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1. Introduction

Comparative zoologists, evolutionary biologists, experimental biologists, and mechanical
engineers make wonderful generalizations about the movements of different-sized running
bipeds and quadrupeds (Heglund et al., 1974; McMahon, 1975; Alexander, 1976; Hoyt &
Taylor, 1981; Garland, 1982; McMahon et al., 1987; Rome et al., 1988; Gatesy & Biewener, 1991;
Farley et al.,1993; Cynthia & Farley, 1998; Bullimore & Burn, 2006), flying birds and swimming
fish (Hill, 1950; Alexander, 2003; Taylor et al., 2003). The dynamic similarity across body mass
and taxa of animals maintaining a certain gait in locomotion has been thoroughly investigated
(Alexander, 1976, 1985, 1989, 2005; Alexander & Bennet-Clark, 1976; Alexander & Jayes, 1983;
Marden & Allen, 2002; Biewener, 2005; Bejan & Marden, 2006a, b; Bullimore & Donelan,
2008). Based on integrative approach to animal locomotion (e.g., review by Dickinson et al.,
2000) and using simple physical ideas (e.g., reviews by Lin, 1982 and Alexander, 2003), many
cited above researches have demonstrated the importance of scaling biomechanics via reliably
established scaling relations for gait characteristics with changes of speed and body mass.
Among well known empirical findings of the dynamic similarity in animals observed across
body mass are scaling relations established for stride (or stroke) speed and/or frequency (Hill,
1950; Heglund et al., 1974 Greenewalt, 1975; Garland, 1982; Heglund & Taylor, 1988; Gatesy
& Biewener, 1991; Farley et al., 1993; Bullen & McKenzie, 2002; Bejan & Marden, 2006a), duty
factor and relative stride length (Alexander & Jayes, 1983; Gatesy & Biewener, 1991), body
force output (Alexander, 1985; Marden & Allen, 2002; Bejan & Marden, 2006a), limb stress
and stiffness (Rubin & Lanyon, 1984; McMahon & Cheng, 1990; Farley & Gonzalez, 1996;
Biewener, 2005; Bullimore & Burn, 2006).
Although the concept of mechanical similarity, well known in analytical mechanics (e.g.,
Duncan, 1953; Landau & Lifshitz, 1976), was accurately re-formulated in application to
the dynamic similarity (Alexander, 1976, 1989, 2003, 2005; Bullimore & Donelan, 2008), its
exploration in biomechanics is often controversial. For example, Hill’s seminal observation of
dynamic similarity through the optimal speeds of birds in flight gaits (Hill, 1950) was found
in sharp disagreement (McMahon, 1975) with that revealed through transient (trot-to-gallop)
speeds in quadrupeds (Heglund et al., 1974). Then, comparing anatomic consequences
of McMahon’s elastic similarity (McMahon, 1975) for the stride length, Alexander noted
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the conceptual inconsistency between the elastic and dynamic similarities (Alexander, 1989,
p.1212). Biewener (2005) also claimed confusing biomechanical consequences of McMahon’s
scaling relations. More recent example is the observation of a new kind of similarity in running
humans, simulated on the basis of spring-mass model, no matching the dynamic similarity in
running animals (Delattre et al., 2009), reliably established by the same biomechanical model
(Farley et al., 1993).
Another example of conceptual controversy concerns the long term standing problem of
the origin of empirical scaling laws in biomechanics. The constructal theory by Bejan &
Marden (2006a), unifying running, flying, and swimming animals suggested fundamental
explanations of intriguing statistically established universal scaling relations for the optimal
speed and stride frequency. As a matter of fact, the authors have clearly demonstrated that
their principle of minimum useful energy does not provide unifying scaling laws. Instead of
searching for new principles, exemplified by recently rediscovered "least-action principle" in
human walking (Fan et al., 2009), the design principle of flow systems (Bejan & Marden, 2006a,
b), and the basic theorem of dimensional analysis (Bullimore & Donelan, 2008), seemingly
resolving the origin of scaling laws in biomechanics, I have addressed the fundamentals of
classical analytical mechanics.
In theoretical physics, the mechanical similarity arises from the key principle of minimum
mechanical action closely related to Lagrangian’s formalism. Examples of successful
applications of Lagrangian’s method to the dynamics of human walk and the dynamic
similarity in animals are explicit descriptions providing, respectively, (i) the conditions of
dynamic instability during a walk-to-run crossover obtained regardless of inverted-pendulum
modeling (Kokshenev, 2004) and (ii) the whole spectrum of observable scaling laws inferred
without recourse to equations of motion (Kokshenev, 2010).
In biomechanics, the dynamic similarity hypothesis (Alexander, 1976; Alexander & Jayes,
1983; Alexander, 1989) stands that similarly in running terrestrial animals should equal their
Froude numbers (the squared speeds divided by hip heights times the gravitation constant)
when tend to change locomotion modes at certain "equivalent speeds" (Heglund et al., 1974)
or maintain a certain gait at "preferred speeds" (Heglund & Taylor, 1988). In contrast to in
vivo established dynamic similarity in the horses trotting at equal Froude numbers (Bullimore
& Burn, 2006), the spring-mass model analysis has indicated that the Froude number alone
does not yet guarantee the observation of dynamic similarity in the running animals (Donelan
& Kram, 1997; Bullimore & Donelan, 2008). Such kind of controversial findings begged a
number of questions: whether the sole Froude number (Alexander & Jayes, 1983; Vaughan
& O’Malleyb, 2005; Bullimore & Burn, 2006; Delattre et al., 2009), or the sole Strouhal number
(the limb length, or wing length divided by the speed times stride period, or stroke period)
as hypothesized by Whitfield (2003), Taylor et al. (2003) and, likely, Bejan & Marden (2006a),
or both the numbers (Delattre et al., 2009), when taken in a certain algebraic combinations
(Delattre & Moretto, 2008), e.g., presented by the Groucho number (Alexander, 1989), may
warrant the dynamic similarity in animal locomotion? Moreover, when other dimensionless
parameters are chosen as the determinants of dynamic similarity, what is the minimal set of
independent physical quantities underlying the principle of similarity (Bullimore & Donelan,
2008)?
In this research, a model-independent theoretical framework basically employing
Lagrangian’s method suggests to establish the validation domains, conditions of observation,
criterion, and the minimal set of determinants of dynamic similarity empirically established
in different-sized animals.
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2. Theory

2.1 Similarity in analytical mechanics

According to the key variational principle of Hamiltonian’s classical mechanics, the
requirement of minimum mechanical action between two fixed points of the conceivable
trajectory of an arbitrary mechanical system determines the Lagrangian function L(q, v)
through time-dependent coordinates q(t) and instant velocities v(t) = dq/dt. One of the
most pronounced properties of the closed mechanical systems is preservation of the total
energy and momentum, arising respectively from the temporal and spatial homogeneities
of the Lagrangian function. The mechanical similarity between frictionlessly moving systems
also arises from the property of spatiotemporal homogeneity (e.g., Duncan, 1953; Landau
& Lifshitz, 1976). Since the property of homogeneity guarantees that the multiplication of
Lagrangian on an arbitrary constant does not affect the resulting equations of motion, the
scaling laws of mechanical similarity can be established without consideration of equations of
motion.
More specifically, let us consider the uniform transformation of mechanical trajectories due
to linear changing of all coordinates q′ = aq and times t′ = bt performed via arbitrary in
amplitude (positive) linear-transformation factors a and b, resulting in changed velocities v′ =
(a/b)v. The overall-system basic mechanical characteristics, period T and speed V change as
T′ = bT and V′ = (a/b)V, whereas the kinetic energy K, as a quadratic function of velocities,
and potential energy U scale as

K′(v) = K
( a

b
v
)

=
( a

b

)2
K(v) and U ′(v) = U (aq) = aλU (q), (1)

where the dynamic exponent λ is introduced to distinguish distinct cases of mechanical
similarity.
The self-consistency of exploration of the property of homogeneity, determining the property
of similarity, requires the proportionality in changes of both the energies of the Lagrangian

L′(q, v) = K′(v)− U ′(q), i.e., K′
∽ U ′, thus, (a/b)2 = aλ, or b = a1−λ/2, as follows from Eq.

(1). Hence, the frictionless propagation of a classical system obeys the scaling rules imposed
on the overall-system dynamic characteristics (T and V) and mechanical characteristics (force
amplitude F and U ), namely

Tλ ∝ L1−λ/2, Vλ ∝ Lλ/2, Fλ ∝ Lλ−1, and Uλ ∝ Lλ, (2)

where L is a characteristic linear size of the trajectory , as suggested by Landau & Lifshitz
(1976, Eqs. (10.2) and (10.3)).
The well known examples of distinct mechanically similar systems distinguished by dynamic
exponent readily follow from Eq. (2): (i) λ = −1; the case resulting in the third law for
planets T2

∝ L3 that anticipated Newton’s theory through interplanetary coupling force F ∝

M2L−2; (ii) λ = 2; the system is driven by the elastic-strain field and has the elastic energy
Uelast = K∆L2 with ∆L ∽ L, and (iii) λ = 1; the system moves in the uniform gravitational
field g = Fg/M and has the potential energy Ug = MgH, with H ∽ L. The dimensional
factors of proportionality M and K, required by the scaling relations, are analyzed below by

dimensional method.1

1 Hereafter I distinguish two symbols of proportionality: ∽ and ∝ , supporting and not supporting
dimensional units that should be read as "is proportional to" and "scales as", respectively.
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2.2 Similarity in biomechanics

The exploration of the concept of dynamic similarity generally assumes model-independent
relations validated for slow and fast gaits and supporting linear transformations in changing
dynamic and mechanical characteristics, namely

∆L ∽ L ∽ H ∽ Lb and ∆T ∽ T, ∆F = K∆Lb. (3)

Here ∆L is a change of the amplitude of dynamic length L, e.g., stride length L, or the maximum
vertical displacement H of body’s center of mass that may be chosen for periodic terrestrial
locomotion, or the stroke amplitude of flying and swimming animals (e.g., Alexander, 2003).
The dynamic length and its change should be distinguished from the static length Lb and its
change ∆Lb, that may be also chosen either as of the body length Lb or the corresponding

limb, wing, or tail length. Respectively, T−1 is the stride, wingbeat, or tailbeat rate attributed
to the frequency of locomotion. The dynamic length is commonly determined by the measured

speed V (mean cycle forward velocity) and frequency, i.e., as L = V/T−1, whereas the body
propulsion force ∆F introduces the body stiffness K = ∆F/∆Lb.2

2.2.1 Dimensional analysis

Broadly speaking, the mechanical similarity may be tested by two uniform linear
transformations, scaling simultaneously all spatial and temporal characteristics. Extending
these two degrees of freedom of biomechanical mechanical systems by their body masses M, let us
introduce the corresponding ltm class of units through the independent dimensions [L] = l,
[T] = t, and [M] = m, in accord with the standard scaling theory (e.g., Barenblatt, 2002). One
can show that the three body-system mechanical quantities

∆F ∽ LT−2 M, V ∽ LT−1, and K ∽ T−2 M (4)

are mutually independent. Indeed, following the method of dimensional analysis (e.g.,
Barenblatt, 2002), let us assume the converse, i.e., that numbers x and y exist such that F
∽ VxKy. Substituting F, V, and K from Eq. (4) and equating exponents in the ltm class, one
finds the solutions x = 1 and y = 1 not matching with 2x + y = 2. This proves that the
considered set (∆F, V, K) consists of three physically independent quantities.
The application of the mathematical concept of geometric similarity (Hill, 1950, Rashevsky,
1948; McMahon, 1975; Lin, 1982) introduced between cylindric-shape bodies through the
constraint ρb ALb = M (A is body’s cross-sectional area), where ρb is the invariable body density
(McMahon, 1975, 1984; Alexander, 2003; Bejan & Marden, 2006a, b), allows one to suggested
another equivalent set of candidates to the mutually independent determinants of mechanical
similarity, namely

T−1
∽

√

∆F

A
L−1

b , V ∽

√

∆F

A
, and ∆F ∽ KLb, (5)

chosen in the lt f class of unites and also depending neither on locomotor gaits nor
biomechanical models.

2.2.2 Unifying contsructal theory revisited

For the case of a running (or flying) animal of mass M with the constant horizontal speed V =
L/t, the constructal law calls for the minimization of the total destruction of work W per stride

2 These last two and other similar model-independent equations play the role of the definitive basic
equations in the scaling theory.

270 Theoretical Biomechanics

www.intechopen.com



Physical Insights Into Dynamic Similarity in Animal Locomotion. I. Theoretical Principles and Concepts 5

(and stroke) length L, represented as

W

L
=

W1

L
+

W2

L
=

MgH

Vt
+ CDρaV2L2

b. (6)

Here W1 is the vertical loss of energy associated with fall from the height H in the gravitational
field and W2 is the horizontal loss of energy related to the friction with air of density ρa (for
further details see Eqs. (1)-(4) in Bejan & Marden, 2006a). The minimization procedure of the

total loss function results in the optimal speed Vopt ∽
3

√

MH/L2
bt, clearly leaving uncertain a

choice of the dynamic variables t and H. Using the linear relation H ∽ Lb discussed in Eq. (3)
and postulating for the frictionless vertical motion that

t = topt =

√

2H

g
∽

√

Lb

g
∝ M1/6, (7)

the constructal theory suggests relations

Vopt ≈
(

ρb

ρa

)1/3

g1/2ρ−1/6
b M1/6 and T−1

opt ≈
(

ρb

ρa

)1/3

g1/2ρ1/6
b M−1/6 (8)

for the optimal speed and frequency, in the case of fast running and flying animals, as shown,
respectively, in Eqs. (5) and (22) and Eq. (23) in Bejan & Marden (2006a). Likewise, the
frictionless vertical motion has been postulated in the case of optimal swimming, for which
the energy loss W1 ∽ MgLb was adopted in Eq. (6). For further details, see Eq. (26) in Bejan &
Marden (2006a).

2.2.3 Minimum muscular action

Aiming to apply the principle of mechanical similarity formulated for closed inanimate
systems to musculoskeletal systems of different-sized animals, one should consider conditions
of the observation of effectively frictionless propagation of almost-closed (weekly open)
animate systems. These are all cases of efficient locomotion (maximum useful work at minimum
power consumption) realized at the resonant propagation frequency.
Since the animal locomotion is substantially muscular (e.g., McMahon, 1984; Rome et al., 1988;
Dickinson et al., 2000; Alexander, 2003), the body-system relations shown in Eqs. (4) and (5)
can be generalized to the muscle subsystem presented by a synergic group of locomotory
muscles of the effective muscle length Lm and cross-sectional area Am. In the approximation of
fully activated muscle states, the maximum muscle stiffness Km = Em Am/Lm is controlled
by the geometry-independent muscle rigidity, i.e., the elastic modulus amplitude Em, defined
by ratio of the peak muscle stress σm = ∆Fm/Am to the peak muscle strain εm = ∆Lm/Lm

(e.g., McMahon, 1975, 1984). Let us treat the mass specific muscular (or relative) force output
defined by µm ≡ ∆Fm/Mm as the muscular field generating active force ∆Fm through the muscle
mass Mm, which being a source of the force field µm plays the role of the motor mass (Marden
& Allen, 2002).
Dynamic motion parameters of the trajectory of body’s center of mass are linked to the
characteristic static body’s and muscle’s lengths via the common in biomechanics linear
relations, namely

∆L

L
∽

∆Lb

Lb
= εb ∽

∆Lm

Lm
= εm,

∆T

T
=

∆Tm

Tm
= β, and ∆F ∽ ∆Fm. (9)
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Dynamic regime λ = 0 Frequency Length Speed Force Mass

T−1
res , T−1

m = T−1 ∼ (K/M)1/2 T−1 ρ
− 1

2

b E
1
2
0 · L−1

b ρ
− 1

4

b E
1
4
0 · V− 1

2 F0 ρ
− 1

6

b E
1
2
0 · M− 1

3

L
(max)
dyn ∼ Lb, L = VT ρ

− 1
2

b E
1
2
0 · T1 L1 ρ

− 1
4

b E
1
4
m0 · V

1
2 F0 ρ

− 1
3

b · M
1
3

V
(max)
b-slow = ρ

− 1
2

b E
1
2
0 , Vm-slow T0 L0 ρ

− 1
2

b E
1
2
0 F0 M0

K
(max)
b-slow ∼ K

(max)
m-slow ρ

1
2

b E
1
2
0 A · T−1 E0 A · L−1

b ρ
1
4

b E
− 1

4
0 · V− 1

2 L−1 · F ρ
− 1

3

b E0 · M
1
3

σ
(max)
m-slow = εmE

(max)
m0 T0 L0

m V0
m F0

m M0
m

F
(max)
b-slow ∼ εb AE

(max)
b-slow T0 L0 V0 F0 ρ

− 2
3

b εbE0 · M
2
3

Stslow = T−1Lb/V = LbL−1 T0 Lb · L−1 V0 F0 M0

Frslow = V2/gLb g−1ρ
− 1

2

b E
1
2
0 ·T−1 g−1ρ−1

b E0·L−1
b g−1ρ

− 3
4

b E
3
4
0 ·V− 1

2 F0 g−1ρ
− 2

3

b E0·M−1/3

Table 1. The scaling rules of dynamic similarity in different-sized animals moving in the
stationary dynamic regime, associated with the activation of slow locomotor muscles. The
calculations are made on the basis of Eqs. (11) and (12) for muscular subsystem taken at

λ = 0 and then extended to the body system via Eq. (5). The abbreviations Em0 = E
(max)
m-slow

and E0 = E
(max)
b-slow for, respectively, muscle subsystem and body system are adopted.

Here ∆T is the limb ground contact time or the timing ∆Tm of an activated effective
locomotory muscle during maximal shortening (or lengthening) resulted in the duty factor
β. Considering effective muscles and bones (e.g., Kokshenev, 2007) of the musculoskeletal
system as whole, one may ignore the relatively small effects in scaling of muscle and bone
masses to body mass and thus introduce in Eqs. (3) and (9) the simplified (isometric)
approximation by scaling relations

L ∽ Lb ∽ Lm ∝ M1/3
∽ M1/3

m . (10)

When the principle of mechanical similarity is applied to the different-sized elastic body
musculoskeletal systems, including muscles, tendons, and bones, and moving at resonance in
a certain regime λ along geometrically similar body’s center of mass trajectories, the following
three scaling relations, namely

T−1
mλ = T−1

λ ∝

√

EmλL−1
m , Vmλ ∽ Vλ ∝

√

Emλ, and ∆Fmλ ∝ MmEmλL−1
m , (11)

are suggested as the three possible determinants of dynamic similarity discussed in Eq. (5).
One can see that the self-consistency between the body system, including locomotor muscle
subsystem, activated in the same dynamic regime λ, and the principle of mechanical similarity
formulated in Eq. (2), requires the dynamic elastic modulus of locomotory muscles in Eq. (11)
to be adjusted with the muscle length Lm and body length Lb through the scaling relations

Emλ ∝ (Lm)
λ
∝ (Lb)

λ and µmλ ∝ (Lm)
λ−1

∽ µλ ∝ (Lb)
λ−1. (12)

Thereby, the dynamic process of generation of the active force ∆Fmλ = µmλ Mm during muscle

contractions at the resonant frequency T−1
mλ and the optimized contraction velocity Vmλ is

patterned by the single dynamic exponent λ. In Tables 1 and 2, the scaling rules prescribed
by the minimum muscular action in efficiently moving animals are provided for two well
distinguished patterns of the dynamic similarity regimes λ = 0 and λ = 1.

272 Theoretical Biomechanics
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Dynamic regime λ = 1 Frequency Length Speed Force Mass

T−1
opt , T−1

res , T−1 ∼ (K/M)1/2 T−1 µ
1
2

1 · L
− 1

2

b µ1 · V−1 (ρbµ2
1 A)

1
2 ·F− 1

2 ρ
1
6

b µ
1
2

1 ·M
− 1

6

L
(max)
opt , L

(max)
trans , L µ1 · T2 L µ−1

1 · V2 (ρbµ1 A)−1 · F ρ
− 1

3

b · M
1
3

V
(max)
opt , V

(max)
trans , V = LT−1 µ1 · T1 µ

1
2

1 · L
1
2 V1 (ρb A)−

1
2 · F

1
2 ρ

− 1
6

b µ
1
2

1 ·M
1
6

K
(max)
b- f ast ∼ ρbµ

(max)
f ast A T0 L0 V0 F0 ρ

− 1
3

b µ1·M
2
3

σ
(max)
m- f ast = ∆Fm/Am ρmµm1 · T2 ρmµm1·Lm ρm · V2

m A−1
m · Fm ρ

2
3
mµm1·M

1
3
m

F
(max)
f ast /gM ∼ µ1/g T0 L0 V0 F0 M0

St f ast = T−1/VL−1
b = LbL−1 T0 Lb · L−1 V0 F0 M0

Fr f ast = V2/gLb ∼ µ1/g T0 L−1
b ·L V0 F0 M0

Table 2. The scaling rules of dynamic similarity between animals moving with gradually
changing speeds within the dynamically similar fast gaits. The corresponding dynamic
regime λ = 1 include optimal-speed stationary states and continuous transient dynamic
states, all associated with activation of the fast locomotory muscles. The calculations are
provided through Eqs. (11), (12), (5), and some other definitive basic equations discussed in

the text, all taken at λ = 1. The abbreviations µm1 = µ
(max)
m- f ast and µ1 = µ

(max)
b- f ast for, respectively,

muscle subsystem and body system are adopted.

3. Results and discussion

3.1 Minimum useful energy

Bejan & Marden (2006a, b) employed the principle of generation of the turbulent flow
structure to unify gait patterns of running, swimming, and flying. Specifically, the dynamic
similarity between animals across taxa is suggested as an optimal balance achieved between
the vertical loss of useful energy (lifting the bodyweight, which later drops) and the
horizontal loss caused by friction against the surrounding medium. Broadly speaking,
the minimization procedure of total energy losses, being consistent with the concept of
minimum cost of locomotion (e.g., Alexander, 2005), is underlaid by the minimization of
energy consumption, treated here in terms of the efficient locomotion required by resonance
conditions. Consequently, it is not surprising that the contsructal theory has demonstrated
its general consistency with scaling rules attributed to the special case of dynamic similarity
(Table 2). On the other hand, the optimization approach exemplified in Eq. (6), clearly
demonstrating that the empirical scaling relations for speed and frequency should be hold
in optimal running, flying and swimming, suggests that solely the gravitational field may
explain scaling factors in scaling rules shown in Eq. (8). Therefore, a delicate question on
the origin of basic scaling rules in the dynamic similarity remains unanswered in contsructal
theory.
However, the major disadvantage of the proposed principle is that the proper scaling relations

for optimal speed Vopt and frequency T−1
opt were in fact incorporated into contsructal theory

regardless of the minimization procedure. Indeed, the desired relations

V
(max)
opt ∝ Topt ∝

√
L ∽

√

Lb ∝ M1/6, (13)

underlying the theoretical findings in Eq. (8) could straightforwardly be derived from the
postulate adopted in Eq. (7), without recourse to the principle of minimum useful energy.
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Strictly, the postulated basic equation topt =
√

2H/g discussed in Eq. (7) has been borrowed
from frictionless Newtonian’s mechanics, arising from the spatiotemporal homogeneity of the
gravitational field. Indeed, one can see that Eqs. (7) and (13) is the special case discussed
in Eq. (2) at λ = 1. The proposed theory of dynamic similarity explains that instead of
the gravitational field, in fact adopted on ad hoc basis in Eq. (7), the muscular field determines
spatiotemporal homogeneity through the universal scaling exponents established for dynamic
characteristics of animals naturally tuned to the dynamic similarity regime λ = 1 (Table 2).
Without doubts, the gravity is important in terrestrial locomotion and the Froude number

related to potential gravitational energy (Fr = MV
(max)2
opt /MgLb) plays important role in

understanding of dynamic similarity in animate and inanimate systems (e.g.,Vaughan &
O’Malleyb, 2005). After Alexander & Jayes (1983), it is widely adopted that instead of scaling
relations shown in Eq. (13) the dynamic similarity between fast moving animals may be
determined by the requirement for Froude numbers to be constants. Indeed, the universality
of Froude numbers, i.e., Fr ∝ M0, straightforwardly provides the basic scaling rule for optimal
speed, namely

V
(max)
opt = (Fr · gLb)

1/2
∝ L1/2

b ∝ M1/6. (14)

With regard to the second basic scaling rule shown in Eq. (13), it follows from the definitive
basic equation for dynamic length L = VT and Eq. (14) providing

T−1
opt = V

(max)
opt L−1

opt ∽ (Fr · gL−1
b )1/2

∝ M−1/6, with Lopt/Lb ∝ M0. (15)

It is noteworthy that the optimal frequency is obtained under an additional requirement of
the relative dynamic length to be invariable with body mass, as shown in Eq. (15).

3.2 Maximum muscular efficiency

3.2.1 Realization of resonant states

During animal locomotion, chemical energy released by muscles in the form of muscular force
field and potential energy of the gravitational field, both being able to be stored in body’s system
in the corresponding forms of active-force and reactive-force elastic energy, are eventually
transformed into useful external body work and partially lost as a heat due to internal work
and external frictional effects. In a constant-speed walk, run, flight, and swim, attributed to
the dynamic similarity regime λ = 0, the total mechanical energy is almost unchanged and the
animate mechanical system is almost closed. In the non-stationary dynamic similarity regime
λ = 1 characteristic of the gradual change in speeds caused by the steady muscular field,
the total mechanical energy may be also unchanged because of the permanent consumption
of metabolic energy. The efficient propulsion of humans and other animals, in contrast to
human-made engines, is accompanied by the tuning of musculoskeletal system to natural
(resonant) propagation frequency (McMahon, 1975; Ahlborn & Blake, 2002), resulted in
the reduction to minimum the oxygen (Hoyt & Taylor, 1981) and metabolic energy (e.g.,
Ahlborn & Blake, 2002; Ahlborn et al., 2006) consumption. It has been demonstrated above,
that the requirement of minimum action of musculoskeletal system in animals provides the
major constraint in realization of dynamically equivalent (similar) states. Nevertheless, the
applicability of the key principle in analytical mechanics, driving frictionless systems, to real
animate systems characteristic of non-conservative muscle forces required a special physical
analysis. In the special case of the stationary (λ = 0) human walking (Kokshenev, 2004), the
speed-dependent frictional effects were shown to be weak and therefore effectively excluded
within the scope of a special dynamic perturbation theory. Likewise, the case of efficient
locomotion λ = 1, including moderate run and fast run modes in the fast gaits of animals, has
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required a generalization of Lagrangian’s formalism from the closed mechanical systems to
the weakly open, moving at resonance biomechanical systems (Kokshenev, 2010).
As the outcome of analytical study, the slow-walk and fast-walk modes in bipeds emerge
as the free-like body’s center of mass propagation composed by the forward translation
and the elliptic-cyclic backward rotations (Kokshenev, 2004). The optimal-speed stationary
regime (λ = 0) has been found to be consistent with a slow-walk-to-fast-walk continuous
mode transition between the two walk modes indicated by the highest symmetry (circular)
trajectory of body’s center of mass (Kokshenev, 2004, Fig. 2). In contrast, the discontinues in
humans fast-walk-to-slow-run transition is indicated by the absolute instability of the walk-gait
trajectory (Kokshenev, 2004, Fig. 2), signaling on the muscular field amplitude exceeding

gravitation, i.e., µrun > g. The formal condition µ
(mod)
walk-run = g, completed by that for the limb

duty factor β
(mod)
walk-run = 0.5, discussed by Ahlborn & Blake (2002) on the basis of the data for

humans started run (Alexander & Bennet-Clark, 1976), may be treated as two indicators of
the model-independent walk-to-run continuous transition, generally uncommon to terrestrial
animals. Hence, the provided above estimates for the transient muscle field amplitude
suggest the walk-to-run transition as a smoothed crossover between the slow-regime and the
fast-regime dynamic resonant states.
The natural ability of muscles to be tuned to various dynamic regimes is incorporated

in animate mechanical systems through the elastic active-force muscle modulus E
(max)
mλ , as

shown in Eqs. (11) and (12). Thereby, the muscle modulus, most likely sensitive to the
intrinsic dynamic muscle length (Kokshenev, 2009), establishes an additional dynamic degree
of freedom, not existing in skeletal bone subsystem and other inanimate elastic mechanical
systems. Conventionally, the stationary slow-speed dynamics (λ = 0) and optimal and
transient fast-speed dynamics (λ = 1) are attributed to the activation of the slow-twitch-fiber
muscles and fast-twitch-fiber muscles respectively recruited by animals during slow and
fast locomotion (Rome et al., 1980). As illustrative example in animal swimming, the
studies of gait patterns in fish (Videler & Weihs, 1982) revealed that slowly swimming
and quickly swimming fish exploit, respectively, red (slow fibre) muscles or white (fast
fibre) muscles, showing those contraction velocities at which recruited muscles work most
efficiently (Alexander, 1989).

3.2.2 Mechanical similarity against geometric similarity

Broadly speaking, the dynamic similarity observed through the universal scaling exponents
in scaling biomechanics is intimately related to the geometric similarity that can directly be
observed in animals of the same taxa through the body shape, including body’s locomotor
appendages, i.e., limbs, wings, and tails or fins. Mathematically, the geometric similarity
in animals is due to adopted spatial uniformity, preserving body shapes under arbitrary
linear transformations of linear dimensions of animals (Rashevsky, 1948; McMahon, 1975;
Lin, 1982). Mechanically, the dynamic similarity between animals across taxa arises from
the similarity established between the geometric and kinematic parameters of the body’s
point-mass trajectories and driving forces.
Following the formalism of analytical mechanics discussed in Eq. (2), the concept of
mechanical similarity has been discussed in physics (e.g., Duncan, 1953) and biomechanics
(Alexander & Jayes, 1983; Alexander, 1989, 2005) in terms of the three arbitrary
linear-transformation factors (a, b, and, say, c) preserving the homogeneity of all spatial (L),
temporal (T) and force (F) mechanical characteristics of animals moving in a certain fashion
or gait. Although no conceptual gap exists between the similarities in classical mechanics and
biomechanics, the fundamental constraints imposed on the initially chosen arbitrary factors
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of linear transformation, i.e., b = a1−λ/2 and c = aλ−1 , underlying Eq. (2) and providing
basic scaling rules of the dynamic similarity, namely

T−1
λ ∝ Lλ/2−1

b , Vλ ∝ Lλ/2
b , and ∆Fλ ∝ Lλ−1

b , with L/Lb ∝ M0, (16)

are generally ignored in experimental biology and even violated in some theoretical studies
mentioned in the Introduction. This analysis shows how the spatial uniformity, achieved via
the stabilization of dynamic length in relation to static length, determines the observation of
dynamic similarity in any dynamic regime λ.
The provided analysis explains why the model-dependent requirements of strict geometric
similarity, e.g., the requirement of the equality of joint angles in running animals (Alexander,
1989) or swinging angles in dynamically similar pendulums (Alexander, 2005), do not reduce
the dynamic similarity concept to the so-called strict dynamic similarity (Alexander, 1989, 2005).
First, one can see that both the angles may be expressed in terms of the swept angle Θ =
arcsin(β/2St) introduced in biomechanics of animal locomotion as a relative angle between
the leg spring and vertical (see, e.g., Fig. 1 in Farley et al., 1993), which is also known as the
maximum compass angle (Cynthia & Farley, 1998), modeling in turn the protraction-retraction
angle in bipeds (Gatesy & Biewener, 1991, Fig. 1). Second, the requirement of observation
of the dynamic similarity through scaling laws of the mechanical similarity reproduced in
Eq. (16) implies that the Strouhal number St (= Lb/L), as well as some other dimensionless
numbers, including the duty factor β (= ∆T/T), should be invariable across different-sized
animals, i.e., St ∽ β ∝ M0. One may infer that a rigorous requirement of the strict geometric
similarity on that the swing or other related angles (as well as relative stride lengths) must
be equal constants is the overestimated constraint of the dynamic similarity concept. In other
words, the requirement of dynamic angles to be mass independent, i.e., Θ ∝ M0, arising from
the the requirement of stabilization of relative dynamic lengths, i.e., St ∝ M0 , unambiguously
determines observation of the perfect dynamic similarity (Alexander, 1989).

3.2.3 Criterion, determinants, and indicators of dynamic similarity

Being the major requirement in realization of both universal dynamic regimes unifying
animals in a certain gait, the high mechanical efficiency of the musculoskeletal system
prescribed by minimum muscular action plays the role of the unique criterion of observation
of dynamic similarity.
The concept of mechanical similarity in biomechanics, consistent with that in analytical
mechanics, allows linear transformations of two dynamic (spatial and temporal) and one
mechanical (force or mass) characteristics through the three independent scaling factors.

Hence, the set (T−1, V, ∆F) of mutually independent and model-independent quantities,
chosen in Eq. (5) in the lt f class of units, can be treated as tentative candidates for the
determinants of dynamic similarity. The optimization of muscle-field interactions by the

minimum mechanical action (i) introduces new state-dependent scaling relations for T−1
λ , Vλ,

and ∆Fλ , which determine three scaling rules of the dynamic similarity, and (ii) reduces the
number of independent determinants from three to one, as discussed in Eq. (16). Since the

choice of the optimal speed Vλ by an animal is accomplished by the resonant frequency T−1
λ ,

the suggested principal set of determinants (T−1
λ , Vλ) does not generally excludes another set,

including the uniform muscular field or the uniform relative dynamic length, both required
by the high level mechanical efficiency. However, the observation of just only one of the
two basic scaling rules guarantees the observation of other features of dynamic similarity

in animals. Indeed, the observation of the scaling rule for stride frequency T−1
λ ∝ Lλ/2−1

b
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indicates stabilization of the relative dynamic length, as shown in Eqs. (15) and (16). Hence,
experimental observation of the constant Strouhal number in animals moving efficiently in
any similar gaits determines them as dynamically similar. When solely the fast gaits are
considered, the universal Strouhal number should be revealed along with the universal
Froude number Fr, whose stabilization in animals across body mass is equivalent to the
observation of scaling rule for the maximum amplitude of optimal and transient speeds

V
(max)
opt ∝ L1/2

b , as follows from Eqs. (14) and (16). If the principal determinants St or Fr,

each may play the role of the dynamic similarity criterion, are chosen for the corresponding
cases λ = 0 and λ = 1, other universal determinants, such as muscle stress, speed, in the first
case, and the Strouhal number and relative muscular field, in the second case, play the role of
the indicators of stabilization of the universal similar dynamic states. Moreover, in both cases
the indicators of dynamic similarity can be extended by the universal duty factors β ∝ M0 and
swept angles Θ ∝ M0.

3.2.4 Mechanically efficient slow and fast flyers

The stationary-state mode patterns of flight gaits were likely first noted by Hill (1950). He had
established that the wing frequencies of hovering birds are in inverse proportionality with the

linear size, that corresponds to the predicted frequency T
(pred)−1
hover ∽

√

E
(max)
m0 /ρmL−1

m (Table 1)
for wing muscles contracting in the stationary regime λ = 0. Hill’s pioneering observation of
the fundamental frequency-length scaling law, determining dynamic similarity in the efficient
flyers solely via the universal (speed-, period-, and mass-independent) slow-muscle elastic

modulus E
(max)
m0 (Table 1) can be compared with seminal Kepler’s law T

(exp)−1
planet ∝ L

(exp)−3/2
planet

(see Eq. (2) taken at λ = −1), determining the mechanical similarity between trajectories of
planets driven solely by gravitation. Later, the hovering flight motors were also recognized in

birds by observation of the wing frequencies T
(exp)−1
hover ∝ M−1/3 (Ellington, 1991), that is also

equivalent to observation of the universal Strouhal numbers Shover ∝ M0 (Table 1).
When an animal travels or cruises slowly for long distances, maintaining constant the optimal

speed V
(max)
cruis ∽

√

E
(max)
0 /ρb invariable with bodyweight and frequency (Table 1), or moves

throughout the terrestrial, air, or water environment resisting drag forces, the limbs, wings,
and fins are expected to be tuned via elastic muscle modulus to maintain universal muscular
pressure (Table 1). In turn, this effect gives rise to the constant limb-muscle safety factor (ratio
of muscle strength to peak functional stress), foreseeing by Hill (1950). Moreover, the peak

body force output F
(exp)
body ∝ M2/3, exerted on the environment during running, flying, and

swimming by animals ranged over nine orders of body mass, was documented by Alexander
(1985). The theoretical suggestion that the stationary-state mechanics, equilibrating all drag
forces, is due to slow locomotory muscles, is corroborated by the statistically regressed

data on the force output F
(max)
m-slow ∝ M2/3

m remarkably established in both biological and
human-made slow motors by Marden & Allen (2002).
The optimum-speed regime λ = 1 has been recognized through the equilibration of the
air drag by wings of flapping birds, manifesting the basic scaling rule for wing frequencies

T
(exp)−1
f lap ∝ M−1/6 (Ellington, 1991), also corresponding to the observation of S f lap ∝ M0

(Table 2). Earlier, the non-stationary flight regime has been foreseen by Hill’s notion that
larger birds flap their wings more slowly than smaller ones (Hill, 1950).
As explicitly shown in Eq. (16), the stabilization of the uniformity in Strouhal numbers in
both dynamic regimes λ = 0 and λ = 1 explains empirically puzzled animal flight and
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swim (Whitfield, 2003). Indeed, Taylor et al. (2003) experimentally established such a kind
of the universal similarity through the almost constant Strouhal numbers (laying between
0.2 and 0.4) in cruising with a high power efficiency dolphins, flapping birds, and bats.
This observation suggests two patterns of efficient flyers distinguished by hovering (λ = 0)
and flapping (λ = 1) modes of slow and fast flight gaits. The corresponding examples
of slow-swimming and fast-swimming motors are the gaits to swim established through
different swimming techniques for the same fish, using their pectoral fins to swim slowly, but
undulating the whole body to swim fast (Alexander, 1989). Unifying flying and swimming
animals in fast gaits, the data by Taylor et al. (2003) suggest the dynamic similarity pattern
of efficient flapping flyers and undulating swimmers. These and other introduced patterns of
dynamic similarity are studied in Kokshenev (2011).

3.2.5 Mechanically efficient fast animals

In experimental biology, it is well known that forces required for fast gaits in animals
are proportional to body weight, but since the force generation is more expensive of
metabolic energy in faster muscles, small animals show apparently low efficiencies in running
(Alexander, 1989). Efficient fast biological motors in running, flying, and swimming animals

were established by Marden & Allen (2002) through the scaling equation F
(max)
opt = µ

(max)
f ast M

(Table 2), where the relative force amplitude µ
(max)
f ast = 2g was re-estimated by Bejan & Marden

(2006a, Fig. 2C). Given that the muscular field in running, flying, and swimming animals is
twice as many as the gravitational field, adopted above for the lower threshold of a slow

run in the walk-to-run transition, the statistical data µ
(max)
f ast = 2g may be conventionally

adopted as a universal threshold of fast modes in fast gaits. This threshold associated with the
slow-run-to-fast run transient state λ = 1 may in turn determine the pattern of efficient fast
animals, including fast running mammals, reptiles, insects; flapping birds, bats, and insects;
undulating fish and crayfish, according to Marden & Allen (2002) and Bejan & Marden (2006a).

The pioneering observations of the transient-state speeds V
(exp)
trans and frequencies T

(exp)−1
trans at

the trot-to-gallop continuous transition in quadrupeds (V
(exp)
trot-gall ∝ M0.22±0.05 and T

(exp)−1
trot-gall

∝ M−0.15±0.03; Heglund et al., 1974; Heglund & Taylor, 1988), make evidence for, within
the experimental error, the predicted stabilization of the uniform (body mass independent)

muscular field, i.e., µ
(exp)
run ∝ M−0.07±0.08, when tested by the scaling relation µ

(pred)
trans ∽

VtransT−1
trans prescribed by dynamic regime λ = 1 (Table 2). Likewise, the same generic

dynamic regime explains stabilization of the uniformity in the muscular field activated in
13 running animals (from a mice to horses) observed indirectly by Heglund &Taylor (1988) at
experimental conditions of the preferred trotting speeds and the preferred galloping speeds,

providing respectively the determinants of similarity µ
(exp)
trot ∝ M0.09±0.07 and µ

(exp)
gall ∝

M0.02±0.07. The revealed large experimental error is most likely caused by small quadrupedal
species (one laboratory mice, two chipmunks, three squirrels, and three white rats of
bodyweight not exceeding one kg), which should be excluded from the dynamic similarity
pattern, as potentially having low mechanical efficiency (Alexander, 1989).

Bipeds, showing the resonant frequency T
(exp)−1
trans ∝ M−0.178 near the slow-walk-to-fast-run

transition (Gatesy & Biewener, 1991), indicate the dynamic similarity pattern of efficient

fast walkers. The scaling rule V
(exp)
opt ∝ M0.17 empirically established by Garland (1983)

for maximal speeds in running terrestrial mammals ranging in five orders in body mass

278 Theoretical Biomechanics

www.intechopen.com



Physical Insights Into Dynamic Similarity in Animal Locomotion. I. Theoretical Principles and Concepts 13

(from smallest bipedal rodents to largest quadrupedal elephants) indicates observation of the
pattern of efficient runners in mammals.
The dynamically similar continuous resonant states were clearly revealed by Farley et al.
(1993) in a trotting rat, dog, goat, horse and a hopping tammar wallaby and red kangaroo. The

realistic modeling on the basis of leg-spring model of animals of leg length L
(exp)
leg (∽ L

(exp)
b )

provided the following scaling equations for the stride frequency T
(exp)−1
run , peak force output

F
(exp)
run , maximum body stiffness K

(exp)
run , swept angle Θ

(exp)
run , and dynamic length change

∆L
(exp)
run , namely

T−1
run ∽ ∆T−1

run ∝ M−0.19±0.06 , F
(exp)
run = 30.1M0.97±0.14, K

(exp)
run ∝ M0.67±0.15,

Θ
(exp)
run ∝ M−0.03±0.1, and ∆L

(exp)
run ∽ L

(exp)
b ∝ M0.30±0.15. (17)

One can see that all the observed scaling exponents are consistent (within the experimental
error) with those predicted by the dynamic similarity regime λ = 1 described in Table 2.
These data introduce the dynamic similarity pattern of efficient trotters and hoppers.

4. Concluding remarks

Following the concept of mechanical similarity, underlaid by the key principle of minimum
action in analytical mechanics, the theory of dynamic similarity in animal locomotion is
proposed. Exploring the intrinsic property of locomotory muscles to be tuned, via the
variable muscle elasticity, to the natural cyclic frequency characteristic of high level efficiency
of locomotion, the scaling rules driving the dynamic similarity in inanimate mechanical
elastic systems are suggested for the special case of active-force animate elastic systems.
The linear-displacement dynamic approach to contracting locomotory muscles, whose
resonant frequencies are required by the principle of minimum mechanical action, establishes
two different universal patterns of the dynamic regimes of similarity in different-sized
animals distinguished by the dynamic scaling exponent λ. The determinants of the
stationary locomotion of animals moving at optimal constant speeds (the case λ = 0)
and the non-stationary locomotion at gradually changing speeds (λ = 1), including the
transient-mode speed transitions, are self-consistently inferred and described in Tables 1 and
2, respectively. Exemplified by the non-stationary dynamic regime λ = 1, the two principal
sets of determinants of the dynamic similarity are suggested by the universal exponents for
the speed and frequency scaled with body mass, which may be equivalently presented by the
corresponding Froude and Strouhal numbers or by other universal dimensionless numbers
determining the states of dynamic similarity in different-sized animals.
The primary determinant, playing the role of the unique criterion of the linear dynamic
similarity, is shown (in Eq. (16)) to be the Strouhal number, whose universality in animals
across body mass indicates establishing of the linearity between the stride or stroke length
and the body length in each animal, falling into one or other dynamically similar regime. In
the special case of non-stationary dynamic similarity controlled by fast locomotory muscles,
the Froude number may be equivalently chosen as a unique criterion of similarity, as
hypothesized by Alexander (Alexander, 1976; Alexander & Jayes, 1983; Alexander, 1989).
Since the scaling theory of similarity deals only with scaling relations, but not with scaling
equations, Alexander’s strict requirement that dynamic similarly between running animals
should equal Froude numbers is not generally required by the theory. Instead, the theory
of dynamic similarity stands only that changing with speed Froude numbers should be
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invariable with body mass in animals considered in a certain dynamic state or domain of
dynamically equivalent states. A generalization of the proposed theory of the discrete-state
dynamic similarity to continuous-state similarity in animals, determining, respectively, by
discrete equal and different variable magnitudes of the Froude numbers, will be discussed in
the next part of this study (Kokshenev, 2011).
The two kinds of dynamic similarity regimes in animals, well distinguished by the
scaling rules established for a number of mechanical characteristics, may explain seemingly
controversial experimental observations as well as illuminate some theoretical principles
conceptually inconsistent with the mechanical similarity principle of analytical mechanics.
Hill’s pioneering observation of bodyweight independence of optimal speeds in a hover
flight mode of sparrows and humming birds (Hill, 1950), showing a sharp inconsistency
(McMahon, 1975; Jones & Lindstedt, 1993) with the scaling rules for speeds in quadrupeds
established at the trot-to-gallop transition (Heglund et al., 1974) can readily be understood by
the observations of two distinct dynamic similarity regimes λ = 0 and λ = 1. Likewise, a
more recent claim on that the similarity between humans running at fixed speeds, accurately
simulated under the requirement of equal Froude numbers, was surprisingly found (Delattre
et al., 2009) to be in sharp disagreement with the scaling rules of dynamic similarity in
fast running animals reliably established by Farley et al. (1993). A new kind of similarity
discovered in running humans arrived the authors to a puzzle conclusion that neither of
Froude and Strouhal numbers is appropriate as determinant of dynamic similarity. In this
special case, the proposed theory tells us that the dynamic similarity between humans
running at the stationary-speed conditions (Table 1) cannot be constrained by constant Froude
numbers, as erroneously was adopted in the study by Delattre et al. (2009).
Another Hill’s surmise on the constant limb muscle stress, resulted in the universality of the
limb safety factor in animals efficiently moving in slow gaits, has been generalized without
grounds to all fast gaits by a number of researches. For example, in attempting to introduce
"equivalent speed" states λ = 1 during trot-to-gallop transition McMahon postulated a
constant stress in homologous muscles (McMahon, 1975, Table 4), when suggested the
uniform muscle stress σm-slow ∝ M0, corresponding to the case of λ = 0. The postulated
stress evidently contrasted with the already existing data on peak isometric stress, linearly
varying with sarcomere length (Huxley & Neidergerke, 1954), i.e., σm- f ast ∝ Lm (Table 2),
and the data on muscle stress later revealed the linearity to fiber length in running and
jumping animals (Alexander & Bennet-Clark, 1976). Likewise, when the axial-displacement
dynamic similarity (i.e., ∆Lm- f ast ∝ Lm) discussed for fast locomotory muscles is generalized

to non-axial-displacement elastic similarity in long limb mammalian bones (∆L
(bend)
bone ∝ Dbone,

where Dbone is bone’s diameter; Kokshenev, 2007, Eq. (15)) new puzzled consequences of
biomechanical scaling may be revealed. One impressive example is the axial compressive

stress σ
(axial)
bone ∝ Lbone, estimated as the peak limb bone stress σ

(exp)
bone ∝ M0.28 for the avian

taxa, matching well the spring-leg data σ
(exp)
leg ∝ M0.30 from running quadrupeds following

from Eq. (17), has been shown to provide the anecdotal small largest terrestrial giant weight,
no much greater than 20 kg (Biewener, 2005). This puzzle was understood by that instead

of axial stress, which is in fact non-critical, the bending stress σ
(bend)
bone ∝ Dbone/Lbone, having

small but non-zero positive exponent, i.e., σ
(bend)
bone ∝ M0.08, likely establishes the critical mass

of terrestrial giants (Kokshenev & Christiansen, 2011).
One more "least-action principle" in biomechanics was recently declared for walk gaits in
humans (Fan et al., 2009). The standard variational procedure was worked out to establish
a symmetric point (T/2) in the middle of the two-step stride cycle in human gaits, at which all
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important mechanical characteristics expose the extreme (minimum or maximum) behavior.
This misleading principle of the existence of the symmetrical point, even though consistent
with the well-known symmetrical nature of a walk and a run, due to which each equivalent
leg moves half a stride cycle out of other leg (e.g., Alexander & Jayes, 1983, p.142) was in fact
incorporated, likely unconsciously, into the studied model through symmetric mechanics of
the supposedly equivalent human legs.
The constructal theory of dynamic similarity by Bejan & Marden (2006a, b) treats the potential
energy of the body falling in the gravitational field g as a useful energy of terrestrial
locomotion. Considering only the aerial phase in a stride cycle, the theory excludes the

ground contact and thereby all muscular forces providing the body propulsion force µ
(exp)
f ast M.

It is surprisingly that the same theoretical framework excluding muscle forces has resulted

in the muscular field µ
(exp)
f ast = 2g, since the suggested scaling factors in the basic scaling

relations, shown in Eq. (8), are weighted solely by the gravitational field. Hence, it has
been demonstrated by the authors that consistency between the principle of destruction of
minimum useful energy in the gravitational field (the case λ = 1 in Eq. (2)) may exist under
the additional condition postulated in Eq. (7), in fact borrowed from another, more general
mechanical principle.
Following the requirement of equality of Froude numbers, experimental biologists mostly
study the discrete-state dynamic similarity in animals. For example, Bullimore & Burn
(2006) have remarkably established (see their Table 4) the universal criterion of dynamic

similarity St
(exp)
trot (= 0.70, 0.67, and 0.60) from 21 horses trotting at arbitrary chosen fixed

Froude numbers Fr
(exp)
trot (= 0.5, 0.75, and 1). This finding corroborates McMahon’s suggestion

(acknowledged by Alexander, 1989) on that besides the Froude number the Strouhal number
should be simultaneously constant, as followed from the universality of the Groucho number
(McMahon et al., 1987). In contrast, the study by Bullimore & Donelan (2008) of the
criteria of dynamic similarity in spring-mass modeled animals suggested four independent
determinants, at least. Given that the authors have clearly convinced the reader of that the
equality of only two dimensionless numbers is not sufficient for establishing of the dynamic
similarity between in-plane modeled animals (Bullimore & Donelan, 2008, Fig. 4), a question
arises about what kind of dynamic similarity was reported by Bullimore & Burn (2006)
established in real trotting horses through the only one determinant Fr?
Bullimore & Donelan (2008, Table 2) have analyzed the well known solutions of the planar
spring-mass model through Buckingham’s Π-theorem of the dimensional method (e.g.,
Barenblatt, 2002) and claimed that minimum four independent dimensionless numbers
following from the set of mechanical quantities (V, K, Vz, Θ0) are required for the observation
of dynamic similarity in bouncing modes of animals. First, one can see that the landing
angle Θ0 should be excluded from the proposed set of physically independent quantities,
since the horizontal landing speed V and the vertical landing speed Vz definitively determine
the angle Θ0 = arctg(V/Vz), as can be inferred from Fig. 1 by Bullimore & Donelan (2008).
Then, the requirement to control vertical speed via the model-independent relation Vz ∽ µβT

allows one to reduce the proposed set to the equivalent set (T−1, V, µ, β), where the body
stiffness is substituted by muscular field via the body stiffness K ∽ ρb Aµ. The resulted set
of four quantities (St, Fr, µ, β) is dynamically equivalent to the originally suggested set (V,
K, Vz, Θ0), but among three determinants (St, Fr, µ) the only one is physically independent.
Two other dimensionless numbers play the role of auxiliary determinants in the dynamic
similarity, whereas the duty factor may indicate transient-mode and crossover-gait universal
states of the same dynamic regime λ = 1. Hence, it has been repeatedly demonstrated that the
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application of Buckingham’s theorem only provides a way of generating sets of dimensionless
parameters, but does not indicate or even substitute most physically meaningful relations.
This well known statement is also illustrated by the provided above study of two scaling
equations Eq. (2) and (5), suggesting the same set of three possible determinants of dynamic
similarity, respectively provided by the physical concept and the dimensional method.
When comparing the frameworks of dynamic similarity and elastic similarity, respectively
elaborated to scale the patterns of fast locomotion gaits and the patterns of primary functions
(motor, brake, strut, or spring) of locomotory muscles (Kokshenev, 2008, Table 1), belonging to
the same body’s elastic system, one can see that in both cases the muscle contractions fall into
the same dynamic similarity regime λ = 1 generally governed by the same uniform muscular
field. However, the two distinct (gait and function) muscle patters should not provide the
same scaling rules for dynamic muscle characteristics, including the dynamic length noted
by Alexander (1989, p.1212), since the dynamic conditions of muscle cycling are distinct.
Indeed, the dynamic cycling in similar locomotion is synchronized with the collective muscle
dynamics, corresponding to the condition of maximum overall-body mechanical efficiency,
whereas the elastic similarity between individual muscles specialized to a certain mechanical
function is likely governed by the requirement of maximum power, generally not matching
the condition of minimal oxygen consumption. The observation by Hill (1950, Fig. 1)
that the muscle power and efficiency maxima are rather blunt and close in space makes
it possible to work at maximum power with nearly maximum efficiency. Further analysis
of non-linear dynamic similarity in muscle functions and animal locomotion, including
powering intermittent gaits (Alexander, 1989, p.1200), will be discussed elsewhere.
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