furthermore, these gait patterns originally have poor stability, and the transition requires 

drastic changes in robot posture, which aggravates the difficulty of preventing the robot 

from falling over during the transition.  

4.1 Gait transition control 

A biped robot generates quadrupedal and bipedal locomotion while manipulating many 
degrees of freedom in the joints. These gait patterns have different movements in many 
joints, which means that there are a million ways to achieve the transition. Therefore, the 
critical issue is designing gait transition. 
In this paper, we generate both quadrupedal and bipedal locomotion of the robot based on 
physical kinematics. Figures 4(a) and (b) show schematics and parameters in quadrupedal 
and bipedal locomotion where COM indicates the center of mass of the trunk, 

TAl  and 
TLl

are the lengths from COM to Joint 1 of the arm and Joint 3 of the leg in the pitch plane, 
respectively,

AL  and 
LL  are the forward biases from COM to the centers of the nominal foot 

and hand trajectories, respectively, 
T

 is the pitch angle of the trunk relative to the 

perpendicular line to the line that involves points AEP and PEP of the foot or the hand 

trajectory, and 
Q∗  and 

B∗  indicate the values of ∗  for quadrupedal and bipedal locomotion, 
respectively. Therefore, from a kinematical viewpoint, gait transition is achieved by 

changing parameters 
AL ,

LL ,
AH ,

LH , and 
T

 from values Q
AL , Q

LL , Q
AH , Q

LH , and Q
T

 to 

values )(B
A 0=L , )(B

L 0=L , B
AH , B

LH , and B
T

, while the robot walks. Note that from these 

figures, using parameters 
A∆ ,

L∆ , and 
T

, parameters 
AL  and 

LL  are written as 

)(
sin

sin

LTTLL

ATTAA
5

∆+=

∆+=

lL

lL

Animals generate various motions and smoothly change them by cooperatively 
manipulating their complicated and redundant musculoskeletal systems. To elucidate these 
mechanisms, many studies have investigated recorded electromyographic (EMG) activities, 
revealing that muscle activity patterns are expressed by the combination of several patterns, 
despite their complexity (d'Avella & Bizzi, 2005; Patla et al., 1985; Ivanenko et al., 2004, 2006). 
Furthermore, various motions have common muscle activity patterns, and different motions 
only have a few different specific patterns in combinations that express muscle activity 
patterns. This suggests that only a few patterns provide cooperation in different complex 
movements. 
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Fig. 4. Schematics and parameters in quadrupedal and bipedal locomotion. 

Therefore, in this paper first we introduce a couple of parameters and then attempt to achieve 
gait transition by cooperatively changing the physical kinematics from quadrupedal to bipedal 
using the parameters. Specifically, two parameters, 

1
 and 

2
, are introduced, and parameters 

A∆ ,
L∆ ,

AH ,
LH , and 

T
 are designed as functions of parameters 

1
 and 

2
 by 
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This aims to use parameters 
1

 and 
2

 to change the distance between the foot and hand 

trajectories and the posture of the trunk, respectively. Using this controller, gait transition is 
achieved by simply changing introduced parameters (

1
,

2
) from (0, 0) to (1, 1), as shown in Fig. 5.

Fig. 5. Trajectories in 
21 −  plane for gait transition from quadrupedal to bipedal locomotion. 
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4.2 Numerical results 

In this section, we investigate whether the proposed control system establishes gait 
transition from quadrupedal to bipedal locomotion of the robot by numerical simulations. 

The following locomotion parameters were used: Ŝ =5 cm, ˆ =0.5,
swT̂ =0.3 s, 

TK =10.0, 

AK =2.0,
LK =2.0,

TAl =6.9 cm, and 
TLl =7.6 cm; the remaining parameters for quadrupedal 

and bipedal locomotion are shown in Table 2. These parameters were decided so that the 
robot achieves steady quadrupedal and bipedal locomotion. That is, each locomotion has a 
stable limit cycle in the state space of the robot. Figures 6(a) and (b) show the roll motions of 
the robot relative to the ground during quadrupedal and bipedal locomotion, respectively, 

illustrating the limit cycles in these gait patterns. Note that due to setting ˆ =0.5 and the 

nominal phase differences of the oscillators as described in Sec. 3.2.2, a trot appears in the 
quadrupedal locomotion in which the robot is usually supported by one arm and the 
contralateral leg. 

Parameter Quadrupedal (
Q∗ ) Bipedal (

B∗ )

A∆ [cm] -3.0 1.4

L∆ [cm] 4.0 -1.6

AH [cm] 22.2 22.2 

LH [cm] 14.0 16.5

T
[deg] 72 12

Table 2. Parameters for quadrupedal and bipedal locomotion. 

(a) Quadrupedal locomotion                               (b) Bipedal locomotion 

Fig. 6. Roll motion relative to the ground. 

To accomplish gait transition, parameters 
1

 and 
2

 are changed to reflect outer commands. 

Specifically, a trajectory in 
21 −  plane is designed as the following two successive steps (see Fig. 7): 

Step 1: while the robot walks quadrupedally, parameter 
1
 increases from 0 to 

1

during time interval 
1T  s, where 10 1 ≤≤ .

Step 2: at the beginning of the swing phase of Arm 1, 
1
 and 

2
 increase from 

1
 to 1 

and from 0 to 1, respectively, during time interval 
2T  s. 
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Note that parameter 
2

>0 geometrically indicates that the robot becomes supported only by 

its legs: that is, the appearance of bipedal locomotion. 

Fig. 7. Designed trajectory in 
21 −  plane to change gait pattern from quadrupedal to 

bipedal locomotion. 

Figures 8(a) and (b) show the roll motion of the robot relative to the ground during gait 

transition, by parameter 
1
=0.7. Specifically, in Fig. 8(a), time intervals 

1T  and 
2T  are both set 

at 20 s. Since the nominal step cycle is set at 0.6 s, the nominal kinematical trajectories of 
quadrupedal locomotion change slowly and gradually into bipedal locomotion, and it takes 
many steps to complete the change of gait patterns. Step 1 is from 10 to 30 s, and Step 2 is from 
30.2 to 50.2 s. During Step 1, the foot and the hand positions come closer together, and the roll 
motion of the robot decreases. At the beginning of Step 2, since the robot becomes supported 
only by its legs, roll motion suddenly increases. However, during Step 2 roll motion gradually 
approaches a limit cycle of bipedal locomotion, and after Step 2 the motion converges to it. 
That is, the robot accomplishes gait transition from quadrupedal to bipedal locomotion. On the 
other hand, in Fig. 8(b), time intervals 

1T  and 
2T  are both set at 5 s. Step 1 is from 10 to 15 s, 

and Step 2 is from 15.1 to 20.1 s. In this case, although the nominal trajectories change 
relatively quickly, roll motion converges to a limit cycle of bipedal locomotion, and the robot 
achieves gait transition. Figure 9 displays the trajectory of the center of mass projected on the 
ground and the contact positions of the hands and the center of the feet on the ground during 
this gait transition. Figure 10 shows snapshots of this gait transition. 

 (a) Time intervals 
1T ,

2T =20 s  (b) Time intervals 
1T ,

2T =5 s 

Fig. 8. Roll motion relative to the ground during gait transition from quadrupedal to bipedal 
locomotion. 
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Fig. 9. Trajectory of center of mass of robot projected on the ground and contact positions of 
the hands and the center of feet on the ground. Time of feet and hands indicate when they 
land on the ground. 

0.0 s                                12.5 s                               15.0 s                                15.1 s 

16.8 s                              18.5 s                                20.1 s                                25.0 s 
Fig. 10. Snapshots of gait transition from quadrupedal to bipedal locomotion. 

5. Discussion 

Kinematical and dynamical studies on biped robots are important for robot control. As 
described above, although model-based approaches using inverse kinematics and kinetics 
have generally been used, the difficulty of establishing adaptability to various environments 
as well as complicated computations has often been pointed out. In this paper, we employed 
an internal structure composed of nonlinear oscillators that generated robot kinematics and 
adequately responded based on environmental situations and achieved dynamically stable 
quadrupedal and bipedal locomotion and their transition in a biped robot. Specifically, we 
generated robot kinematical motions using rhythmic signals from internal oscillators. The 
oscillators appropriately responded to sensory signals from touch sensors and modulated 
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the rhythmic signals and physical kinematics, resulting in dynamical stable walking of the 
robot. This means that a robot driven by this control system established dynamically stable 
and adaptive walking through the interaction between the dynamics of the mechanical 
system, the oscillators, and the environment. Furthermore, this control system needed 
neither accurate modeling of the robot and the environment nor complicated computations. 
It just relied on the timing of the touch sensor signals: it is a simple control system. 
Since biped robots generate various motions manipulating many degrees of freedom, the 
key issue in control remains how to design their coordination. In this paper, we expressed 
two types of gait patterns using a set of several kinematical parameters and introduced two 
independent parameters that parameterized the kinematical parameters. Based on the 
introduced parameters, we changed the gait patterns and established gait transition. That is, 
we did not individually design the kinematical motion of all robot joints, but imposed 
kinematical restrictions on joint motions and contracted the degrees of freedom to achieve 
cooperative motions during the transition. Furthermore, we used the same control system 
between quadrupedal and bipedal locomotion except for the physical kinematics, which 
facilitated the design of such cooperative motions and established a smooth gait transition. 
As mentioned above, the analysis of EMG patterns in animal motions clarified that common 
EMG patterns are embedded in the EMG patterns of different motions, despite generating 
such motions using complicated and redundant musculoskeletal systems (d'Avella & Bizzi, 
2005; Patla et al., 1985; Ivanenko et al., 2004, 2006), suggesting an important coordination 
mechanism. In addition, kinematical studies revealed that covariation of the elevation 
angles of thigh, shank, and foot during walking displayed in three-dimensional space is 
approximately expressed on a plane (Lacquaniti et al., 1999), suggesting an important 
kinematical restriction for establishing cooperative motions. In designing a control system, 
adequate restrictions must be designed to achieve cooperative motions. 
Physiological studies have investigated gait transition from quadrupedal to bipedal 
locomotion to elucidate the origin of bipedal locomotion. Mori et al. (1996), Mori (2003), and 
Nakajima et al. (2004) experimented on gait transition using monkeys and investigated the 
physiological differences in the control system. Animals generate highly coordinated and 
skillful motions as a result of the integration of nervous, sensory, and musculoskeletal 
systems. Such motions of animals and robots are both governed by dynamics. Studies on 
robotics are expected to contribute the elucidation of the mechanisms of animals and their 
motion generation and control from a dynamical viewpoint. 
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