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1. Introduction 

In the past decade computer models have become very popular in the field of 
biomechanics due to exponentially increasing computer power. Biomechanical computer 
models can roughly be subdivided into two groups: multi-body models and numerical 
models. The theoretical aspects of both modelling strategies will be introduced. However, 
the focus of this chapter lies on demonstrating the power and versatility of computer 
models in the field of biomechanics by presenting sophisticated finite element models of 
human body parts. Special attention is paid to explain the setup of individual models 
using medical scan data. In order to reach the goal of individualising the model a chain of 
tools including medical imaging, image acquisition and processing, mesh generation, 
material modelling and finite element simulation –possibly on parallel computer 
architectures- becomes necessary. The basic concepts of these tools are described and 
application results are presented. The chapter ends with a short outlook into the future of 
computer biomechanics. 
The field of biomechanics suffers from one very severe restriction; in general it is not 

possible for ethical reasons to measure forces and pressure inside the human body. Thus, 

typical measurement technology in biomechanics works on the interface between body and 

environment. Force platforms dynamically quantify reaction forces when a person is 

walking or running across the sensor, electromyography (EMG) monitors action potentials 

of contracting muscles with electrodes attached to the human skin. The information 

provided by the measurement technology is very important to investigate the mechanics of 

movements, but is not sufficient to answer questions like: 

• How can we optimise movements (e.g. in sports or rehabilitation) in order to minimise 
the loads on the joints? How can we better understand mechanisms of injury and thus 
improve prevention? These questions are related to the human body.  

• How do we have to design the equipment to optimally suit the patient’s or the athlete’s 
requirements in terms of mechanical behaviour? These questions are related to the 
medical or technical equipment. This optimisation process has three aspects:  

• Ineffective and destructive loading has to be minimised (e.g. by damping through 
innovative cushions in the shoe sole or improved orthotic devices). 

• Body protection has to be maximised (e.g. through better design of cyclists’ helmets 
or the interior of automobiles). 
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• The patient’s outcome and the athlete’s output have to be maximised (e.g. by a 
novel concept for the design a prosthesis or the aerodynamics of a bob sleigh). 

The only possible way to answer the questions related to the human body is to set up 
mechanical models of the human body or at least of human body parts. The setup of a 
biomechanical model is the only possibility to gain insight into the mechanical behaviour of 
the inner human body. Thus, modelling has become extremely popular because it –to some 
extent- heals the fundamental dilemma of biomechanics that has been described at the 
beginning of the chapter. Therefore, a software tool chain for the automatic generation of 
individual anatomical structures is presented in this book chapter. The setup of models 
representing medical or sports equipment is also an important task in computational 
biomechanics. Here, computer analyses are applied to better understand the mechanics of 
equipment during exercise. Despite the success of modelling techniques in the field of 
biomechanics, measurement technology still plays an important role: the information 
provided by the measurements is either input for a model (e.g. reaction forces acting on the 
foot) or used to validate the model (e.g. comparing the simulation results with EMG data). 
Thus, it is almost trivial to mention that models are of no scientific use without validation. 
When looking at the progress being made in the field of biomechanical modelling one can 
observe two major directions of development:  

• Multi body systems (MBS) have been set up yielding important results in prevention 
and sports (Gruber et al.,1998; Blajer & Czaplicki, 2001; Wojtyra, 2003).  

• Numerical models using finite elements (FEM) or computational fluid dynamics (CFD) 
have been successfully applied to a variety of biomechanical problems such as 
improving injury prevention (Penrose & Hose, 1998), ameliorating the design of 
equipment (Dabnichki & Avital, 2006) and for optimising movement techniques 
(Wangerin et al., 2007). 

Both types of models have their advantages and disadvantages: numerical models enable 
the computation of the whole body’s deformation, whereas multi-body models only provide 
forces at a limited number of body points. But, the price to pay for taking into account the 
body’s deformation is a much higher demand in terms of computer power for the finite 
element method. This fact partially explains why sometimes parallel computers enter the 
stage in order to arrive at accurate FE results. Meanwhile, software packages are available 
that enable the user to use both methods, MBS and FEM simultaneously. The remainder of 
this text is organised as follows: the next chapter deals with the basic concept of multi body 
models to then discuss one MBS model in detail. The subsequent chapter gives a short 
introduction to the finite element method, describes a software tool chain to set up FE 
models of human body parts starting from medical image data. Chapter 4 provides insight 
into two example applications. Finally, a short outlook into the future of computer 
modelling in the field of biomechanics is given. 

2. Multi body systems in biomechanics 

Within the last two decades multi body models have frequently been applied to solve 
biomechanical problems (see Figure 1). Some selected MB applications are for instance 
simulations for impact analysis (Gruber et al.,1998), investigations of the trampoline 
jumping (Blajer & Czaplicki, 2001), studies about walking and running (Wojtyra, 2003) or 
the discussion of forces encountered in bicycle sports (Wangerin et al., 2007). Multi body 
systems can be used in two different ways: as forward or as inverse models. Here, we focus 
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on forward models. The physical forces and moments (e.g. gravitation and external forces, 
see Figure 2) are the given quantities. Together with geometric data (e.g. length of body 
segment) and mechanical parameters (e.g. moments of inertia J, centre of mass) the resulting 
body movement can be computed. The movement is fully described by the laws of 
Newtonian dynamics that is mathematically described by the following equations. 

 aF m=  (1) 

 αM J=  (2) 

In general, F, a, M and α are three-dimensional vectors denoting force, linear acceleration, 
moments and angular acceleration respectively. The mass m is a scalar and the moment of 
inertia J is in general a tensor represented by a 3x3 matrix. To be able to solve the underlying 
differential equations a kinematical chain of simple geometric entities (e.g. an ellipsoid 
representing the thigh) has to be set up (see Figures 1 and 2). In order to arrive at the 
quantities of interest (e.g. the load in the hip joint while landing) segment after segment has 
to be processed. The segments are linked by joints whose degrees of freedom are defined 
according to those of the anatomical articulations. The rigid body motion (i.e. translation 
and rotation) of the current segment (e.g. the foot) can be calculated when the external 
forces (e.g. measured by a force platform) and the body weight of the segment are given. 
The mechanical influence of the next segment in the chain (e.g. the shank) on the current 
segment is represented by a reaction force. These reaction forces are most interesting as 
they give a measure of the load present in the joint during sports exercise. The reaction 
force determined for one segment is then input (only switching the sign) for the 
calculation of the rigid body motion of the next segment. After having processed all body 
segments the complete dynamics for the motion of interest is computable if a time 
integration scheme is applied. Figure 2 shows the results of such a computation for 
different kinds of landing after a jump. The reaction forces in the hip joint are depicted for 
a soft landing (with the use of the body damping system) and a very hard landing (with 
the body kept stiff). The analysis shows that peak force in the hip joint is more than 
doubled for the hard landing. The forward model has to be validated against 
experimental data. Here, the measurement of the landing phase for the different types of 
landing are monitored and subsequently compared with the body reaction forces 
calculated with the multi-body model. The simulation results are in good accordance with 
the experimental data. Another example application of MB models in the field of sports is 
briefly presented in Figure 3. A back flip jump has been investigated with three different 
analysis tools. The last row shows the results of a forward solution using a multi-body 
model of the human body. The computed motion almost perfectly matches the real body 
movement that is captured by a high-speed camera depicted in the second row. The first 
row shows the typical result of a motion analysis. 

3. The finite element method 

3.1 A short history 
The finite element method (FEM) is a very popular tool in the field of (fluid)-mechanical and 
electrical engineering to solve partial differential equations (PDEs) on a computer. The first 
application of the FEM in biomechanics was presented in 1972. FEM was used to build a 
model of the human femur for orthopaedic applications (Brekelmans et al., 1972). The authors  
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Fig. 1. Multi-body models in different visualisations. 

set up a two-dimensional isotropic model with roughly 1000 triangular elements and 

investigated different loading conditions for the human leg. Due to increasing computer 

power it soon became possible to realise three-dimensional models enabling an improved 

representation of the complex anatomy of human body parts. Huiskes and Chao, 1983 gave 

an overview of the first decade of Finite Element modelling in the field of orthopaedic 

biomechanics. In the last three decades the number of FE models grew exponentially and 

the application areas cover a large variety of biomechanical problems. Currently, FE models 

are widely used in research and industry. The application spectrum ranges from trauma to 

sports-medical biomechanics. This is not only explained by the rapidly increasing 

availability of fast computers (today with multi-core processors) but also by the advent of 

efficient algorithms exploiting the advantages of parallel hardware architectures. 
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Fig. 2. Link segment model of the human leg and calculated forces in the hip joint for 
different kinds of landing (dotted line=soft landing, straight line =hard landing).  

 

 
 

Fig. 3. The analysis of a back flip by motion analysis, high speed video and multi body 
models. 

3.2 The basic concept of the finite element method 
The basic idea of FEM is quite simple: let us assume that a physical problem that can be 
described by a partial differential equation which is defined on a complex geometry (e.g. the 
human head or knee). Due to the complex geometry an analytical (i.e. a mathematically 
correct) solution is impossible. Perfect mathematical solutions can only be determined if the 
system under consideration has a simple geometry (e.g. a sphere or an ellipsoid). At this 
point FEM enters the stage: the idea is to approximate the complex geometry by a multitude 
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of simple geometric entities (e.g. triangular, tetrahedral or hexahedral elements). Each 
element is then individually processed. Within an element adequate functions (so-called 
basis functions) are chosen that are used to interpolate the unknown function. The general 
procedure of FEM is summarised in six steps: 
a. Generation of a discrete representation of the object of interest.  
The mesh generation step is crucial for the rest of the analysis as the spatial resolution and 
the element quality to a large extent affect the robustness and the accuracy of the simulation 
result. In order to achieve high accuracy in a physically interesting region (e.g. the area of 
large deformation in an impact scenario) a mesh refinement in such regions of special 
interest is indicated. Mesh refinement means to increase the number of elements and 
likewise the number of mesh nodes (in the simplest case nodes can be regarded as the 
corner points of an element). Thus, FE meshes can have millions of mesh nodes. The result 
of 3D mechanical FE study is the displacement function of the nodes (i.e. the body’s 
deformation) in three dimensions of space. 
b. Defining the physical behaviour 
In order to set up a realistic model the physical behaviour of the object has to be integrated. 

At this stage two important decisions have to be made. An appropriate material model (e.g. 

elastic or viscoelastic behaviour) has to be chosen and the boundary conditions (e.g. fixed or 

free) have to be selected. The simulation results are very sensitive to these settings. Human 

soft tissue can be modelled in the simplest case by assuming linear elastic behaviour. Here, 

two mechanical parameters (Young’s modulus and Poisson’s ratio) suffice. However, the 

results provided by such a simple model might not be satisfactory. 

c. Setup of the stiffness matrix 
For each finite element a stiffness matrix has to be set up. A prerequisite for this step is the 

choice of adequate interpolation or basis functions within an element. Depending on the 

number of nodes of the element (e.g. a tetrahedral element can be defined to have four 

nodes on each of its corners or ten if nodes on the connecting lines are added) the 

interpolation functions are chosen to be linear or quadratic. Increasing the polynomial order 

improves the accuracy of the simulation results, but the price to pay is a higher demand in 

terms of computer resources. The element stiffness matrices are then summed up (taking 

into account the element connectivity) to form the global stiffness matrix K that represents 

the complete system. If a transient or dynamic FE analysis is desired a mass matrix M and a 

damping matrix D have to be assembled to describe the inertial and the damping behaviour 

of the system respectively. 

d. Numerical solution of the problem 
After the system matrices M, D and K have been assembled a numerical equation solver is 

started to calculate the vector of nodal displacements U of the body when an external force 

defined by a force F is applied. The simplest FE analysis is the computation of the new static 

equilibrium for a body under load. The equation system to solve is then given by 

 FKU = . (3) 

Sometimes it is of great interest for the developer what the eigenfrequencies ω of an object 
are and how the corresponding eigenmodes U look like. Then the eigenvalue equation 
system looks like 

 MUKU 2
ω=  (4) 
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In general, only a few of the eigenmodes U are of interest. To solve the above equation 
system sophisticated software is needed. For a dynamical analysis the velocities and 
accelerations of the mesh nodes are calculated as well. The integration scheme is then 
solving the following system of linear equations. 

 0)()()( =++ ttt KUUDUM 
 (5) 

The purpose of the next chapter is to give a detailed description of the workflow for creating 
finite element models of human body parts starting with medical image acquisition. 

4. FE Applications in biomechanics 

4.1 A high resolution model for impact studies 
In principle, accurate FE calculations can be carried out on personal computers. However, 
very complex simulations are candidates for the use of high performance computing. In 
particular, applications stemming from the field of biomechanics can profit from the use of 
parallel computers (Hartmann et al., 2001). The complex geometry of anatomical structures 
often requires a very high spatial resolution of the model leading to possibly huge demand 
of computer power. In Figure 4 an automatic tool chain to generate individual models of 
human body parts is presented that takes advantage of the application of parallel 
computers. The software environment has been tested for impact analyses on the human 
head. It includes the complete chain of tools necessary for the geometric model generation 
from medical scan data (segmentation, mesh generation and mesh manipulation), computer 
simulation and visualisation. The software tools are public domain and are available on the 
web (Berti,2010).  
 

         

Fig. 4. From medical scan data to finite elements. 
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The first step is the identification of anatomical structures of interest in a 3D voxel dataset 
derived from medical scan data (CT or MRI). After this image processing step follows the 
geometric modelling of the structures identified in the previous step. The important 
difference to standard engineering problems is the lack of continuum geometry. The starting 
point is a discrete voxel dataset with a typical resolution of 1 mm or less. The chosen 
algorithm to generate a discrete representation of the object suitable for FE simulations is 
based on an octree data structure. It allows the fast generation of very large tetrahedral and 
hexahedral meshes. The scan data provide information about geometry only. The computer 
model is not complete without initial and boundary conditions and reliable information 
about material behaviour. The FE code for solving the underlying PDE is fully parallel and 
runs on a Linux cluster with distributed memory architecture. This enables the calculation of 
millions of unknowns.  
 

 

Fig. 5. Evolution of a pressure wave in the brain after frontal impact. 

Figure 5 shows an example of a high-resolution impact analysis based on the above 
described tool chain. This analysis investigated the mechanics of the coup-contrecoup, a 
phenomenon that is well known in neurology. After a heavy (often deadly) impact to the 
forehead the neurologist observes a brain contusion at the frontal brain and surprisingly 
enough a second contusion at the occipital brain lobe. The calculation that provides an FE 
solution for equation (5) shows that there are two distinct regions of pressure developing in 
the brain. In the frontal region an area of increased pressure is spreading out whilst on the 
opposite side an area of low pressure is starting to grow. Low and high-pressure zones are 
related to an increased risk of brain damage. Thus, the simulation confirms the clinical 
findings. Furthermore, the results have been validated against crash experiments proving 
the reliability of the FE model (Hartmann & Kruggel, 1998). However, for many applications 
the use of parallel computers is not necessary. But the pre-processing becomes much more 
sophisticated because the number of finite elements has to be controlled during the meshing 
process. Mesh regions of high physical interest have to be refined whereas other mesh areas 
might show a lower spatial resolution. This explains the demand for commercial meshing 
and simulation tools. In the following chapter a very complex model of the human knee 
joint is described. The model is developed on a typical desktop PC making use of 
commercial software. 
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4.2 A model for contact analysis in the tibio-femoral joint 
4.2.1 Introduction 
Due to the complex anatomy and the high loading the knee joint is one of the most 
frequently injured joints of the human body. In addition to injuries like ruptures of the 
ligaments caused by accidents, chronic diseases as osteoarthritis affect a high amount of the 
population. Caused by the estimated demographic progression an increase of total knee 
joint replacements will be observed in the near future. FE models help to understand the 
behaviour of the structures of the human knee joint under dynamic loading. The strain on 
the cartilage and the load distribution effects of the menisci can show how the load is 
transferred through the different anatomical parts. Another line of application is the 
investigation of the mechanics of the main ligaments of the knee joint. The anterior and 
posterior cruciate ligaments (ACL, PCL) and the medial and lateral collateral ligaments 
(MCL, PCL) play an important role in stabilising the knee joint during daily activities and 
restrain the joint motion in nearly all degrees of freedom. The understanding of the 
combined role of the knee joint structures in stabilising and restraining the motion of the 
joint is fundamental for diagnostic procedures (Blankevoort & Huiskes, 1991). This 
knowledge can help to develop interventions such as training strategies or surgical 
procedures for the prevention of a knee joint disease. Also an optimization of orthopaedic 
devices is possible by the use of FE simulations. Even though many studies have been 
done, the kinematic and kinetic behaviour of the human knee joint is still not fully 
understood. Furthermore, the complex injury mechanisms and the development of 
degenerative joint injuries need additional research. Experimental studies often cannot 
satisfy this demand due to several limitations like for instance their high costs, the 
difficult measuring situation and the fact that the experiments can hardly be reproduced. 
As shown at the beginning of this section accurate FE models have proven to be a good 
alternative in determining knee joint mechanics. In order to get reliable and accurate 
results a good segmentation of the anatomical structures is highly important. Other 
quality influencing parameters are the mesh resolution and the choice of the finite 
elements. Most of the commercial meshing software products offer the possibility to 
create surface or volume meshes. The quality of the models has become much better 
within the last decade because of the high-performance computer chips that enable more 
complex and detailed models with smaller elements. In order to get an idea of the 
improvement of FE modelling related to biomechanics of the knee joint we will briefly 
describe some interesting models developed in the last twenty years. 
A three dimensional model of the human knee joint was presented by Blankevoort et al., 
1991, to investigate the articular contact of femur and tibia. The paper gave a good 
mathematical description of the modelling process and the material properties for the 
different structures. A more detailed model with 798 eight-node solid elements for the 
cartilage and the menisci, 1212 truss elements for the reinforcing of the solid elements was 
built to simulate the compression of the knee joint. Only 39 uniaxial elements represented 
the ligaments (Bendjaballah et al., 1995). Two years later the same authors restructured the 
model to study the biomechanical influence of varus-valgus (Bendjaballah et al., 1997) 
followed by an analysis of the tibio-femoral joint in axial rotation (Jilani et al., 1997). These 
studies are good examples for the advantages of FE models. After a detailed geometry 
reconstruction and a reliable validation process a lot of biomechanical problems can be 
explored with only few variations of the same model saving time and money. The 
availability of commercial software tools and faster multi-core computers lead to an 
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increased number of models and application fields such as prosthesis development (Godest 
et al., 2002; Soncini et al., 2002).  

4.2.2 Image acquisition  
The reconstruction process of the individual geometry of the investigated object is based 

on medical image data obtained by Computed Tomography (CT) or Magnetic Resonance 

Imaging (MRI). Both methods create two-dimensional images with a predefined  

slice thickness and slice distance of a specified region. A set of these slices is called image 

stack and represents a three-dimensional recording of the knee joint. The advantage  

of using MRI is the possibility to visualise muscles and ligaments in addition to the  

bony structures whereas CT gives a better representation of the bony structures. It is 

obvious that the choice of the imaging procedure is depending on the specific research 

question.  

 

 

Fig. 6. Image stack of the knee joint from MRI, b) different orientations of the images 

In the study presented it is important to have a nearly full representation of the knee joint 

including the articulating bones (femur, tibia and patella) and also the stabilizing ligaments 

and the meniscus. The images of a healthy female knee joint are taken in a Philips Gyroscan 

Intera MRI with a field intensity of 1.0 Tesla. 

We use the software Amira (Version 4.0, Mercury Systems) for the data visualisation and 

segmentation. The program offers the option to apply several image processing tools such as 

filters for a better differentiation of the structural edges resulting in a more accurate 

segmentation. In order to get a first and fast overview of the joint geometry a volume 

rendering depending on the grey values can be done. From a clinical point of view the 

deviations of the grey values within a structure can show possible pathological changes (for 

example in the cartilage or the bones). 

(a) (b)
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4.2.3 Segmentation process 
The segmentation of the images is done to define anatomical structures in the three-
dimensional image stack. This image processing is an important step in the workflow and 
crucial for the quality of the simulation results. Segmentation can be done with respect to 
different kinds of concepts; but the output remains the same. A range of grey values 
characterise the different structures in an image. Different automatic segmentation principles 
are based on pixel grey values, region or edge detection. These can be used for images in 
which the anatomical structures show a huge difference in the grey values. For images of the 
knee joint obtained by MRI a full automatic segmentation is not possible due to the fact that the 
differences of grey values are not high enough. Therefore it is recommended to use a semi-
automatic segmentation, which starts with one of the automatic segmentation principles for 
detection of large connected areas. After this pre- segmentation an interactive improvement of 
the segmentation by hand leads to a clearly defined differentiation of the structures. A short 
overview of the numerous automatic methods and the workflow of the process will be shown 
in the following. The threshold operation is one of the best-known automatic detection 
procedures. It belongs to the pixel-based procedures, is fast but not very accurate for 
homogeneous images. It is often used for fast overview segmentations, if no detailed 
information is necessary. The algorithm compares each pixel grey value with a user-defined 
threshold; the pixel is assigned to the structure if the pixel value is in the range of the 
threshold. The application on the whole image is called global thresholding which can often 
lead to an excluding of pixels that belong to the same structure. Better results can be obtained 
by using a local thresholding, where the image is separated into different areas with varying 
thresholds. As mentioned in the beginning it is not sensible enough to detect small changes in 
an image, but can be applied on regions with nearly the same grey values like the bones.  
Another method to identify different regions in an image is based on edge detection. The 

principle of operation can be compared to the threshold method. Instead of defining a specific 
value the algorithm checks for grey value changes in an image by comparing two 
neighbouring pixels. Is there a clear difference of their grey values a part of the edge is 
detected and two structures are found. The combining of all grey values differences provides a 
line between the detected parts and all pixels of one region are then merged. In the field of 
image processing the Sobel-operator, the Laplace-operator or the gradient search are well 
known filters to find edges in an image. The detected edges have to be combined by special 
edge tracing algorithms. Like with the threshold method the edge detection algorithm is often 
not sensitive enough for a satisfying segmentation, so that a manual improvement is applied.  
Figure 7 illustrates the mentioned problems occurring with the automatic segmentation 
algorithms. As a simple example a pure automatic segmentation of the femur is shown on 
the left (a). It can be seen that it was not possible to define the threshold such that only the 
bony parts are detected. The expected edge is not straight-lined; in regions with similar grey 
values protuberances can be found and the inner part is not completely detected. Without a 
manual correction of the border it is not possible to detect a clear defined region by only 
defining a threshold.  
Therefore different tools are available to mark areas, which are incorrectly detected or 
omitted. After the whole structure is marked it is added to the specified part.  
In this example the automatic detection can be applied to all 100 slices at the same time, but 
this also increases the number of errors because the grey values of a specified structure 
differ from image to image in the image stack. For the above-mentioned reasons it is only 
applicable for the large bony structures. The soft tissues like the meniscus or the ligaments 
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cannot be detected automatically. The homogeneous grey value parts of the soft tissue in the 
middle of the knee joint and the partly thin cartilage are completely manually segmented 
with a live wire procedure. In total 11 structures in the 100 slices are segmented. This is 
needed in the following meshing procedure and for the subsequent calculations of the FE 
solver. An example of one segmented slice is shown in Figure 8.  
 

 

Fig. 7. a) Automatic segmentation of the femur with protuberances, b) segmented femur 
after improvement 

 

 

Fig. 8. Fully segmented slice of the knee joint. 

(a
)

(b
)
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Due to the image acquisition procedure a specified slice thickness and distance is given 
causing errors in the reconstruction process. The gap between each slice does not provide 
any information about the shape of the anatomic structures. This leads to stairs in the 3D 
reconstruction in areas where the alteration of the structures is smaller then the slice 
distance. It is obvious that these stairs adulterate not only the design but also the simulation 
results. Therefore it is mandatory to make the stairs as small as possible by interpolating the 
segmented structures and smoothing the surface, before the meshing begins.  
 

 

Fig. 9. a) Reconstructed femur with existing stairs due to the slice distance, b) surface of the 
femur after the interpolation and smoothing process 

In the interpolation process imaginary points, calculated with the existing points of the 

segmentation are included between two slices thus minimising the effect of the stairs. This 

can either be done by a linear or a cubic interpolation. Following the interpolation step the 

surface is reconstructed from the segmented structures. This is a pre-processing step before 

the real meshing procedure where the surface will be divided into the small tetrahedral 

elements. Directly after the meshing process a smoothing filter is applied. A comparison 

between the femur condyles after the surface generation with existing stairs and after the 

interpolation and smoothing is shown in Figure 9.  

4.2.4 Meshing of the segmented images 
The reconstructed three-dimensional surface of the anatomic structures is transformed into a 

surface mesh consisting of triangles using a Marching Cube algorithm before an Advancing 

Front algorithm constructs the volume mesh. For the surface triangulation Amira uses a 

modified type of the Marching Cube algorithm developed by Lorensen and Cline [20]. The 

algorithm assumes a lattice model of a volumetric dataset with a specific value at each 

intercept point of the lattice. The space is subdivided into a constant grid consisting of 

cubes, where each cube has eight pixels and eight grey values from two successive slices. 

Four pixels belong to a slice. In the case that the vertices of a cube’s edge are lying on 

(a) (b)
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different sides of the isosurface, it is given that this edge is cut by the surface. The detected 

intersection points of the cube and the isosurface are combined so that a polygon and a 

triangle are created. Theoretically there are 256 different possible combinations given how 

the cut goes through the surface. Due to symmetries these can be reduced to 14 classes. The 

summary of all polygons leads to the 3D reconstruction of the surface. This surface is used 

to create a volumetric mesh using the above-mentioned Advancing Front algorithm. With 

this it is possible to create elements and nodes at the same time. The edge is set by nodes, 

which are divided into connections lines. The length of such a line is depending on the 

specified size of the elements and results in a closed polygon, the “advancing front”. Along 

this front the elements are created, which should go into the inner part of the area to be 

meshed. An update of this front includes only the connection lines, which are needed for 

subsequent construction of the mesh. This method is properly suited for complex 

geometries with inner edges because the boundary of the area is done first. Both algorithms 

are often used in commercial meshing software and described in detail by Nigel et al., 1999.  

 

 

Fig. 10. Mesh of the human knee joint consisting of tetrahedral elements. 

Before starting the surface generation the minimal edge length of the triangles and the 

choice for a first smoothing of the surface have to be set. The result is a closed surface mesh 

with rather small elements, which leads to a high amount of nodes and elements. The more 

elements exist, the better is the reconstruction of the surface but also the computation times 

increases extremely. Therefore it is recommended to reduce the amount of elements using 

the simplification editor. The positions of the elements are recalculated, so that the same 

surface is constructed using fewer elements. The meshing procedure is highly important for 

the whole FE analysis as the quality of the mesh influences the robustness and the accuracy 
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of the results. It is obvious that a compromise between size and amount of elements and the 

computation time has to be found. After the simplification step the mesh is smoothed to 

eliminate the mentioned stairs in case they still exist. During this second smoothing the edge 

points of the elements are moved. For the calculation of the new position, the middle point 

of the neighbour elements is determined, and the point to be moved is shifted into the new 

direction. This is done for all elements, which do not have a uniform changeover from one 

element to another. Is the form of the mesh satisfying and close to the original structures, its 

quality has to be determined through several tests. If the mesh quality is not satisfactory, an 

additional smoothing can be helpful. Checking the dihedral angle, the orientation and the 

aspect ratio of the elements provides a good measure of the mesh quality. These tests should 

be done consecutively, as well as the intersection and closeness test. If a problem or a bad 

triangle is found, the element is highlighted and can be improved using the editor by 

shifting, subdividing or drawing. If no problems are present the generation of the volume 

mesh can be started. Based on the surface the mesh of the inner volume is constructed. The 

described tests for the surface should also be done for the volume mesh. For special regions 

of interest, e.g. the meniscus or the articulating surfaces of femur and tibia, a refinement of 

the mesh is taken into account. The existing elements are bisected, so that a finer and 

smoother structure is achieved. This increases not only the number of nodes and elements 

but also the quality of the results of the simulation. The complete mesh of the 3D 

reconstruction of the human knee joint is shown in Figure 10. 

4.2.5 Implementation of the model 
Madymo (Mathematic dynamic modelling, Version 6.3, Tass–safe, Netherlands) is used for 

the FE analyses based on the meshes depicted in Figure 10. Madymo enables a combination 

of a multi-body and finite element parts. Models are built in a kinematic chain where the 

rigid multi-body elements are connected by joints. The mesh obtained by Amira is attached 

to those bodies thus ensuring that a prescribed joint motion results in a movement of the 

bones. The several steps of the implementation in Madymo are described in the following. 
After having chosen a reference frame three bodies are defined; one for the femur, one for 
the tibia and one for the patella. To each of these bodies, the elements and nodes belonging 
to the specified bony structure are assigned. The described x, y and z coordinates of the 
nodes, the part numbers and the elements for each part, which were exported from Amira, 
are imported in two different tables. The part numbers are crucial for the assignment to the 
bodies and for the differentiation of the material properties. Free joints, which have three 
translational and three rotational degrees of freedom are used for the connection of the 
bodies. To guarantee a realistic kinematic and kinetic behaviour of the model, the physical 
properties like the moment of inertia and the mass with its centre are essential. The 
determination of these parameters is a complex physical procedure and individual for each 
subject. For this reasons it is common to take values from literature, which were gained, in 
cross-sectional studies. The inertial characteristics of several human segments can be found 
in Zatsiorsky, 2002.  
The material properties are important for a realistic model and essential for the stress 
calculation. In the material sciences there are different typical laws known to describe a 
material’s behaviour with mathematical formulae. Such mathematical material models are 
also used in finite element simulations to compute the resulting stress from the displace-
ment field of the nodes. The properties of a biological material are always an approximation 
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because they vary due to different influencing factors like age or training. For this reason 
simplifications in expressing the material laws are often made. The isotropic elastic material 
is one of the easiest to describe because only two parameters are needed. Elastic means that 
a force-loaded material returns completely to its initial shape after it is unloaded. Isotropic 
indicates, the loading direction is of no matter, so there is no distinct direction. The 
describing parameters for an isotropic elastic material are Young’s modulus E (in Mega 

Pascal, MPa) and the Poisson ratio ν (without a unit). When expecting small strains, it is 
common to use these two parameters for the material description because of the low 
computation costs. Other biomechanical models use a hyperelastic material law for the 
description, due to the fact, that the results obtained by a linearised model are not applicable 
for finite strain calculations.  
The response of biological soft tissues of the human body is often time or load dependent. 

This means, that these viscoelastic materials show creep or relaxation effects. Applying a 

constant force to a material produces a lengthening. Creeping is given if a material shows an 

enlarging displacement in addition to the normal response to the outer force. Relaxation of a 

material stands for the reduction of the inner stresses if a constant force is applied. For the 

human knee joint the different material responses mentioned above are used to specify the 

biological tissues. All properties are taken from the literature. The femur, the tibia and the 

patella are assumed to be rigid with a density of 1000 kg/m3. For the cartilage of the bones 

viscoelastic behaviour was neglected due to a short loading time. Therefore the assumption 

of a linear elastic and isotropic material was made and a Young’s modulus of E = 5 MPa and 

a Poisson ratio of ν = 0.46 were chosen (Li et al., 2001). The menisci are hydrated tissues. 

They are modelled as linear elastic for the same reason that holds true for the cartilage but 

with a much higher Young’s modulus of E = 59 MPa and a Poisson ratio of ν = 0.49 (LeRoux 

& Setton, 2002). The ligament properties are defined by a stress strain function (Lee & 

Hyman, 2002). 

The articulating surfaces of the human knee joint show a complex geometry with curved 

shapes in all directions. Due to this fact it is important to have a look on the contact 

modelling that will influence the computed strains. During a movement of the femur, the 

menisci and the cartilage parts of the bones are in contact with each other. Therefore a 

contact definition for each contact pair is defined, the result of a contact between two 

surfaces is a deformation of at least one of these. Also a self-contact of one structure is 

possible. Three algorithms are well known for the description of a finite element contact: 

Node-to surface, point-to surface and surface-to surface.  

In the node-to surface contact the nodes of structure 1 are in contact to the surface of the 

elements of structure 2. The time consuming tracking of contacts between nodes and the 

surface is simplified with special search strategies. For a three-node element, all nodes can 

have contact to the elements of the penetrated surface. If elements have an additional point 

in the middle of the element, the point-to-surface method should be used, which also looks 

for other points that can apply forces due to penetration. The surface-to-surface method is 

mainly used for the contact between rigid bodies with a special penetration characteristic 

and for heavily curved shapes.  

The first step is to make a decision, which part is Master and which one is Slave. For the case 
that the mesh has different element sizes due to a refinement of a structure, the finer mesh 
should be chosen as Slave. Is this not the case the surface with the more curved shape should 
be the Slave. In this model, the surface-to-surface method is chosen, because of the curved 
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shapes of the femur and the menisci. The gap can either be set as a function or is defined by 
program. The contact edge search algorithm can find additional contacts, which could be 
lost in presence of the curved shapes. The penalty method is used for the calculation of 
contact forces, with a damping coefficient of 0.05 and a variable FE time step, given that the 
contact force is dependent on the time step, to keep the simulation stable.  
For the kinematic boundary conditions a simple knee bending is used for the prescribed 
motion, which is obtained in a three-dimensional movement analysis using retro reflective 
markers and infrared cameras (Vicon Nexus, Vicon Motion System, Oxford, UK). The 
calculated joint angles in three directions are given as an angle vs. time function. The kinetic 
boundary conditions are applied by a gravity function which includes the mass of the 
investigated subject.  

4.2.6 First results  
The goal of the simulation is the calculation of the contact forces and stresses in three 
directions as well as the resultants. A distribution of the forces and stresses acting on the 
articulating surfaces is shown with a specified colour bar referring to the calculated values. 
The results provide a better understanding of the transduction of applied outer forces in the 
inner structures of the human knee joint. In addition different scenarios like meniscal tears 
or ligament ruptures can easily be simulated and the biomechanical effects on the joint 
investigated. The influence of joint alignment like a varus or valgus condition is of great 
interest in these simulations. In Figure 11 the results of the knee bending simulation under 
body weight condition are shown. The menisci and the cruciate ligaments are removed for a 
better illustration of the forces on the articulating cartilage. The distribution shows a peak in 
the direct contact area and a decrease from the middle to the border. 
 

 

Fig. 11. Calculated contact forces of the simulation of a knee bending. 
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Having the option to prescribe motion enables the determination of the influence on the 
motion of the inner structures, like shifting of the menisci or the stretching of the ligaments. 
Using simulated muscle forces as input for the simulation the resulting locomotion and the 
acting forces on the articulating surfaces can be studied.  

5. Conclusion 

The increasing availability of computational resources will lead to more detailed and 
complex models of the human body. In the future, efforts like the Virtual Physiological 
Human (Coveney, 2010) will provide a framework for developing and coupling 
biomechanical and bioelectric models of different scales and body parts. The term Virtual 
Physiological Human (VPH) indicates a shared resource formed by a federation of disparate 
but integrated computer models of the mechanical, physical, and biochemical functions of 
living human body in both physiological and pathological conditions. VPH models will be 
both descriptive and predictive. They comprise 

• large collections of anatomical, physiological, and pathological data stored in digital 
format,  

• predictive simulations developed from these collections, 

• services aimed to support the researchers in the creation and maintenance of these 
models and 

• services aimed to empower clinical, industrial and societal users in the use of the VPH 
resource. 

The Virtual Physiological Human is a methodological and technological framework that 
once established, will enable collaborative investigation of the human body as a single 
complex system. VPH is not ‘the supermodel’ that will explain all possible aspects of human 
physiology or pathology. It is away to share observations, to derive predictive hypotheses 
from them, and to integrate them into a constantly improving understanding of human 
physiology/pathology, by regarding it as an integrated system.  
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